
NVMe‑oF and Swordfish
Version: 1.2.6

Abstract: This paper provides a deepdive into theNVMe‑oF configurations, and
more specifically, how these are represented in both the Swordfish clientmodel
and API. It will also focus on the concepts of logical devices, called exported re‑
sources, and how these are represented, allocated and managed, as these are
represented differently for NVMe‑oF devices than for other types of storage de‑
vices modeled in Swordfish

SNIAWhite Paper

Publication of this Working Draft for review and comment has been approved by the Scalable

Storage Management Technical Work Group. This draft represents a ’best effort’ attempt by

the Scalable Storage Management Technical Work Group to reach preliminary consensus, and

it may be updated, replaced, or made obsolete at any time. This document should not be used

as reference material or cited as other than a ’work in progress.’ Suggestions for revision

should be directed to http://www.snia.org/feedback.

Last Updated: 22 January 2024

NVMe‑oF and Swordfish Version 1.2.6

Contents

USAGE . 3
DISCLAIMER . 4
Revision History . 4

About SNIA . 4
Acknowledgements . 5

1 Background 6

2 NVMe Fundamentals 7
2.1 NVMe Networks and Transports . 7
2.2 Underlying NVM Resources . 7
2.3 Exporting Underlying NVM Namespaces over Fabrics 8
2.4 Creating and Managing Exported NVM Subsystems 10

3 Managing NVMe resources with Swordfish 11

22 January 2024 SNIA White Paper 2

NVMe‑oF and Swordfish Version 1.2.6

USAGE

Copyright (c) 2024 SNIA. All rights reserved. All other trademarks or registered trade‑
marks are the property of their respective owners.

The SNIA hereby grants permission for individuals to use this document for personal
use only, and for corporations and other business entities to use this document for
internal useonly (including internal copying, distribution, anddisplay) provided that:

1. Any text, diagram, chart, table or definition reproducedmust be reproduced in
its entirety with no alteration, and,

2. Any document, printed or electronic, in whichmaterial from this document (or
any portion hereof) is reproduced must acknowledge the SNIA copyright on
that material, andmust credit SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of
this document, or any portion thereof, or distribute this document to third parties.
All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above
may be requested by emailing tcmd@snia.org. Please include the identity of the re‑
questing individual and/or company and a brief description of the purpose, nature,
and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are
made available under the following license:

BSD 3‑Clause Software License

Copyright (c) 2024, SNIA.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source codemust retain the above copyright notice, this list
of conditions and the following disclaimer.

• Redistributions in binary formmust reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

• Neither the name of SNIA nor the names of its contributors may be used to en‑
dorse or promote products derived from this software without specific prior
written permission.

22 January 2024 SNIA White Paper 3

NVMe‑oF and Swordfish Version 1.2.6

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB‑
UTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED ANDON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

DISCLAIMER

The information contained in this publication is subject to change without notice.
The SNIA makes no warranty of any kind with regard to this publication, including,
but not limited to, the impliedwarranties ofmerchantability and fitness for a particu‑
lar purpose. The SNIA shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance, or use.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Revision History

The evolution of this document is summarized in Table 1.

Table 1: Revision History

Date Rev Notes

15 January 2024 1.2.6 Initial release

About SNIA

SNIA is anot‑for‑profit global organizationmadeupof corporations, universities, star‑
tups, and individuals. The members collaborate to develop and promote vendor‑
neutral architectures, standards, and education for management, movement, and

22 January 2024 SNIA White Paper 4

NVMe‑oF and Swordfish Version 1.2.6

security for technologies related to handling and optimizing data. SNIA focuses on
the transport, storage, acceleration, format, protection, and optimization of infras‑
tructure for data. Learn more at www.snia.org.

Acknowledgements

TheSNIAScalable StorageManagement TechnicalWorkGroup,whichdevelopedand
reviewed thiswhite paper, would like to recognize the significant contributionsmade
by the following members listed in Table 2.

Table 2: Contributors

Member Representatives (* – prior employer)

Intel Corporation Richelle Ahlvers

Phil Cayton

22 January 2024 SNIA White Paper 5

NVMe‑oF and Swordfish Version 1.2.6

1 Background

What is NVMe?

NVM Express® (NVMe) is a standard interface and protocol library developed to
fully realize the benefits of Non‑Volatile Memory (NVM) by accelerating access to
Non‑Volatile Memory devices (e.g., SSDs).

The NVMe® specification family defines how hosts communicate with non‑volatile
memory either directly, via the PCIe interface, or indirectly, through one or more of
the supported NVMe fabric transports (e.g., RDMA, Fibre Channel, TCP). Indirectly ac‑
cessing NVMe devices over fabrics extends the low‑latency, efficient, NVMe storage
protocol to provide scale‑out access to, and sharing of, storage from remote storage
systems (e.g., storage servers or storage appliances). NVMemaintains the samearchi‑
tecture and software of theNVMeprotocol, providing the benefits of NVMe regardless
of the fabric type or the type of non‑volatilememory used in the storage target or ap‑
pliance.

AsNVMe supports everymajor storage interconnect, it has unified client, cloud, edge,
and enterprise storage around a common command set and architecture. NVMe has
become the language of storage for both data center servers and client devices.

The NVMe family of specifications is maintained and managed by the NVM Express
non‑profit industry association.

What is SNIA Swordfish?

The SNIA Swordfish Specification provides a standards‑based REST interface for
clients to manage multiple NVMe and NVMe‑oF devices, either in a single system,
or across multiple systems. As part of the Swordfish suite of documentation, the
Swordfish NVMe Mapping Guide provides a translation between the Swordfish
specification and the NVMe specification for implementers, ensuring that clients
have consistency across implementations for the various types of NVMe devices.

22 January 2024 SNIA White Paper 6

NVMe‑oF and Swordfish Version 1.2.6

2 NVMe Fundamentals

2.1 NVMe Networks and Transports

To connect NVMe devices, there is always a network between the initiator (host) and
the target (device). For simple connections, this is a point‑to‑point style network us‑
ing PCIe. For more complex configurations, different types of fabric transports are
used, such as Ethernet, Fibre Channel, and InfiniBand. Figure 1 provides a high‑level
summary of common NVMe transports and how they might be used.

Figure 1: High‑level Taxonomy of Transport

2.2 Underlying NVM Resources

In NVMe, AnUnderlyingNamespace is a namespace (i.e., a formatted quantity of non‑
volatilememory) on an Underlying Subsystem that is available and accessible by the
storage server. TheseUnderlyingNamespacesmaybe resident onNVMdevices in the
storage server and accessible via physical functions or attached to Exported NVMe‑
oF Subsystems resident on other storage servers or storage devices and accessible
via virtual functions. Storage server operating systemsmaymaintain an ‘Underlying
Namespace List’ with all Underlying Namespaces that may be exported over fabrics

(reference Figure 2, note)

22 January 2024 SNIA White Paper 7

NVMe‑oF and Swordfish Version 1.2.6

Figure 2: Exported NVM Namespaces and Ports

An Exported Namespace is a virtual representation of an Underlying Namespace that
is formed by creating a new Exported Namespace ID and associating the Exported
Namespace ID with an Underlying Namespace (identified by a Underlying Controller
ID, Underlying NVM Subsystem, and Underlying Namespace ID combination),

An Exported Port is a port used to export an NVM Subsystem over a specific fabrics
transport (e.g., TCP, InfiniBand, Fibre Channel), and represented by an Exported Port
ID. As with Underlying Namespaces, a storage server operating systemmaymaintain
an ‘Underlying Ports List’ with all fabric ports that may be used to export an NVM

Subsystem (Figure 2, note).

2.3 Exporting Underlying NVMNamespaces over Fabrics

An Underlying Namespacemay bemade available to remote consumers over fabrics
creating anExportedNamespace ID, associating the ExportedNamespace IDwith the
Underlying Namespace, and associating the Exported Namespace with an Exported

22 January 2024 SNIA White Paper 8

NVMe‑oF and Swordfish Version 1.2.6

NVM Subsystemwhich has been configuredwith the fabric transport(s) on which the
Exported NVM Subsystem is to be accessible.

Access to Exported NVM Subsystems is managed first by configuring the Exported
NVM Subsystem for either ‘Unrestricted Access’ (i.e., the Exported NVM Subsystem
may be accessed by any Host), or ‘Restricted Access’ (i.e., the Exported NVM Subsys‑
tem may only be accessed by Host NQNs (NVMe Qualified Name) present in the Ex‑
ported NVM Subsystem’s ‘Allowed Host List’). The access mode of an Exported NVM
Subsystem may be changed at any time by toggling the ‘Restricted Access’ configu‑
ration bit between ‘Unrestricted Access’ mode and ‘Restricted Access’ mode. If Ex‑
ported NVM Subsystem access is changed from ‘Unrestricted Access’ to ‘Restricted
Access’, then any connected host not in the Allowed Host List associated to the spec‑
ified Exported NVM Subsystem shall be disconnected from all Exported Namespaces
in the Exported NVM Subsystem.

Administrative commands described in the NVMe Specification enable:

• retrieving the list of UnderlyingNamespaces spanning all NVMsubsystems that
are accessible through either a virtual function or a virtual function (if the OS
maintains the list)

• retrieving the list of Underlying Ports that may be used to export NVMe over
Fabrics subsystems (if the OSmaintains the list)

• creating an Exported NVM Subsystem, including setting the initial access
mode for that Exported NVM Subsystem to either unrestricted access (i.e.,
the Exported NVM Subsystem may be accessed by any remote NVMe Host) or
restricted access (i.e., the Exported NVM Subsystem may only be accessed by
Hosts who’s NQN is present in the Exported NVM Subsystem’s Allowed Host
List)

• managingExportedNVMSubsystems, includingdeleting anExportedNVMSub‑
system, changing the access mode of an Exported NVM Subsystem, and mod‑
ifying the Exported NVM Subsystem’s Allowed Host List by granting/revoking
access to the Exported NVM Subsystem by specific NVMe Hosts (if the Exported
NVM Subsystem is configured for restricted access)

• managing association of a configured for access through an ExportedNVMSub‑
system (i.e., by associating/disassociating a specific Underlying Namespace
with a specific Underlying NVM Subsystem)

• managing associations of Exported Ports with Exported NVM Subsystems, and
• clearing the storage system Exported NVM resource configuration by delet‑
ing all Exported NVM resource configuration information and removing all
Exported NVM Resources (i.e., Exported NVM Subsystems, Exported NVM

22 January 2024 SNIA White Paper 9

NVMe‑oF and Swordfish Version 1.2.6

Namespaces, and Exported Ports).

2.4 Creating and Managing Exported NVM Subsystems

Exported NVM Subsystems (Firgure 2, note) are created by default with unre‑
stricted access, however the administrative entitymay choose to create the Exported
NVM Subsystems with access restricted to hosts who’s host NQN is present in the
Exported NVM Subsystem’s Allowed Host List; note that on creation of an Exported
NVM Subsystem, the Exported NVM Subsystem’s Allowed Host List will be empty and
must be populated to enable host access to the Exported NVMSubsystem configured
for restricted access.

Exporting a namespace over an NVMe ransport may be achieved by:

• optionally retrieving the list of Underlying NVMNamespaces (if available) – Fig‑

ure 2, note . The list of Underlying NVM Namespaces, if supported by the
system, constitutes the set of NVM namespaces that may be exported over fab‑
rics via an Exported NVM Subsystem.

• optionally retrieving the list of Underlying Ports (if available) – Figure 2, note

. The list of Underlying Ports, if supported by the system, constitutes the
set of transports that may be associated with an Exported NVM Subsystem to
enable host access to the Exported NVM Subsystem.

• associating one or more Underlying Namespaces with an Exported NVM Sub‑

system – Figure 2, note
• associating one or more transports with the Exported NVM Subsystem to en‑

able remote access to the Exported NVM Subsystem – Figure 2,
• optionally assigning access control policies for the Exported NVM Subsystem
by altering Exported NVM Subsystem from its initial or current access control
mode (i.e., unrestricted access or restricted access).

• optionally granting or revoking access to the Exported NVM Subsystem by
adding or removing Host NQNs from the Exported NVM Subsystem’s Allowed
Host List.

Clearing Exported NVM Subsystem configuration may be achieved through either in‑
dividual removal of specific Exported NVM Subsystems or through removing all NVM
subsystems exported on the storage server/appliance.

22 January 2024 SNIA White Paper 10

NVMe‑oF and Swordfish Version 1.2.6

3 Managing NVMe resources with Swordfish

Swordfish abstracts underlying exported NVM storage and fabric resources as speci‑
fied in the NVMe 2.0 family of specifications to enable scalable storage management
via RESTful interfaces. Figure 3 illustrates the Swordfish representation of NVMe and
fabrics resources.

Figure 3: NVMemodelling in Swordfish

In the Swordfish representation of NVMe and fabrics resources (Figure 3) the white
boxes represent the Underlying NVMe resources; the orange boxes represent Logical
(Exported) representations of NVMe resources. As noted in the diagram, there is a
largely 1:1 mapping in the Swordfish representation of the NVMe resources:

• The logical NVM subsystem is modeled as a Storage instance.
• A logical NVM ontroller is modeled as a StorageController instance, which is
contained by a Storage instance.

• A logical amespace is modeled as a Volume instance, which is contained by a
Storage instance, and related to StorageController instances.

• NVM Logical Ports are modeled as Endpoints within a Fabric instance.
• Allowed Hosts are modeled as Connections within a Fabric instance.

NVMe‑oF systems can span awide range of instantiations. They can encompass from
simple, static configurations to highly complex, dynamic configurations with multi‑
ple components and interconnections across different topologies. Further, they sup‑
port the creation and deletion of resources at multiple levels within the system.

22 January 2024 SNIA White Paper 11

NVMe‑oF and Swordfish Version 1.2.6

Figure 4: Logical NVMe‑oF Instance

Figure 4 shows an instance of a simple logical NVMe‑oF system construct. The logi‑
cal NVMe‑oF namespace (represented in orange) is created from a single underlying
namespace.

Note that the logical controller is separate from the underlying resources used to cre‑
ate the logical namespace; it is not constructed as simply a pass‑through for the logi‑
cal controller on the underlying resources. This is a key point for the Swordfish mod‑
eling, as this follows the traditional storage pool / storage aggregation behavior. Log‑
ical namespaces are the linkage between the underlyingmodel, while the remaining
logical entities do not pull from the underlying components.

The representation in Figure 4 shows only the logical NVMe‑oF. To be complete, we
need the underlying transport as well, as shown in Figure 5.

22 January 2024 SNIA White Paper 12

NVMe‑oF and Swordfish Version 1.2.6

Figure 5: Logical NVMe‑oF with Network Connection

The object model in Figure 6 shows the breakdown and grouping of the various ob‑
jects within the overall model.

Figure 6: Redfish/Swordfish NVMe Model Including Network Objects

Theabove representations showanexportedNVMe‑oF instance comprisedof a single
SSD instance. However, this relationship can be a many to many (N:M) relationship,
as in Figure ??, where a single logical namespace is created from two (2) underlying
namespaces (a 1:2 configuration).

22 January 2024 SNIA White Paper 13

NVMe‑oF and Swordfish Version 1.2.6

Correspondingly, as the underlying capacity was put into a storage pool, it could be
allocated into any number of namespaces.

As demonstrated above, Swordfish can not only represent the advanced concepts of
NMEoF, but does so in a way consistent with the object model representations used
for other storage and fabric representations, while still reflecting and exposing the
unique attributes of NVMeoF exported logical systems.

22 January 2024 SNIA White Paper 14

	USAGE
	DISCLAIMER
	Revision History

	About SNIA
	Acknowledgements
	Background
	NVMe Fundamentals
	NVMe Networks and Transports
	Underlying NVM Resources
	Exporting Underlying NVM Namespaces over Fabrics
	Creating and Managing Exported NVM Subsystems

	Managing NVMe resources with Swordfish

