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1 Purpose 
The purpose of this document is to establish the context and requirements for the use of 
RDMA as a transport for remote access to persistent memory (PM) in high availability 
implementations of the SNIA NVM Programming model. 

2 Scope 
This non-normative document pertains specifically to the NVM.PM.FILE mode of the 
SNIA NVM Programming Model. Some implementations of the programming model may 
provide high availability (HA) by communicating with remote persistent memory. While 
there are many ways to implement that communication it is thought that Remote Direct 
Memory Access (RDMA) may be the transport of choice. 
 
The term “Remote” refers to persistent memory that is not attached to the same CPU 
complex as an application that is using the NVM Programming Model. In this context a 
CPU complex comprises the CPU, memory and support chips for a single or multi-
socket server. 
 
In referencing RDMA this document is not referring to any particular RDMA 
implementation. The intent is to enable a range of implementations while describing 
characteristics of RDMA that could reduce the overhead of correct HA operation. 
 
This document neither addresses nor precludes shared data beyond the extent 
necessary to enable failover of data access for high availability. This can be formally 
described as a type of “Release Consistency” as defined by Gharachorloo et al. in 
“Memory consistency and event ordering in scalable shared-memory multiprocessors,” 
ISCA, 1990, pp. 15–26. Release consistency assures that memory state is made 
globally consistent at certain release points. In this case, failover comprises the release 
point. The failing unit is forced to cease operation and the state of one or more durable 
replicas is used to establish global consistency by means of post processing such as 
transaction aborts, completion of transaction commits or consistency checking 
processes (e.g., fsck).  
 
This document addresses requirements that are visible to an application or within a 
data-path such that they affect performance or real time data recoverability. 
Management functionality is not addressed in this paper. For example, hardware 
discovery, system configuration, monitoring and reliability, availability and serviceability 
(RAS) capabilities such as troubleshooting and repair are considered to be 
management capabilities. 
 
This document describes security measures applicable to RDMA, such as techniques to 
encrypt data in flight and implementation guidelines to reduce exposure to attacks.  It 
does not address security of data at rest (i.e., encryption on the storage media), as that 
is independent of the RDMA transport and is determined by the storage device model 
implemented. 

3 Memory Access Hardware Taxonomy 
There are a number of ways to describe hardware access paths to memory. The 
memory connectivity taxonomy in this section is intended to add clarity to various 
remote memory access use cases, including those related to high availability. 
 



NVM PM Remote Access for High Availability                          SNIA Technical White Paper  7 
Version 1.0 

High availability use cases described in this paper align with the networked persistent 
memory access model described in section 3.4. This is because a loosely coupled 
server environment using high speed networking is the most common way to assure the 
fault independence needed for high availability. 
 

3.1 Persistent Memory (PM) latency landscape 
Latency is a key consideration in choosing a connectivity method for memory or 
storage. Latency refers to the time it takes to complete an access such as a read, write, 
load or store. Figure 1 illustrates storage latencies that span 6 orders of magnitude 
between hard disks and memory. The span of each bar is intended to represent typical 
range of latencies for example technologies. 
 
There are two very important latency thresholds that change how applications see 
storage or memory represented by the background color bands in this figure. These 
thresholds are used by system designers when implementing access to stored data, to 
determine whether the access is to be synchronous, polled or asynchronous.  In today’s 
large non-uniform memory access (NUMA) systems, latencies of up to 200 nS are 
generally considered to be acceptable. NUMA systems must be very responsive 
because CPU instruction processing on a core or thread is suspended during the 
memory access. Latencies of more than 200 nS in a memory system quickly pile up, 
resulting in wasted CPU time. 
 
On the other hand, when an application does IO for a storage access that is expected to 
take more than 2-3 uS, it will usually choose to block a thread or process. The CPU will 
execute a context switch and make progress on another thread or process until it is 
notified that the access is complete. For latencies between 200 nS and 2 uS it may be 
preferable for the CPU to poll for IO completion as this consumes one thread or core but 
does not slow down the rest of the CPU. 

 
Figure 1 – Storage Latency Ranges Impact Software 
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Local or disaggregated persistent memory (see sections 1.1 and 3.3) can fall into the 
NUMA range of Figure 5. Networked persistent memory and virtual shared memory 
(sections 3.4 and 3.5) do not. Since the high availability use cases described in this 
document involve networked persistent memory, they can quickly slow applications 
down to IO speeds. This tends to reverse the performance gains made in the transition 
to persistent memory unless remote direct memory access (RDMA) is optimized for high 
availability persistent memory use cases. 

3.2 Local Persistent Memory 
Local persistent memory is generally in the same server as the processors accessing it. 
This is illustrated in Figure 2 in a dual socket system where DIMMs and NVDIMMs are 
connected to CPU’s which are in turn connected using a cache coherent inter-socket 
interconnect that is specific to the processor architecture. Local memory is accessed 
using the NVM Programming Model without any remote access considerations.  For the 
purpose of this taxonomy, all of the memory in this illustration is local because it is part 
of a single server node. Although the illustration assumes that memory controllers are 
integrated into CPU’s, memory attached to controllers outside of CPU’s but within the 
server is still considered local. 

 
A single server does not avoid single points of failure and it integrates the attached 
memory using cache coherency protocol into a single symmetric multi-processing 
environment. This makes it a single fault domain for the purpose of high availability 
management, meaning that there are single points of failure within the server that can 
cause the entire server to fail. 
 

 
Figure 2 - Local Memory 
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3.3 Disaggregated Persistent Memory  
The concept of disaggregated memory is used to illustrate cases where memory that is 
not contained within a server is still accessed at memory speed. It is shown in Figure 3 
as a memory pool with its own controller connected through a low latency memory 
interconnect. Disaggregated memory is not necessarily cache coherent with the CPUs 
in the servers to which it is connected. 
 
Disaggregated memory still looks like memory to CPU’s. It operates at memory speed in 
cache line size units and it is subject to distance limitations to insure sufficiently low 
latency. Disaggregated memory is made feasible through the use of optical networks 
such as those based on silicon photonics to increase the distance of memory speed 
interfaces. Memory speed refers to access that is suitable for a Load/Store 
programming model. This requires an operation (Load/Store) rate and latency that 
allows CPU’s to stall during memory access without unacceptable loss of overall CPU 
performance.  
 
Some disaggregated memory systems may allow memory that is directly connected 
with one CPU to be part of the pool that is shared with another. Since disaggregated 
memory is not necessarily cache coherent, distributed programming techniques such as 
those used in clusters must be applied rather than the symmetric multi-processing 
techniques that apply within a single server. 
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Disaggregated memory may not be a separate fault domain from the servers depending 
on implementation. 

 
Figure 3 - Disaggregated Memory 

3.4 Networked Persistent Memory 
Networked memory is accessed through a high speed network rather than directly 
through a memory interface. Figure 4 shows two servers connected with network 
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in various servers. It is also possible to have servers with no NVDIMMs access 
networked persistent memory on other servers. 
 

 
Figure 4 - Remote Memory 
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This approach to sharing is not favored for persistent memory because it adds 
considerable software overhead to many workloads. 

 
Figure 5 - Virtual Shared Memory 

4 Recoverability Definitions 
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data redundancy such as RAID across servers or external storage nodes is required. 
This is illustrated by Figure 6 wherein the local and remote memory of Figure 4 are 
overlayed with red lines indicating the data flow of a store (ST) operation. 
 

 
Figure 6 - High Durability vs High Availability 
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4.2 Consistency Points 
In order to recover correctly from a failure, all of the data items recovered must have 
correct values relative to each other from the application’s point of view. The meaning of 
“correct” in this case is entirely up to the application. For example if a hardware failure 
occurs while Fred is transferring money from his account to Barney’s, recovery from the 
failure cannot result in a state where both Fred and Barney have the money. 
 
Applications use a variety of techniques to assure consistency, primarily by controlling 
the order of changes to individual data items in such a way that a consistent state can 
always be achieved after failure. One common way to achieve this is to use 
transactions. There is often some data processing required after a failure to bring an 
entire data image into a consistent state. For example, uncommitted transactions may 
need to be rolled back. 
 
Since a failure can occur at any time, systems must be prepared to convert any data 
state that could result from a hardware failure or restart into a consistent state. This is 
much easier to achieve if applications designate certain instants in time during 
execution as consistency points. By identifying consistency points an application can 
allow underlying infrastructure to orchestrate recovery that always results in a consistent 
data image. 
 
For example, in today’s enterprise storage systems applications can coordinate the 
creation of snapshots with storage systems using protocols like Microsoft’s Volume 
Shadow Copy Service (VSS™). VSS allows applications to orchestrate storage 
snapshots at points in time when application data is consistent. That is fine for backups 
because they are infrequent compared to IO’s, and even more infrequent compared to 
memory accesses. 
 
As another example, suppose an application was able to involve persistent memory in 
transactions so that the completion of each transaction represented a consistency point. 
“NVM Atomics”, the subject of a SNIA white paper, suggests a standard way for 
applications to view transactions that could enable this type of interaction. 
 
The important thing about consistency points relative to high availability is that they 
create opportunities to optimize networked persistent memory communication. 

4.3 Crash Consistency in Disk Based Systems 
Crash consistency is another common recovery model in today’s storage systems. 
Since the dawn of computing time, disk drives have defined the gold standard for all 
types of storage system behavior. Disk drives perform multiple reads and/or writes 
concurrently so the order of completion of outstanding operations is indeterminate. 
 In addition, if power fails during a write it may be partially completed. Some storage 
systems offer additional guarantees about write completion. These give rise to the 
“Atomicity Granularity” attributes of the SNIA NVM Programming Model.  Operating 
systems may provide additional semantics atop these primitive behaviors as well. 
 
Since disk drives and storage systems offer such weak ordering guarantees, 
applications must be prepared to recover from any state of the writes that were in flight 
when a failure occurs. This brings us to the concept of crash consistency, in which the 
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state of a storage system after a failure need only match the indeterminate write order 
guarantee of a group of disk drives. 
 
More formally, a storage subsystem state is considered crash consistent if it could have 
resulted from power loss of a group of direct attached disks given the sequence of write 
commands and completions leading up to the failure. This means that there is a rolling 
window of outstanding write requests whose order is uncertain. Applications must be 
able to recover from any order of those requests and must account for storage system 
atomicity nuances in the process. For an application, recovery from a crash consistent 
image is the same as a cold restart after a system crash. 

4.4 Crash Consistency in PM Systems 
Now consider the map-and-sync methodology described in the NVM.PM.FILE mode of 
the NVM Programming Model. Sync has a very specific meaning. The only guarantee 
that sync makes is that all stores in the address range of the sync that occurred before 
the sync are in persistent memory when the sync completes. Sync does not otherwise 
restrict the order in which data reached persistent memory. For example, if cache lines 
1 through 5 were written in order by the application before the sync, cache line 5 might 
have reached persistent memory first, possibly before the sync even started. This 
flexibility enables potential write order optimization for cache performance.  
Unfortunately it also creates ordering uncertainty analogous to that of crash consistency 
in disk based systems. 
 
The lack of ordering certainty gives rise to a lowest common denominator for 
NVM.PM.FILE recovery similar to that which exists for disk drives. Specifically, the 
application is uncertain as to which of the store instructions between two sync actions 
will appear in persistent memory after a failure that occurs before completion of the 
second sync action. If the actions and attributes of the NVM Programming Model V1 are 
all that is available then the application must execute additional sync actions whenever 
the order of stores to persistent memory matters. 
 
More formally, a persistent memory range is crash consistent if its contents at the start 
of recovery could have resulted from the pattern of stores and syncs executed on the 
initiators (processors or other sources of memory access) with data in flight to the 
persistent memory prior to failure. In both disk drives and persistent memory, some 
aspect of data atomicity with respect to failure is built into the crash consistency 
assertion. Specifically, both the order and atomicity properties that are guaranteed for 
local media must be duplicated at the remote site. The NVM programming model 
describes atomicity for both disk drives and persistent memory. Based on the PM 
model, unless the atomicity of fundamental data types provided by the local processor is 
conveyed to the remote node, applications will need to use error checking such as CRC 
on all data structures that need atomicity. The error check must be stored in such a way 
that atomicity can be verified after a failure that calls the remote copy of the data into 
use.  This is covered in more detail in section 6.5. 
 
Crash consistency applies to literal data images as seen by processors. If crash 
consistency is applied across nodes with different types of processors, the memory 
layout at each node must be such that the applications running on the processor(s) 
connected to that memory see the same data image created at the local site. This must 
account for processor architecture specific bit and byte ordering practices. Crash 



NVM PM Remote Access for High Availability                          SNIA Technical White Paper  16 
Version 1.0 

consistency does not account for other types of data formatting as might appear in the 
presentation layer of a network stack. 
 
Crash consistency is a complex approach to recovery from an application standpoint. It 
also forces considerable overhead to precisely communicate every sync action to 
networked persistent memory. This further illustrates the motivation for some notion of 
consistency points such as persistent memory transactions and their relevance to high 
availability use cases. 

4.5 Recovery Point Objective 
Another analogy between persistent memory and enterprise storage systems relates to 
the concept of a recovery point objective (RPO). A recovery point objective is the 
maximum acceptable time period prior to a failure or disaster during which changes to 
data may be lost as a consequence of recovery. Data changes preceding a failure or 
disaster by at least this time period are preserved for recovery. Recovery point 
objectives are part of today’s disk based disaster recovery service level agreements. 
Although they are most often expressed in terms of time, recovery point objectives can 
also be specified as an amount of data changed, either in terms of bytes or operations 
such as writes, stores or transactions. 
 
Zero is a valid RPO value. In today’s disaster recovery systems an RPO of 0 mandates 
synchronous remote replication. As a result at least one round trip to the remote site 
and back is added to the time it takes to do a write. In addition, enough bandwidth must 
be available to transmit every write to a remote site even if the same data blocks are 
written repeatedly in rapid succession. Clearly this high level of consistency comes at a 
significant cost in performance. 
 
A non-zero RPO allows writes to flow to remote sites without slowing down local writes, 
as long as the remote site does not get too far behind the local site. In addition, there 
are opportunities to gather multiple writes to the same address within the RPO time 
window into one write to the remote site. 
 
The NVM.PM.FILE mode of the NVM Programming model includes an “Optimized 
Flush” action which insures that a list of memory address ranges have been flushed 
from the CPU to PM. These groups of address ranges must also, at some point, 
become redundant in networked persistent memory. If we apply the recovery point 
objective concept to persistent memory then we can delay transmission of data to 
networked persistent memory so long as a consistency point is achieved at the remote 
side within the RPO time window. Delayed transmission allows data transmission to be 
batched into larger messages which reduces the net overhead of high availability. 
 
Having introduced the concept of RPO we can consider the state of memory at the end 
of any “Optimized Flush” action to be used as a consistency point. If an application is 
managing durability using only “Optimized Flush” and/or “Sync” actions then the 
consistency point can be at least crash consistent. If an application is more involved in 
managing durability atomically as with transactional persistent memory, the consistency 
point may be more optimal. In either case the RPO can be used to determine how often 
one of those candidate consistency points actually appears in remote PM. As with 
remote replication, this requires additional time in order to optimize the flow of data to 
networked persistent memory. 
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The data for a consistency point can be placed in networked PM in any order that 
results in a state that meets the requirements of a candidate consistency point. For a 
crash consistent candidate, the state of networked PM must adhere to the constraints 
imposed by optimized flush or sync actions generated by the application. If the 
consistency point is stronger, the constraints imposed by additional application 
interaction such as transaction constructs must also be applied to the state of 
networked PM. Both of these include the atomicity considerations described in section 
4.3. 
 
Write intensive applications that truly require RPO=0 are not likely to experience good 
performance with persistent memory. RPO=0 imposes at least one network round trip 
per optimized flush or sync. In addition, today’s systems do not assure that data has 
reached persistent memory on the remote PM before the remote data placement 
completes from the local server’s point of view. This could require another network 
round trip just to assure durability at the remote node. 
 

4.6 Recovery Scenarios 
To explore data recovery scenarios more deeply, consider the implications of the Error 
Handling appendix of the NVM Programming Model specification. This, combined with 
reasoning about sync/flush semantics and consistency points enables enumeration of 
several scenarios based on the following criteria: 

• Did a server fail? Server failures include anything that inhibits an application 
running on a server other than a storage or memory device from accessing the 
data that is in its local memory. 

• Was a server forced to restart? 
• Did a precise, contained memory exception occur? 
• Is the application able to backtrack to a recent consistency point without 

restarting, such as by aborting transactions? 
• How up to date (fresh) is the redundant data? 
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Permutations of these criteria create a handful of recovery scenarios. 
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The following sections elaborate on each scenario. 
 
4.6.1 In line recovery 

In this scenario, the primary copy of a memory location is lost and if a copy is available 
(or the equivalent)  the data is recovered during a memory exception without any 
application disruption. The control flow for this scenario is as follows: 

• A precise, contained memory exception interrupts the application. The exception 
handler of the NVM.PM.FILE implementation handles the exception, 

• The NVM.PM.FILE implementation determines that it can recover the lost data 
either locally or from networked PM. 

• The NVM.PM.FILE implementation restores the lost data to local PM 
• The application returns from the exception, causing the interrupted instruction to 

successfully retry the memory access. 
• The application continues from that point without any application level exception 

handling or recovery. 
 
This type of recovery requires that the recovered data be the most recently written data. 
Sync semantics do not guarantee sufficient recency for this type of recovery. Consider 
the following sequence of events: 

A := 1; 
OptimizedFlush(…&A…); 
A := 2; 
B:= A; 
<processor automatically flushes 2 -> A before sync> 
C:= A; 
<failure to read A from PM causes interrupt during C:=A;> 
<NVM.PM.FILE implementation restores value 1 -> A based on latest sync> 
<processor repeats C:=A, assigns value 1->C; 
OptimizedFlush(…&A,&B,&C…); 
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If there were no failure, A, B and C would all equal 2 at the end of the above code 
segment. However, a failure may occur such that B equals 2 and A and C equal 1. That 
is because nothing about map and sync semantics keeps the processor from flushing 
cached variables to PM before the sync action. Therefore any redundancy that is 
created during or after sync may not be sufficiently up to date to restore data in such a 
way as to assure correct application execution without backtracking (see section 4.6.2). 
 
The RPO logic described above commences with the sync command. This means that 
even when RPO=0, backtracking is required during recovery to adjust work in progress, 
by means such as aborting transactions. Note also that this is really a high durability 
scenario rather than a high availability scenario because there was no server failure. 
  
4.6.2 Backtracking recovery 

In this scenario an application is able to recover from memory exceptions by identifying, 
aborting and retrying transactions, or other application specific equivalents. 
 The control flow for this scenario is as follows: 

• A contained memory exception interrupts the application. The exception handler 
of the NVM.PM.FILE implementation handles the exception. Backtracking 
recovery is potentially applicable even if the exception is not precise. An 
imprecise exception does not allow resumption of execution at the interrupted 
instruction. 

• The NVM.PM.FILE implementation determines that it can recover the lost data 
either locally or from networked PM. 

• The NVM.PM.FILE implementation restores the lost data to local PM. The 
restored data is not guaranteed to be any more recent than the last consistency 
point. All committed transactions must be included in the last consistency point or 
in consistency points before that. 

• NVM.PM.FILE may be able to determine whether the page containing read data 
in error has been modified since the last flush. If it has not been modified, the 
error handler can restore the data and transparently resume execution without 
backtracking. If that happens then the remaining steps in this description do not 
apply. 

• The application receives an exception event or signal along with an indication of 
the address ranges that were restored.  If all of the restored data is guaranteed to 
be covered by committed transactions then the application can return from the 
exception and continue processing in line. Depending on the application and/or 
transaction implementation the contents of some roll forward logs in committed 
transactions may need to be re-applied to the recovered page before returning 
from the exception. If some of the data is covered by uncommitted transactions 
and the rest is covered by committed transactions then backtracking recovery 
proceeds by aborting transactions and resuming application work flow at a point 
that will cause aborted transactions to be retried. 

 
This scenario clearly describes a relationship between transactions and recovery, since 
aborting transactions is the means of backtracking referenced. It would be helpful for 
the transaction service to assist in determining which of the recovered data items are 
related to a given transaction. Such a determination could then be used to ascertain the 
minimum set of transactions that need to be aborted or reapplied to recover from the 
restoration. 
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Depending on the application this type of recovery may require RPO=0 with respect to 
transaction commits. On the other hand, some applications may be able to recover from 
arbitrarily old memory states without restarting. 
 
4.6.3 Local Application Restart 

In this scenario an application restarts in order to complete recovery from a data loss. 
The term restart is used here to refer to the resumption of application execution from an 
initial state such as would occur after the application’s process(es) were killed. This 
scenario applies if neither the in line nor the backtracking scenarios were applicable and 
the server running the application has not failed. The control flow for this scenario is as 
follows. 

• The application restarts. This could be the result of decisions by the application 
itself, some other hardware, software or administrative intervention, or power 
loss. 

• Recovery code that may be specific to the application or part of a transaction 
service uses NVM.PM.FILE.GET_ERROR_INFO to identify persistent memory 
ranges that may require recovery over and above that which may have occurred 
before the restart. If data recovery is required, human or file system intervention 
may be required to restore data to a consistency point based on file system 
redundancy features or backups. 

• At this point the persistent memory image must represent a consistency point as 
described above. Application specific code or a transaction service cleans up the 
consistency point by completing committed transactions and aborting 
uncommitted transactions. 

• The application completes the restart based on the cleaned up persistent 
memory image and resumes processing. Application work flows that involved 
aborted transactions may need to retry those transactions.  

 
This type of recovery can use RPO>0 on all of the data in a persistent memory image. 
The reference here to a persistent memory image is significant in that all of the data 
within the scope of the application must be restored to a state that represents the same 
consistency point. 
 
4.6.4 Application Failover 

In this scenario a server failure forces the application to restart on another server. This 
is generally the result of hardware failure that causes data to be inaccessible to 
applications running on a server, or that renders it incapable of running an application. 
For the purpose of this description the entire server is considered to be failed if any part 
of it has failed. In cases of intermittent or partial failure a failover policy must determine 
when the server is designated as failed. 
 
A failover relationship must be constructed and maintained with the target server(s) of a 
failover including the following capabilities. 

• Server failure must be detected and communicated to a server capable of taking 
over. 

• The failing server must stop execution and be isolated from non-failing servers so 
as to insure that no artifacts of its execution could interfere with ongoing 
operation. 
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• The server taking over must have or obtain access to a persistent memory image 
that represents a consistency point from which the application can restart. 

 
An example control flow for this scenario is as follows. 

• A non-failing server capable of taking over an application (or a portion thereof) 
from a failing server is notified of the server failure. This can be the result of the 
failing server detecting its own failure, or it can be detected by a monitoring 
service such as a heartbeat. 

• The non-failing server identifies all of the PM relevant to the application based on 
configuration information and takes measures to insure that the failing server no 
longer has access to the surviving copy or copies of the data. 

• If the non-failing server does not have local access to all of the PM relevant to 
the application, data is migrated to local PM from networked PM on other non-
failing servers. 

• The application restarts on the non-failing server as described in section 4.5.3 
except that it uses an image of a consistency point that does not depend on any 
PM that is contained within the failing server and is fresh enough to adhere to the 
RPO. 

• During or after application restart, data that lost redundancy due to the server 
failure is rebuilt provided that PM resources are available for that purpose. 

• After the server is repaired or replaced it can resume participation in the HA 
system running the application once it has regained access to a complete local 
PM image. 

 
Note that this scenario involves logistics of application failover that go beyond PM. 
These logistics are generally provided by additional failover services related to the OS 
or hypervisor that integrates a failover cluster. 

5 HA Extensions to NVM.PM.FILE 
Figure 7 illustrates a layering of software modules that includes the following features. 

• User space NVM.PM.FILE implementation represented as libraries to the 
application 

• User space based replication via RDMA (or similar protocol) to persistent 
memory in separate hardware 

• Local and remote file systems.  The local file system is PM aware and supports 
memory mapping.  The remote file system stores data in PM and allows it to be 
accessed using RDMA.  

• User space optimization to access remote networked memory 
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Figure 7 – HA Extension to NVM.PM.FILE 

 
The application is presented with an implementation of NVM.PM.FILE with the 
assistance of user space libraries. One of these consists of the standard file system API 
while the other implements NVM.PM.FILE.OPTIMIZED_FLUSH. The load/store 
capability of the application is shown in the center of the diagram as it is enabled once 
files are memory mapped. 
 
Using the NVM.PM.FILE mode we see that replication software (e.g. RAID or erasure 
coding) is implemented in the user space library.  This software enables construction of 
a high availability solution by communicating with both the local file system and a 
remote file system via the network file system client and RNIC illustrated to the right of 
the PM-aware file system and the PM device. 
 
The user space library is capable of setting up an RDMA session with the remote file 
system. The RDMA session can then be accessed from user space to enable data to be 
written to networked PM for redundancy without context switching. The user space 
“msync” and “opt_flush” use the RDMA session for this purpose during sync and 
optimized flush actions respectively as represented by the black dotted arrow. 
Replication for HA is achieved when the remote write reaches the persistence domain in 
the remote system as a result of the RDMA.  The optimized flush and native API paths 
may use each other’s implementations should it be advantageous to do so. 

6 RDMA for HA 
This section provides additional detail on RDMA for HA in the context of the software 
model described in section 5. 
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6.1 Peer to Peer Deployment Model 
The following figure illustrates two servers, each of which runs an NVM.PM.FILE 
implementation in cross-communicating client server file systems. 
 

 
Figure 8 – NVM.PM Peer to Peer HA Replication Deployment Diagram 

 
Peer A and Peer B are physically separate servers or server blades connected by a 
network. Each server has access to the other’s file system in a client/server 
configuration such as NFS or SMB. Both message passing and RDMA communication 
passes between the remote access clients and servers as indicated in Figure 7. Each 
peer only has memory mapped access to local NVM . 

6.2 Address Spaces 
The use of RDMA with memory mapped files introduces additional address spaces 
which must be correlated by various elements of the system. Figure 9enumerates those 
address spaces. The vertical axis represents numerical address assignments. The 
placement of the arrows illustrates the fact that only the physical addresses used in the 
file system’s view of the media coincide. 
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Figure 9 - Memory Mapping and RDMA Address Spaces 

 
Starting at the left we see the physical PM address space as viewed by the CPU 
running the application. The notions of virtual and physical addressing are always 
relative to a point of view. In this case, the CPU observes contiguous ranges of physical 
memory addresses that represent a file resident in PM according to the file system’s 
metadata and allocation policies. Media controllers closer to the actual physical media 
may introduce additional address virtualization for purposes such as defective media 
replacement. 
 
The application address space column represents the CPU’s memory mapping unit 
providing the application with virtual addresses for ranges of PM as part of the 
NVM.PM.FILE.MAP implementation. The mapping between the first and second 
columns of Figure 9 is typically maintained by operating systems using page tables. 
This virtual address space must align with the application’s method of resolving pointers 
among persistent data structures. The alternatives for pointer resolution are described 
in the NVM Programming Model Appendix A. 
 
When RDMA is initialized to establish the session for sending data to a server, an 
additional RDMA address space is created to rapidly and securely correlate registered 
memory across the RDMA NICs in Peer A and Peer B. This RDMA address space has 
no numerical alignment with any of the other address spaces. The mapping between 
the RDMA address space and the application and server address spaces is under the 
control of the RDMA-aware layers on each peer.  The RDMA-aware layers include the 
user space msync and opt_flush implementations shown in Figure 7.  These 

Mapping controlled 
by client peer OS

Mapping controlled by RNIC
Mapping controlled 
by server peer OS
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implementations use RDMA to copy portions of the application address space from the 
client to the server for replication.  This copy process is represented in Figure 9 as a 
single arrow from the application address space to the RDMA address space.  The 
other arrows appear in pairs to represent address range mappings at multiple layers in 
the system. 
 
The server address space column represents the virtual memory address space in the 
peer running the remote access server as shown in Figure 9. For HA purposes the 
application and server virtual address spaces do not necessarily need to align as long 
as the file system metadata reflects the byte-wise correlation of redundant data within 
files. As with the application, the mapping between the server address space and the 
device address space is maintained by the OS on the server. 
 
As described in the scope of this document, sharing data in PM for purposes other than 
HA is not considered here. If real time sharing were a consideration, additional 
constraints might apply to the correlation of the virtual address spaces between the 
application and server columns. 

6.3 Assurance of Remote Durability 
In most of today’s hardware implementations, completion of an RDMA write is not 
sufficient to guarantee that data has reached persistent memory. This is because the 
path from a network adapter to an NVDIMM as shown in Figure 4 goes through several 
buffering stages as it traverses the peers, including I/O busses, networks and CPUs. 
Within the CPU there are generally buffers or caches that are not necessarily flushed by 
the CPU before the network adapter responds to the RDMA. For example, in some CPU 
architectures there are several levels of volatile buffers or caches that may need to be 
flushed depending on system configuration. This may include PCI buffers, Memory 
controller buffers and possibly CPU caches. This creates hidden inconsistency between 
redundant PM images that could lead to inaccurate recovery from hardware failure after 
power loss. 
 
This can be rectified if peer A signals peer B to trigger a flush of any buffers on the IO 
bus (generally PCI) to memory path. Unfortunately this creates significant overhead 
considering the low latencies of local NVM.PM.FILE access. It would be highly desirable 
to avoid this overhead. 

6.4 Client initiated RDMA Protocol Flow 
Figure 10 illustrates the interaction between the two servers and the RDMA NICs that 
interface them to the network as illustrated in Figure 4 and Figure 8. 
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Figure 10 - Peer to Peer HA Replication using client initiated RDMA 
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This flow illustrates interaction between 6 actors; an application, Peer A, Peer B, the 
RDMA Network Interface Cards (RNICs) in peers A and B and the persistent memory in 
peer B. Some implementation specific RDMA session initialization must occur prior to 
the activity shown in this diagram.  This includes initializing and opening network 
adapters, creating queue pairs, authenticating the Peers and querying for attributes.  At 
the start of the diagram, Peer A opens an RDMA session with Peer B while memory 
mapping a file. It establishes an RDMA address mapping and registers it with the RNIC. 
Within this session, application addresses on Peer A are used to access persistent 
memory devices on Peer B in a way that aligns with file system metadata. This is 
illustrated in detail by Figure 9. 
 
The application then uses CPU instructions to store data to a number of possibly 
discontiguous memory ranges on Peer A.  This is illustrated on the application thread 
right after the Map.  The application then uses the NVM.PM.FILE.OptimizedFlush action 
to insure that the stores are persistent.  There may be some advantage to 
communicating stored data to Peer B prior to the OptimizedFlush. In the simplified 
example of the diagram, the OptimizedFlush action causes one or more RDMA Writes 
to be transmitted from Peer A to the RNIC A. As represented near circled numeral 1, 
Host A can get a completion notification to each RDMA write however this may not 
indicate that the data has progressed beyond RNIC A.  This is analogous to the 
semantics of a local store within a CPU. 
 
RNIC A then transmits the data to RNIC B which uses Peer B’s IO bus (i.e. PCIe) to 
deliver data to PM on Peer B.  It is up to RNIC A to determine how many RDMA Write 
transmissions occur between itself and RNIC B.  Since no acknowledgement is required 
in that exchange this decision has miniscule effect on latency.  As per section 6.3 at this 
point there is no guarantee that data has actually reached PM.  Figure 10 illustrates this 
with the asynchronous write process in which writes reach the PM actor at unknown 
times after they are received by RNIC B.  
 
The RDMA protocol is required to insure that the signal indicting receipt of a send 
cannot be generated by RNIC B until all of the writes that precede it have been 
delivered by RNIC B. Therefore an upper layer can implement the flush operation using 
a send at circled numeral 2 which is processed by the software in Peer B at circled 
numeral 3.  The flush is required to insure that all of the writes that preceded the flush 
are in PM before RNIC B responds back to RNIC A indicating completion of the flush.  
There are other ways of implementing flush that also reflect optimized flush semantics.  
One variation might involve an RDMA protocol that supports the piggybacking of 
additional flush semantics on the last RDMA write.  Other variations might involve CPU 
architecture specific optimizations of the flush interaction between RNIC B, Peer B and 
PM. 
 
 
By this means RDMA’s and flushes are orchestrated in such a way that the net effect of 
the original OptimizedFlush is the same on Peer A and Peer B, namely that all of the 
data referenced in the OptimizedFlush has reached PM before the completion of the 
OptimizedFlush. Used correctly by applications this is sufficient to enable crash 
consistency with RPO=0 (relative to OptimizedFlush actions) in backtracking recovery 
scenarios as described in section 4.5.2. 
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When the application is finished modifying the memory mapped file it cleans up by 
unregistering and closing the RDMA session. 
 
Like local memory access, this scenario does not require that all RDMA’s reach the PM 
in Peer B in the same order that they did in Peer A, as long as the memory state on 
both peers adheres to the definition of Optimized Flush. For RPO=0, Optimized Flush 
actions are executed in the same order on both Peer A and Peer B. Ordering 
constraints for RPO > 0 are implementation dependent so long as reordering does not 
corrupt a consistency point that may become visible to Peer A during recovery. 
 
Remember that OptimizedFlush does not itself make atomicity guarantees. This means 
that remote PM must account for the local atomicity that originates with the local CPU.  
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Figure 11 illustrates the use of redundancy on Peer B to recover from an unrecoverable 
ECC error on Peer A. 

 
Figure 11 - Uncorrectable Error Recovery 

 
For graphic simplicity the PM thread of this figure has been removed. It participates in 
OptimizedFlush as described in Figure 10. This scenario proceeds as before until the 
error occurs, represented by the box labeled “load receives uncorrectable ECC error”. 

[load receives uncorrectable ECC error]
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At that point the application is shown encountering a “read error” which represents an 
exception that is fielded by the file system. The resiliency function described in section 5 
does an RDMA read to recover the lost data. Since the data is only as recent as the last 
time it was referenced by an OptimizedFlush, backtracking (such as a transaction abort) 
may be required on the application’s exception handling thread as described in section 
4.5.2. Any aborts may require additional rdmaScatterWriteAndFlush actions prior to the 
completion of the exception handling, after which the application resumes normal 
operation. As in Figure 10 the application eventually ends the RDMA session (not 
shown). 

6.5 HA across multiple processor architectures 
The use of RDMA, or similar methods of direct data transfer to PM in a remote node 
does not address any potential architectural incompatibilities between local and remote 
nodes.  For example, with RDMA the application is responsible for addressing data 
representation differences such as endian-ness or floating point number encoding.  If 
remote access for HA is attempted across divergent processor architectures then 
portable data structures are required, especially in the event of failover from one 
processor architecture to another. 
 
A similar issue arises with respect to atomicity of fundamental data-types (NVM 
Programming Model Version 1 Revision 1 section 10.1.1 – “Applications and PM 
Consistency”).  It is common for PM optimized data structures to depend on atomic 
updates to fundamental data types such as integers and pointers.  Such dependencies 
may not be conveyed across RDMA operations due to processor architecture 
differences or packetization of data within or below the RDMA transport layer of the 
network protocol stack. 
 
Since there are no common specifications of failure atomicity related to either RDMA or 
processor architectures there is no way to guarantee correct handling of atomicity short 
of detailed end to end review of the component implementations involved in a given 
deployment.  Some existing protocols include atomic operations however these do not 
address persistence.  In the absense of a failure atomic store as a primitive for remote 
fundamental data type operations forces applications to fall back to checksum based 
atomicity.   
 
At a minimum these considerations create a requirement that the architectural similarity 
of two nodes in an HA relationship be ascertainable by management software.  This 
should provide a warning in conditions where access to data structures after failover 
may be in doubt.  In addition, any applicable atomicity granularity attributes should 
account for remote atomicity.  Finally, restrictions on component replacements or VM 
relocations that cross processor architecture boundaries may also apply. 
 
Additional exploration of potential failure atomicity considerations appears in Appendix 
C. 

7 RDMA Security 
This section provides an overview of security concepts and their application to RDMA-
based transports.  It includes a summary of the RDMA security model prescribed by 
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RFC 5042, lists various threat models, and describes the various RDMA transports and 
relevant security mechanisms. 
 
This section does not address security of data at rest (e.g., encryption of user data), as 
that is independent of the RDMA transports and is provided by mechanisms specific to 
each storage device type. 

7.1 Security Concepts 
Data security has the objective of preventing the improper disclosure or alteration of 
data in storage devices. Many of the concepts are defined in the SNIA Dictionary. For 
purposes of this white paper, several areas of interest are described informally here: 
data at rest 
Data in a storage volume may be subject to disclosure if the volume can be stolen. This 
is often mitigated by encrypting the data before or during storage. 
data in flight 
Data being written to or read from a storage device may be subject to disclosure if the 
connection can be snooped. This is often mitigated by encrypting the connection. This 
usually requires hardware resources in the device and the host to perform the 
encryption/decryption without sacrificing transmission speed. 
authentication 
Authentication is the process by which a storage device determines the identity of a 
host attempting to access it. If a host is not authenticated, then it will not be allowed to 
access any data in the device. 
authorization 
Once a host is authenticated, then the storage device may determine whether the host 
is authorized to perform the particular operation it is requesting. For example, some 
hosts may be permitted to read data from a volume, but not to write data to the volume. 
provisioning 
Provisioning is the process of configuring a storage device for operation in a particular 
system. With respect to security, provisioning includes installing credentials which the 
device can use to authenticate remote hosts and specifying the operations which each 
host is authorized to perform. 
channel binding 
Channel binding (see RFC 5056) is the binding of a pair of end points mutually 
authenticated at a higher-level protocol to a secure channel in a lower-level protocol. 
This permits delegation of session protection to the transport layer, which can provide 
better performance than performing encryption at the application layer. 

7.2 RDMA Security Model 
7.2.1 Overview 
RFC 5042, Direct Data Placement Protocol (DDP) / Remote Direct Memory Access 
Protocol (RDMAP) Security, analyzes security issues for DDP and RDMAP and 
presents countermeasures to protect systems. Figure 12 is reproduced from the RFC 
and shows the RDMA reference model and is used to analyze security threats and 
solutions. Detailed explanations of the concepts described in section 7.2  can be found 
in RFC 5042 and associated RDMA standards. 

http://tools.ietf.org/html/rfc5042
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5042
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Figure 12 – RDMA Security Model 

 
The elements shown in Figure 12 are: 

a) The RDMA network interface controller (RNIC) implements the RDMA protocol to 
access the fabric (which implements a lower layer protocol, or LLP). 

b) The privileged resource manager manages RNIC resources. 
c) A privileged upper layer protocol (ULP; e.g., an application or middleware library) 

is trusted by the local system not to attack the operating environment. 
d) A non-privileged ULP is not trusted, and its requests must be verified. 

These are concepts that apply to all RDMA implementations, although individual 
implementation will differ. 
 
7.2.2 Protection Domains 

A protection domain (PD) is a collection of RDMA resources for purposes of isolation 
and security. It is a local construct and is never visible on the connection between 
nodes. When mutual authentication is successfully performed, a PD is created in the 
host and a PD is created in the storage device. The resources which may be assigned 
to a PD are: 

• Connection endpoint (a queue pair consisting of a request queue and a send 
queue) 

• Steering tag (STag – a scalar identifying the destination buffer for a tagged 
message, e.g., data to be transmitted) 

The RNIC is responsible for ensuring that resources in one PD are not accessible by 
resources belonging to another PD. A node is required to check that the endpoint and 
the STag are in the same PD before permitting the operation to access the resource. 
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The use of these objects in the context of PM devices is explored by this document. 
 
7.2.3 Partial Trust 

Partial trust is a concept for defining which threats are addressed by specific security 
techniques; in other words, one party assumes that another will not use a particular set 
of attacks. There are three characteristics which may or may not be present in a 
particular trust model (i.e., sharing of local resources, local partial trust, and remote 
partial trust). These are used to define five trust models: 
 

• NS-NT – Non-Shared Local Resources, no Local Trust, no Remote Trust 
• NS-RT – Non-Shared Local Resources, no Local Trust, Remote Partial Trust 
• S-NT – Shared Local Resources, no Local Trust, no Remote Trust 
• S-LT – Shared Local Resources, Local Partial Trust, no Remote Trust 
• S-T – Shared Local Resources, Local Partial Trust, Remote Partial Trust 

7.2.4 Remote Partial Trust 

Partial mutual trust among a set of RDMA streams (see RFC 5040) implies that one 
authentication can apply to all streams in the set. All may be in the same protection 
domain. Conversely, one protection domain must never contain streams among which 
partial mutual trust does not exist. 
 
For example, not all ULPs using a host’s file system may be trusted. The PM device 
may not be able to trust the file system on a host, and all streams from the file system 
cannot be assumed to be in the same protection domain. 

7.3 Threat Models 
The need for particular protection mechanisms depends upon the security threats: 

• If the data center is physically secure to the extent that pilfering of storage 
devices is very unlikely, then encryption of data at rest may not be necessary. 

• If the storage area network is secure against snooping, then encryption of data in 
flight may not be necessary. 

• If the storage area network is secure against introduction of a rogue host, then 
authentication may not be necessary. 

• If there is a rogue process on a host (i.e., a non-privileged ULP in Figure 12), it 
may be possible to limit its access. 

Many networks of interest provide better security than general purpose nodes on a 
general purpose network. Examples include: 

• Distributed storage devices which are networked have special-purpose 
functionality and may lack commonly-attacked functions found in general 
purpose nodes. Moreover, these arrays often use dedicated private networks. 

• Software defined storage (SDS) virtual machines usually utilize a private 
network. 

• Virtual appliances implemented as SDS virtual machines that have prescribed 
functionality implemented on the VM may provide fewer points of attack. 
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A PM device can perform a number of actions to protect itself from unauthorized 
access: 

• Authenticate each protection domain (see 7.2.2). Require that each protection 
domain is associated with a single fabric client node. Each node may have 
multiple protection domains. 

• Use fabric-specific encrypted connections to client nodes (e.g., IPsec for IP-
based fabrics, FC-SP for FC based fabrics) to prevent snooping. Enforce channel 
binding to ensure that authentication performed in-band is associated with the 
right connection. 

• The privileged resource manager (see 7.2.1) can reduce the impact of denial of 
service (DoS) attacks by controlling all scarce resources (e.g., by reaping the 
resources of idle streams and not sharing RQs, CQs, STags across streams). 

• Prevent buffer overflows to protect data of different streams. 

7.4 Transport Security 
This document addresses four of the fabric transports (i.e., LLPs) for which RDMA 
mappings are defined: iWARP, RoCE, RoCEv2, and InfiniBand. 
 
7.4.1 iWARP 

iWARP (RFC 5040) provides mappings of RDMA to TCP and to SCTP. Because these 
rest upon IP, IPsec could be used for authentication and encryption of data in flight. 
 
7.4.2 InfiniBand™ 

InfiniBand (InfiniBand Trade Association specification) defines RDMA over the 
InfiniBand fabric. 
 
7.4.3 RDMA over Converged Ethernet (RoCE) 

RoCE (Annex A16 of volume 1 of the InfiniBand specification) is defined over L2 
framing and does not address authentication, authorization, or encryption of data in 
flight. 
 
7.4.4 RDMA over Converged Ethernet version 2 (RoCEv2) 

RoCEv2 (Annex A17 of volume 1 of the InfiniBand specification) is defined over UDP 
(which utilizes IP), and thus can utilize IPsec for authentication and encryption of data in 
flight. 

8 Error Handling 
There are numerous sources of errors in the processes described in section 6.  Rather 
than attempting an exhaustive enumeration of these, this section describes a systematic 
approach to error detection, recovery and reporting in the context of Figure 7.  Error 
handling processes can generally be described in several parts: 

• Detection – some piece of hardware or software gets the first indication that an 
error has occurred. 

http://tools.ietf.org/html/rfc5040
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• Local Recovery – the portions of the system affected by the error take action that 
allows them to continue operation, if possible, in spite of the error. 

• Global Recovery – software at some level in the system insures that the entire 
system has responded to the error in a comprehensive manner.  This may 
involve parts of the system that were not initially involved in error detection or 
local recovery. 

• Reporting – software logs the error, possibly at multiple levels. 

In the software layering of Figure 7, most of these actions are performed at one of three 
layers in the system: 

• Hardware and low level software such as drivers – NICs, PM devices or 
processors detect and possibly locally recover from errors.  For soft errors, 
hardware may take all of the necessary action to globally recover from the error 
without involving software beyond the associated drivers.  Network fault 
tolerance techniques such as multi-pathing are grouped with this category.   Note 
that local persistent memory error handing is not addressed here as it is covered 
in the Error Handling content of the NVM Programming Model specification. 

• Storage Resiliency – Resiliency is implemented as replication layer using 
techniques such as RAID or erasure coding.  The replication layer is seldom the 
first to detect errors but it is often the locus of global recovery.  In this case the 
replication layer is a user mode library as shown in Figure 7.   

• Application – In some cases the application must respond to errors, especially if 
backtracking is involved.  For this purpose, transaction functionality is considered 
to be part the application. 

These layers are listed above from lowest to highest levels in an escalation hierarchy.  
Each layer performs best effort recovery within its scope.  If that recovery completely 
resolves the error and no other recovery action is needed then that layer has achieved 
global recovery and higher layers are not involved.  Otherwise the layer that detected 
the error performs whatever local recovery it can, and escalates the failure to the next 
layer up, where the process repeats.  The application layer is the last resort for global 
recovery.  Failure of global recovery at the application layer renders the system at least 
partially inoperable pending manual intervention. 
 

8.1 Hardware 
Networking hardware, drivers and/or protocol stack are expected to detect, report and 
locally recover from the following types of errors: 

• Loss of network access 
• Loss of remote server power 
• Transient network errors – network is expected to achieve global recovery 
• Unrecoverable transmission errors – For global recovery at the replication or 

application levels this is expected to be converted into a data loss or a loss of 
network access depending on the pervasiveness and type of errors. 
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8.2 Replication 
The replication layer is expected to report and locally recover from the following types of 
errors.  Additional expectations are listed case by case.  Local recovery without 
detection is triggered by error reporting from hardware layers: 

• Loss of network access – The application may proceed without redundancy.   
The replication layer may need to do local recovery.  The replication layer is 
expected to report the failure and achieve global recovery by resynchronization 
local and remote data after network access is re-established so that both 
represent the same consistency point(s) as defined in section 4. 

• Loss of remote server power – The replication layer is expected to detect and 
locally recover.  The replication layer may also detect the error.  In addition, the 
file system layer is expected to report the error and achieve global recovery as 
with loss of network access. 

• Remote server or file service reset – The replication layer responsibilities are the 
same as with loss of remote server power, assuming no lapse in network 
accessibility. 

• Loss of local data – The replication layer reports and locally recovers from this 
type of error.  If global recovery can be achieved without backtracking then it may 
be accomplished by the file system layer.  Otherwise the application layer must 
participate. 

• Loss of local data with additional error such as loss of remote data or remote 
server access – Since this case involves multiple failures the replication layer 
may be unable to achieve global recovery.  This can only be achieved at the 
application layer. 

• Data corruption – The replication layer may need to participate in local recovery. 

8.3 Application 
The hardware and replication layers make every effort to detect and recover from errors 
without application assistance, however in backtracking and/or data loss scenarios the 
application layer must participate as follows.  The application layer reports its 
involvement in any of these scenarios: 

• Loss of remote server access – This represents a group of error conditions in 
which the replication layer orchestrates global recovery using backtracking to a 
prior consistency point.  The application may need to participate in backtracking 
by, for example, aborting and/or retrying transactions. 

• Loss of local data – The application or local PMFS detects this error, reports it, 
and may participate in global recovery. 

• Loss of local data with additional error or loss of both local and remote data – the 
application must orchestrate global recovery by restoring data from backup 
(outside of the replication layer) and restarting. 

• Data corruption – the application must detect this error and orchestrate global 
recovery.  This may involve rolling back through backups until one is discovered 
that does not have the corruption. 
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9 Requirements Summary 
As is often the case it is difficult to isolate requirements from implementation examples. 
While this document frames HA for NVMP in terms of RDMA, RDMA per se is not the 
only way to address these requirements. In addition the description in section 6 includes 
some implementation specific details in order to concisely communicate a desired 
outcome. 
 
This requirements summary adds to the behaviors common to RDMA transports. In the 
interest of clarity each of the following items is framed as a general requirement with 
implementation specific examples to further illustrate the nature of the requirement: 
 

• Assurance of durability 
This requirement motivates some protocol to force data into PM at the 
RDMA data sink (i.e. the remote peer in Figure 8) including confirmation of 
same back to the application. This could involve additional flow between 
client and server or it could be built into the transport as a latency 
reduction. 

• Efficient small byte range transfers 
This requirement represents a strong desire to reduce the latency of HA 
for Load/Store workloads to a much larger degree than can be achieved 
with today’s RDMA implementations. One could envision this as a set of 
small byte ranges that are packaged in one RDMA and piggybacked with 
remote flushing to persistent memory. This requirement also motivates a 
kind of scatter gather RDMA that operates at both the application and the 
remote access server as shown in Figure 9. 

• Efficient large transfers 
Byte range transfer optimization cannot come at the expense of large 
transfer optimization. It should be reasonable to assume that the transport 
can self optimize based on the expression of byte ranges in the 
application’s call to optimized flush. 

• Discoverability of architectural incompatibilities 
Gaps in the ability to fail over to another node and recover data on that 
node should be discoverable.  One known type of gap has to do with data 
representation.    This is described in more detail in section 6.5.   As 
described there, the architectural similarity of two nodes in an HA 
relationship should be ascertainable by management software.  This 
should provide a warning in conditions where access to data structures 
after failover may be in doubt.   

• Atomicity of fundamental data types 
It is not clear that this requirement is met by any current implementations 
without the use of CRC.  Section 6.5 outlines the issues and alternatives 
related to remote failure atomicity.  Some option validation, 
experimentation and most likely new implementation is needed.  In any 
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case, the NVM Programming Model Specification should include atomicity 
granularity and/or other attributes that account for remote atomicity. 

• Resource recovery after failure 
Consideration must be given to the ease of recovering RDMA resources 
dedicated to failed components. This must be addressed in order to limit 
the scope of resets during failure recovery. 

• Isolation/HW fencing after failure 
Correct failure recovery generally assumes fail stop behavior of failing 
nodes before remaining nodes resume activity. This must include 
scenarios that involve concurrent power loss and hardware failure. Failing 
components are required to be isolated from the rest of the system even in 
those scenarios. 

One outstanding area of requirement investigation has to do with the security, RDMA 
resource management and flow control necessary to assure safe and correct operation 
with as much latency reduction as possible. There is a general notion that these areas 
can be simplified relative to the use of RDMA in today’s non-PM file systems. In PM 
systems, RDMA flows directly to and from persistent memory that is permanently 
allocated (or semi-permanently allocated for the duration of a memory mapping) for the 
purpose of mirroring specific client data. This is expected to eliminate buffer resource 
management considerations, thus potentially enabling the elimination of a network 
round trip in HA solutions for PM. 
 
 

Appendix A – Workload Generation and Measurement 
While there are some benchmarking tools for memory mapping available (e.g. IOZONE) 
these tools offer little control over parameters such as the ratio of sync calls to stores in 
mmapped workloads. It would be useful for controlled testing and measurement 
purposes to have a new benchmark that offered fine grain control over syncs. 
 
As always, it would be even more valuable to ascertain what benchmark settings best 
represent specific applications. Since the timescales involved make memory workloads 
harder to measure than IO workloads, memory workload characterization may require 
hardware instrumentation making it even more elusive than IO workload 
characterization. 
 

Workload parameters 
The following traditional IO benchmarking parameters should be included: 

• Number of threads 
• File size (or memory mapped region size) 

There may be an option to determine whether each thread opens and mmaps the same 
file/region or a different one. When used in the file context, whole files should be 
mmapped. 
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Once a file is opened and memory mapped, the workload is not described in terms of 
IO’s but rather syncs interspersed with loads and stores. The following new parameters 
should be included: 

• Load record size (bytes) 
• Store record size (bytes) 
• Load/Store ratio 
• Number of Store’s before corresponding sync 
• Number of syncs per sync group 
• Total number of records to visit in a trial 

 
Based on this set of parameters a given thread does a sequential series of Load or 
Store instructions until reaching the designated record size. It then uses the Load/Store 
ratio to decide whether to switch from Load’s to Store’s (or vice versa). Regardless of 
whether the access type is switched the thread chooses a new random address within 
the memory mapped region at which a new sequence of sequential Load’s or Store’s 
begins. 
 
After some number of Store cycles in the above pattern, a sync is generated for the first 
Store record as indicated by the “Number of Store’s before corresponding sync”. At that 
point sync’s are generated for a group of Store records as indicated by “Number of 
syncs per sync group”. The pattern continues by triggering a sync group each time a 
Store record gets old enough. 
 
This pattern of activity continues until the total number of records to visit is reached, at 
which point the remaining Store records are synced and region is unmapped. 
 
With this starting point in mind, a number of variations can be created including the 
following: 

• Use optimized sync for each sync group 
• Apply statistical or patterned distributions to various parameters 
• Vary the size of an individual Load or Store instruction within a record 
• Repeated Store’s to the same address before a sync 
• Add a background workload that is never synced 
• Augment or replace the sync with begin/end transactions 

 

Measurements 
It would be desirable to ascertain the following statistics from each trial 

• Record access rate 
• Sync response time 

 
Since response times are difficult to measure in software we will probably have to settle 
for a timed run of a specific number of record accesses. This leaves the question of how 
to measure sync times, which may require the use of a sampled profiling approach that 
determines what percentage of the total run time elapsed during sync. 
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Appendix B – HA Protocol Flow Alternatives 
As shown in Figure 10, since the PCIe bus doesn't have a persistence barrier 
transaction, and the memory systems on modern systems use multiple distributed 
memory controllers, the ordering of writes to the persistence domain is indeterminate if 
the writes end up on more than one memory controller (also assuming DDIO is 
disabled). It is not clear that systems will be able to implement this optimization any time 
soon so a CPU will have to be involved with the flush. 
 
This leaves an open question that is subject to experimentation and analysis. Given that 
a CPU has to be involved for the flush, would it be just as well for it to parse the packet 
and place the data too? If so then perhaps a straight message-based protocol would be 
as good as, or better than an RDMA-based protocol. By expressing requirements in 
terms of an abstract networking protocol this document enables RDMA and bus 
protocols to evolve. 

Appendix C – Remote Atomicity Considerations 
Additional effort is needed to evaluate approaches to remote failure atomicity.  This 
appendix contains some information that could form a framework for such investigation.   
 
Since the desired atomicity property occurs when data is written to PM it must involve 
the implementation of the sink RNIC (i.e. RNIC B in Figure 10) and the way data is 
flushed.  Given implementation of a failure atomic flush between an RNIC and PM, the 
RNIC can apply this primitive in several ways.  The following table suggests a ranking of 
several options relative to each other (i.e. lower numbers are better) based on the 
following criteria: 

• Overhead – how much additional latency occurs when failure atomicity is applied 
• Selectiveness – to what degree can the overhead be applied only when needed 
• Compatibility – how intrusive is the potential protocol impact of the option 

Option Over-
head 

Selective-
ness 

RDMA 
Compat-
ibility 

NVMP 
Compat-
ibility 

A - Apply to atomic actions surfaced by 
existing protocols 

1 1 1 3 

B - Apply to all RDMA writes 2 3 1 1 
C - Apply to all RDMA writes in a given 
session based on a registration option 

2 2 2 1 

D - Apply to individual RDMA writes 
based on a flag in each RDMA write 

1 1 2 3 

E - Use checksum when atomicity is 
required 

3 2 1 2 

 
At this point there is no quantitative data on relative overheads of these options so it is 
difficult to draw conclusions from such a ranking.  Any of these options other than CRC 
requires a failure atomic sink RNIC write implementation (i.e. at RNIC B in Figure 10).  
Options A and D may have “convoy” alternatives in which multiple atomic writes are 
communicated at once.  Various consistency and alignment considerations may come 
into play within each of these options. 
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“Memory consistency and event ordering in scalable shared-memory multiprocessors,” 
Gharachorloo et al, ISCA, 1990, pp. 15–26 
 
“NVM Programming Model” created by the SNIA NVMP TWG - 
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.pdf 
 
“NVM Atomics” Paul Van Beheren et. Al – as of this writing this companion white paper 
is still under development. 
 
iWARP (RFC 5040) - http://tools.ietf.org/html/rfc5040 
 
InfiniBand (InfiniBand Trade Association specification) including annexes A16 and A17 
regarding ROCE and ROCE2 - 
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification 
 
IOZONE - http://iozone.org/ 

Appendix E – Glossary 
 
NVM – Non-Volatile Memory – In the context of the SNIA NVM Programming TWG, 
NVM refers to all types of storage including storage class memory, persistent memory, 
SSD’s and rotating media disk drives. 
 
PM – Persistent Memory – In the context of the SNIA NVM Programming TWG, PM 
refers to durable media that operates at memory speed and enables byte or cache line 
access. 
 
RDMA – Remote Direct Memory Access – A means of directly accessing memory in a 
remote location over a network.  RDMA is a key feature of InfiniBand interface, among 
others. 
 
RNIC – RDMA NIC – A Network Interface Card that supports Remote Direct Memory 
Access 
 
RPO – Recovery Point Objective – A metric specifying the amount of work that might be 
lost in the event of a failure. 
 

 
 

http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.pdf
http://tools.ietf.org/html/rfc5040
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