

Cloud Data Management Interface
Extension: Multi-part MIME Transfers

Version 1.0g

"Publication of this Working Draft for review and comment has been approved by the Cloud
Storage Technical Working Group. This draft represents a "best effort" attempt by the Cloud
Storage Technical Working Group to reach preliminary consensus, and it may be updated,
replaced, or made obsolete at any time. This document should not be used as reference
material or cited as other than a 'work in progress.' Suggestion for revision should be directed to
http:/snia.org/feedback."

Working Draft

© SNIA

Multi-part MIME Extension Working Draft 2

Revision History

Date Version By Comments
2011-12-06 1.0a David Slik Initial Creation

2011-12-14 1.0b Kevin
Jamieson

Added sections for data object update and queue read
and enqueue.

2012-01-13 1.0c Kevin
Jamieson

Added sections for deserializevalue in data and queue
object create and update. Various other minor
clarifications.

2012-01-18 1.0d Marie McMinn Performed technical edit.

2012-01-19 1.0e Kevin
Jamieson

Added text for update and retrieval of multiple byte ranges
of a data object.

2012-01-20 1.0f Kevin
Jamieson

Changed deserializevalue to allow the serialized object to
be transmitted in the second MIME part.

2012-01-23 1.0g Kevin
Jamieson

Updates from CDMI TWG review.

The SNIA hereby grants permission for individuals to use this document for personal
use only, and for corporations and other business entities to use this document for
internal use only (including internal copying, distribution, and display) provided that:

Any text, diagram, chart, table, or definition reproduced shall be reproduced in its entirety with
no alteration, and,

Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit
the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this
document, sell any excerpt or this entire document, or distribute this document to third parties.
All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be
requested by e-mailing tcmd@snia.org. Please include the identity of the requesting individual
and/or company and a brief description of the purpose, nature, and scope of the requested use.

Copyright © 2012 Storage Networking Industry Association.

© SNIA

Multi-part MIME Extension 1.0g Working Draft 3

Multi-part MIME Transfer Extension
Overview

CDMI provides three methods by which the value of a data object may be transferred between
CDMI clients and servers:

• UTF-8 encoding in JSON using a CDMI content type request/response,
• Base64 encoding in JSON using a CDMI content type request/response, and
• raw binary using a non-CDMI content type request/response.

UTF-8 encoding is sufficient for most text use cases, and using raw binary transfer provided by
the non-CDMI PUT and GET operations is sufficient for some binary use cases. However, there
is a need to be able to efficiently transfer binary data alongside CDMI object metadata without
incurring the overhead of the UTF-8 or Base64 encoding and validation required to represent
binary data in JSON.

This proposed extension adds the ability to use a multi-part MIME body with CDMI to allow the
value to be included as raw binary data in a separate MIME part of a single CDMI content type
request/response that does not require any encoding or validation of the data.

Modifications to the CDMI 1.0.1 spec:

1) Insert into Clause "2 Normative References"

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types -
http://www.ietf.org/rfc/rfc2046.txt

2) Append to end of Clause "8.1 Overview"

The value of a data object may also be specified and retrieved using multi-part MIME, where the
CDMI JSON is transferred in the first MIME part, and the raw object value is transferred in the
second MIME part. Each MIME part, including any header fields, shall conform to RFC 2045,
RFC 2046, and RFC 2616. The length of each part may optionally be specified by a Content-
Length header in addition to the MIME boundary delimiter.

Multiple non-overlapping ranges of the value of a data object may also be accessed or updated
in a multi-part MIME operation by transferring one MIME part for each range of the value. The
byte ranges for these operations shall be specified as per Section 14.35.1 of RFC 2616.

Multi-part MIME enables the efficient transfer of binary data alongside CDMI object metadata
without incurring the overhead of the UTF-8 or Base64 encoding and validation required to
represent binary data in JSON.

3) Append to end of Clause "8.2.3 Capabilities"

• Support for the ability to create the value of a new data object in specified byte ranges is
indicated by the presence of the “cdmi_create_value_range” capability in the parent
container.

• Support for the ability to create a new data object using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.

© SNIA

Multi-part MIME Extension Working Draft 4

4) Modify Clause "8.2.4 Request Headers", Table "Table 5 - Request Headers for Creating a
CDMI Data Object using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-object" or "multipart/mixed".
If "multipart/mixed" and the “deserializevalue” field is not
specified, the body shall consist of at least two MIME parts,
where the first part shall contain a body of content-type
"application/cdmi-object", and the second and subsequent parts
shall contain one or more byte ranges of the value as described
in 8.3. If multiple byte ranges are included and the “Content-
Range” header is omitted for a part, the data in the part shall be
appended to the data in the preceding part, with the first part
having a byte offset of zero.
If "multipart/mixed" and the “deserializevalue” field is specified
with the value of the MIME “boundary” parameter, the body shall
consist of two or three MIME parts, where the first part shall
contain a body of content-type "application/cdmi-object", the
second part shall contain the serialized data object, and the third
part shall optionally contain the value as described in 8.3.

Mandatory

5) Modify Clause "8.2.5 Request Message Body", Table "Table 6 - Request Message Body -
Create a Data Object using CDMI Content Type"

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field
of the data object

• This field may be included when creating by value
or when deserializing, serializing, copying, and
moving a data object.

• If this field is not included and multi-part MIME is
not being used, the value of "text/plain" shall be
assigned as the field value.

• If this field is not included and multi-part MIME is
being used, the value of the “Content-Type”
header of the second MIME part shall be assigned
as the field value.

• This field shall be stored as part of the object.

• This mimetype value shall be converted to
lowercase before being stored.

• This field shall not be included when creating a
reference.

Optional

© SNIA

Multi-part MIME Extension 1.0g Working Draft 5

Field Name Type Description Requirement

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in
RFC 4648.
If multi-part MIME is being used and this field contains
the value of the MIME “boundary” parameter, the
contents of the second MIME part shall be assigned
as the field value. If the serialized data object in the
second MIME part does not include a “value” field the
contents of the third MIME part shall be assigned as
the field value of the “value” field.

Optionala

valuetransferencoding JSON
String

The value transfer encoding used for the data object
value. Two value transfer encodings are defined.

• "utf-8" indicates that the data object contains a
valid UTF-8 string, and it shall be transported as a
UTF-8 string in the value field.

• "base64" indicates that the data object may
contain arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the
value field. Setting the contents of the data object
value field to any value other than a valid base 64
string shall result in error 400 Bad Request being
returned to the client.

This field shall only be included when creating a data
object by value.

• If this field is not included and multi-part MIME is
not being used, the value of "utf-8" shall be
assigned as the field value.

• If this field is not included and multi-part MIME is
being used, the value of "utf-8" shall be assigned
as the field value if the “Content-Type” header of
the second and all subsequent MIME parts
includes the charset parameter as defined in RFC
2046 of "utf-8" (e.g., ";charset=utf-8"). Otherwise,
the value of "base64" shall be assigned as the
field value. This field applies only to the encoding
of the value when represented in JSON; the
“Content-Transfer-Encoding” header of the part
specifies the encoding of the value within a multi-
part MIME request, as defined in RFC 2045.

This field shall be stored as part of the object.

Optional

© SNIA

Multi-part MIME Extension Working Draft 6

Field Name Type Description Requirement

value JSON
String

The data object value.

• If this field is not included and multi-part MIME is
not being used, an empty JSON String (i.e., "")
shall be assigned as the field value.

• If this field is not included and multi-part MIME is
being used, the contents of the second MIME part
shall be assigned as the field value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string
escaped using the JSON escaping rules
described in RFC 4627.

• If the valuetransferencoding field indicates base64
encoding, the value shall be first encoded using
the base 64 encoding rules described in RFC
4648.

Optionala

6) Append to end of Clause "8.2.9 Examples"

EXAMPLE 3 - PUT to the container URI the data object name and binary contents using multi-
part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "domainURI": "/cdmi_domains/MyDomain/",
 "metadata": {
 "colour": "blue"
 }
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

© SNIA

Multi-part MIME Extension 1.0g Working Draft 7

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010374085EF1A5C7018D774",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "application/octet-stream",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 }
}

EXAMPLE 4 - PUT to the container URI the data object name and binary contents using multi-
part MIME with optional content-lengths for the parts:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object
Content-Length: 82

{
 "domainURI": "/cdmi_domains/MyDomain/",
 "metadata": {
 "colour": "blue"
 }
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Length: 37

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010374085EF1A5C7018D774",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",

© SNIA

Multi-part MIME Extension Working Draft 8

 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "application/octet-stream",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 }
}

EXAMPLE 5 - PUT to the container URI a serialized data object using multi-part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "deserializevalue" : "gc0p4Jq0M2Yt08j34c0p"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010374085EF1A5C7018D774",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 },
 "valuerange" : "0-36",
 "valuetransferencoding" : "utf-8",
 "value" : "This is the Value of this Data Object"
}

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010374085EF1A5C7018D774",
 "objectName": "MyDataObject.txt",

© SNIA

Multi-part MIME Extension 1.0g Working Draft 9

 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 }
}

EXAMPLE 6 - PUT to the container URI a serialized data object and binary contents using multi-
part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "deserializevalue" : "gc0p4Jq0M2Yt08j34c0p"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010374085EF1A5C7018D774",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "application/octet-stream",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 },
 "valuerange" : "0-36",
 "valuetransferencoding" : "base64"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

© SNIA

Multi-part MIME Extension Working Draft 10

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010374085EF1A5C7018D774",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "application/octet-stream",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 }
}

7) Append to end of Clause "8.3.2 Capabilities"

• Support for the ability to create the value of a new data object in specified byte ranges is
indicated by the presence of the “cdmi_create_value_range” capability in the parent
container.

8) Modify Clause "8.3.3 Request Headers", Table "Table 10 - Request Headers - Create a
CDMI Data Object using a Non-CDMI Content Type"

Header Type Description Requirement

Content-
Range

Header
String

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

9) Append to end of Clause "8.4.2 Capabilities"

• Support for the ability to read a data object using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.

© SNIA

Multi-part MIME Extension 1.0g Working Draft 11

10) Modify Clause "8.4.3 Request Headers", Table "Table 12 - Request Headers - Read a
CDMI Data Object using CDMI Content Type"

Header Type Description Requirement

Accept Header
String

"application/cdmi-object" or "multipart/mixed". Mandatory

11) Modify Clause "8.4.5 Response Headers", Table "Table 13 - Response Headers - Read a
CDMI Data Object using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-object" or "multipart/mixed".
If "multipart/mixed", the body shall consist of at least two MIME
parts, where the first part shall contain a body of content-type
"application/cdmi-object" and the second and subsequent parts
shall contain the requested byte ranges of the value as
described in 8.5. If multiple byte ranges are included and the
“Content-Range” header is omitted for a part, the data in the
part shall be appended to the data in the preceding part, with
the first part having a byte offset of zero.

Mandatory

12) Modify Clause "8.4.6 Response Message Body", Table "Table 14 - Response Message
Body - Read a Data Object using CDMI Content Type"

Field Name Type Description Requirement

value JSON
String

The data object value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value field shall contain a UTF-8 string using
JSON escaping rules described in RFC 4627.

• If the valuetransferencoding field indicates base64
encoding, the value field shall contain a base 64-encoded
string as described in RFC 4648.

• The value field shall not be provided when using multi-part
MIME.

• The value field shall only be provided when the
completionStatus field contains "Complete".

• When reading a value, zeros shall be returned for any
gaps resulting from non-contiguous writes.

Conditional

13) Append to end of Clause "8.4.8 Examples"

EXAMPLE 5 - GET to the data object URI to read the data object using multi-part MIME:

© SNIA

Multi-part MIME Extension Working Draft 12

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.0.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "application/octet-stream",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 },
 "valuerange": "0-36",
 "valuetransferencoding": "base64"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p—

EXAMPLE 6 - GET to the data object URI to read the data object using multi-part MIME, with
optional content-lengths for the parts:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.0.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object
Content-Length: 505

© SNIA

Multi-part MIME Extension 1.0g Working Draft 13

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "application/octet-stream",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 },
 "valuerange": "0-36",
 "valuetransferencoding": "base64"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Length: 37

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p—

EXAMPLE 7 - GET to the data object URI to read the metadata and multiple byte ranges of the
binary contents using multi-part MIME:

GET /MyContainer/MyDataObject.txt?metadata;value:0-10;value:21-24 HTTP/1.1
Host: cloud.example.com
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.0.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 }
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Range: bytes 0-10/37

<11 bytes of binary data>

© SNIA

Multi-part MIME Extension Working Draft 14

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Range: bytes 21-24/37

<4 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

14) Append to end of Clause "8.6.2 Capabilities"

• Support for the ability to modify an existing data object using multi-part MIME is indicated by
the presence of the "cdmi_multipart_mime" system-wide capability.

15) Modify Clause "8.6.3 Request Headers", Table "Table 19 - Request Headers - Update a
CDMI Data Object using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-object" or "multipart/mixed".
If "multipart/mixed" and the “deserializevalue” field is not
specified, the body shall consist of at least two MIME parts, where
the first part shall contain a body of content-type
"application/cdmi-object" and the second and subsequent parts
shall contain one or more byte ranges of the value as described in
8.7. If multiple byte ranges are included and the “Content-Range”
header is omitted for a part, the data in the part shall be
appended to the data in the preceding part, with the first part
having a byte offset of zero.
If "multipart/mixed" and the “deserializevalue” field is specified
with the value of the MIME “boundary” parameter, the body shall
consist of two or three MIME parts, where the first part shall
contain a body of content-type "application/cdmi-object", the
second part shall contain the serialized data object, and the third
part shall optionally contain the value as described in 8.7.

Mandatory

© SNIA

Multi-part MIME Extension 1.0g Working Draft 15

16) Modify Clause "8.6.4 Request Message Body", Table "Table 20 - Request Message Body -
Update a CDMI Data Object using CDMI Content Type"

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field
of the data object. If present, this replaces the existing
mimetype.

• This field may be included when updating by
value, deserializing, and copying a data object.

• If this field is not included, the existing value of the
mimetype shall be left unchanged.

• This field shall be stored as part of the object.

• This mimetype value shall be converted to
lowercase before being stored.

Optional

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in
RFC 4648. The object ID of the serialized data object
shall match the object ID of the destination data
object.
If multi-part MIME is being used and this field contains
the value of the MIME “boundary” parameter, the
contents of the second MIME part shall be assigned
as the field value. If the serialized data object in the
second MIME part does not include a “value” field the
contents of the third MIME part shall be assigned as
the field value of the “value” field.

Optionala

© SNIA

Multi-part MIME Extension Working Draft 16

Field Name Type Description Requirement

valuetransferencoding JSON
String

The value transfer encoding used for the data object
value. Two value transfer encodings are defined.

• "utf-8" indicates that the data object contains a
valid UTF-8 string, and it shall be transported as a
UTF-8 string in the value field.

• "base64" indicates that the data object may
contain arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the
value field. Setting the contents of the data object
value field to any value other than a valid base 64
string shall result in error 400 Bad Request being
returned to the client.

This field shall only be included when updating a data
object by value.

• If this field is not included and multi-part MIME is
not being used, the existing value of
“valuetransferencoding” shall be left unchanged.

• If this field is not included and multi-part MIME is
being used, the value of "utf-8" shall be assigned
as the field value if the “Content-Type” header of
the second and all subsequent MIME parts
includes the charset parameter as defined in RFC
2046 of "utf-8" (e.g., ";charset=utf-8"). Otherwise,
the value of "base64" shall be assigned as the
field value. This field applies only to the encoding
of the value when represented in JSON; the
“Content-Transfer-Encoding” header of the part
specifies the encoding of the value within a multi-
part MIME request, as defined in RFC 2045.

This field shall be stored as part of the object.

Optional

© SNIA

Multi-part MIME Extension 1.0g Working Draft 17

Field Name Type Description Requirement

value JSON
String

This field contains the new data for the object. If
present, this replaces the existing value.

• If this field is not included and multi-part MIME is
being used, the contents of the second and
subsequent MIME parts shall be assigned to the
corresponding byte ranges of the field value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string
escaped using the JSON escaping rules
described in RFC 4627.

• If the valuetransferencoding field indicates base64
encoding, the value shall be first encoded using
the base 64 encoding rules described in RFC
4648.

• If a value range was specified in the request, the
new data shall be inserted at the location specified
by the range. Any resulting gaps between ranges
shall be treated as if zeros had been written and
shall be included when calculating the size of the
value. When storing a range, the value shall be
encoded using base 64, and the
valuetransferencoding field shall be set to
“base64”.

Optionala

17) Append to end of Clause "8.6.8 Examples"

EXAMPLE 7 - PUT to the data object URI to set new field values and the binary contents using
multi-part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "metadata": {
 "colour": "red",
 "number": "7"
 }
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

© SNIA

Multi-part MIME Extension Working Draft 18

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 8 - PUT to the data object URI to replace just one metadata item and update multiple
byte ranges within the binary contents of the data object using multi-part MIME:

PUT /MyContainer/BinaryObject.txt?metadata:colour HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "metadata": {
 "colour": "green"
 }
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Range: bytes 0-10/37

<11 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Range: bytes 21-24/37

<4 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 9 - PUT to the data object URI a serialized data object using multi-part MIME:

PUT /MyContainer/BinaryObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "deserializevalue": "gc0p4Jq0M2Yt08j34c0p"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

© SNIA

Multi-part MIME Extension 1.0g Working Draft 19

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010374085EF1A5C7018D774",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 },
 "valuerange" : "0-36",
 "valuetransferencoding" : "utf-8",
 "value" : "This is the Value of this Data Object"
}

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

18) Append to end of Clause "9.9.3 Capabilities"

• If the new data object is being created in “/cdmi_objectid/”, support for the ability to create
the value of the new data object in specified byte ranges is indicated by the presence of the
“cdmi_create_value_range_by_ID” system capability.

• If the new data object is being created in a container object, support for the ability to create
the value of the new data object in specified byte ranges is indicated by the presence of the
“cdmi_create_value_range” capability in the parent container.

• Support for the ability to create a new data object by ID using multi-part MIME is indicated
by the presence of the "cdmi_multipart_mime" system-wide capability.

© SNIA

Multi-part MIME Extension Working Draft 20

19) Modify Clause "9.9.4 Request Headers", Table "Table 49 - Request Headers - Create a
New Data Object using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-object" or "multipart/mixed".
If "multipart/mixed" and the “deserializevalue” field is not
specified, the body shall consist of at least two MIME parts, where
the first part shall contain a body of content-type
"application/cdmi-object" and the second and subsequent parts
shall contain one or more byte ranges of the value as described in
8.3. If multiple byte ranges are included and the “Content-Range”
header is omitted for a part, the data in the part shall be
appended to the data in the preceding part, with the first part
having a byte offset of zero.
If "multipart/mixed" and the “deserializevalue” field is specified
with the value of the MIME “boundary” parameter, the body shall
consist of two or three MIME parts, where the first part shall
contain a body of content-type "application/cdmi-object", the
second part shall contain the serialized data object, and the third
part shall optionally contain the value as described in 8.3.

Mandatory

20) Modify Clause "9.9.5 Request Message Body", Table "Table 50 - Request Message Body -
Create a New Data Object using CDMI Content Type"

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field
of the data object

• This field may be included when creating by value
or when deserializing, serializing, copying, or
moving a data object.

• If this field is not included and multi-part MIME is
not being used, the value of "text/plain" shall be
assigned as the field value.

• If this field is not included and multi-part MIME is
being used, the value of the “Content-Type”
header of the second MIME part shall be assigned
as the field value.

• This field shall be stored as part of the object.

• This mimetype value shall be converted to
lowercase before being stored.

• This field shall not be included when creating a
reference.

Optional

© SNIA

Multi-part MIME Extension 1.0g Working Draft 21

Field Name Type Description Requirement

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in
RFC 4648.
If multi-part MIME is being used and this field contains
the value of the MIME “boundary” parameter, the
contents of the second MIME part shall be assigned
as the field value. If the serialized data object in the
second MIME part does not include a “value” field the
contents of the third MIME part shall be assigned as
the field value of the “value” field.

Optionala

valuetransferencoding JSON
String

The value transfer encoding used for the data object
value. Two value transfer encodings are defined.

• "utf-8" indicates that the data object contains a
valid UTF-8 string, and it shall be transported as a
UTF-8 string in the value field.

• "base64" indicates that the data object may
contain arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the
value field. Setting the contents of the data object
value field to any value other than a valid base 64
string shall result in error 400 Bad Request being
returned to the client.

This field shall only be included when creating a data
object by value.

• If this field is not included and multi-part MIME is
not being used, the value of "utf-8" shall be
assigned as the field value.

• If this field is not included and multi-part MIME is
being used, the value of "utf-8" shall be assigned
as the field value if the “Content-Type” header of
the second and all subsequent MIME parts
includes the charset parameter as defined in RFC
2046 of "utf-8" (e.g., ";charset=utf-8"). Otherwise,
the value of "base64" shall be assigned as the
field value. This field applies only to the encoding
of the value when represented in JSON; the
“Content-Transfer-Encoding” header of the part
specifies the encoding of the value within a multi-
part MIME request, as defined in RFC 2045.

This field shall be stored as part of the object.

Optional

© SNIA

Multi-part MIME Extension Working Draft 22

Field Name Type Description Requirement

value JSON
String

The data object value

• If this field is not included and multi-part MIME is
not being used, an empty JSON String (i.e., "")
shall be assigned as the field value.

• If this field is not included and multi-part MIME is
being used, the contents of the second MIME part
shall be assigned as the field value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string
escaped using the JSON escaping rules
described in RFC 4627.

• If the valuetransferencoding field indicates base64
encoding, the value shall be first encoded using
the base 64 encoding rules described in RFC
4648.

Optionala

21) Append to end of Clause "9.9.9 Examples"

EXAMPLE 3 - POST to the object ID URI the data object fields and binary contents using multi-
part MIME:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "domainURI": "/cdmi_domains/MyDomain/",
 "metadata": {
 "colour": "blue"
 }
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Location:
http://cloud.example.com/cdmi_objectid/0000706D0010B84FAD185C425D8B537E
Content-Type: application/cdmi-object

© SNIA

Multi-part MIME Extension 1.0g Working Draft 23

X-CDMI-Specification-Version: 1.0.1

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "application/octet-stream",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 }
}

EXAMPLE 4 - POST to the object ID URI a serialized data object using multi-part MIME:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "deserializevalue": "gc0p4Jq0M2Yt08j34c0p"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 },
 "valuerange" : "0-36",
 "valuetransferencoding" : "utf-8",
 "value" : "This is the Value of this Data Object"
}

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Location:
http://cloud.example.com/cdmi_objectid/0000706D0010B84FAD185C425D8B537E
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.0.1

© SNIA

Multi-part MIME Extension Working Draft 24

{
 "objectType": "application/cdmi-object",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "37",
 "colour": "blue"
 }
}

22) Append to end of Clause "9.10.2 Capabilities"

• If the new data object is being created in “/cdmi_objectid/”, support for the ability to create
the value of the new data object in specified byte ranges is indicated by the presence of the
“cdmi_create_value_range_by_ID” system capability.

• If the new data object is being created in a container object, support for the ability to create
the value of the new data object in specified byte ranges is indicated by the presence of the
“cdmi_create_value_range” capability in the parent container.

23) Modify Clause "9.10.3 Request Headers", Table "Table 54 - Request Headers - Create a
New Data Object using a Non-CDMI Content Type"

Header Type Description Requirement

Content-
Range

Header
String

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

24) Append to end of Clause "9.11.3 Capabilities"

• Support for the ability to create a queue object using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.

© SNIA

Multi-part MIME Extension 1.0g Working Draft 25

25) Modify Clause "9.11.4 Request Headers", Table "Table 57 - Request Headers - Create a
New Queue Object using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-queue" or "multipart/mixed".
If "multipart/mixed” and the “deserializevalue” field is specified
with the value of the MIME “boundary” parameter, the body shall
consist of two or more MIME parts, where the first part shall
contain a body of content-type "application/cdmi-queue", the
second part shall contain the serialized queue object, and
optionally the third and subsequent parts shall each contain a
queue value as described in 8.5.

Mandatory

26) Modify Clause "9.11.5 Request Message Body", Table "Table 58 - Request Message Body
- Create a New Queue Object using CDMI Content Type"

Field Name Type Description Requirement

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.
If multi-part MIME is being used and this field contains the
value of the MIME “boundary” parameter, the contents of the
second MIME part shall be assigned as the field value. If the
serialized queue object in the second MIME part does not
include a “value” field the contents of the third and
subsequent MIME parts shall be assigned as the field value
of the “value” field.

Optionala

27) Append to end of Clause "9.11.9 Examples"

EXAMPLE 2 - POST to the container object URI a serialized queue object using multi-part
MIME:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
 "deserializevalue": "gc0p4Jq0M2Yt08j34c0p"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{

© SNIA

Multi-part MIME Extension Working Draft 26

 "objectType": "application/cdmi-queue",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "0000706D0010B84FAD185C425D8B537E",
 "parentURI": "/MyContainer/",
 "parentID" : " 0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata" : {},
 "queueValues" : "0-1",
 "mimetype" : [
 "text/plain",
 "text/plain"
],
 "valuetransferencoding" : [
 "utf-8",
 "utf-8"
],
 "value" : [
 "First Enqueued Value",
 "Second Enqueued Value"
]
}

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response:

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.1
Location:
http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

{
 "objectType": "application/cdmi-queue",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "0000706D0010B84FAD185C425D8B537E",
 "parentURI": "/MyContainer/",
 "parentID" : " 0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "0-1"
}

EXAMPLE 3 - POST to the container object URI a serialized queue object and its values using
multi-part MIME:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

© SNIA

Multi-part MIME Extension 1.0g Working Draft 27

{
 "deserializevalue": "gc0p4Jq0M2Yt08j34c0p"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
 "objectType": "application/cdmi-queue",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "0000706D0010B84FAD185C425D8B537E",
 "parentURI": "/MyContainer/",
 "parentID" : " 0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "0-1"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response:

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.1
Location:
http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

{
 "objectType": "application/cdmi-queue",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "0000706D0010B84FAD185C425D8B537E",
 "parentURI": "/MyContainer/",
 "parentID" : " 0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "0-1"
}

http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

© SNIA

Multi-part MIME Extension Working Draft 28

28) Append to end of Clause "11.1 Overview"

The value of a queue object may also be specified and retrieved using multi-part MIME, where
the CDMI JSON is transferred in the first MIME part and the raw queue values are transferred in
the subsequent MIME parts. Each MIME part, including any header fields, shall conform to RFC
2045, RFC 2046, and RFC 2616, and the length of each part may optionally be specified by a
Content-Length header in addition to the MIME boundary delimiter.

29) Append to end of Clause "11.2.3 Capabilities"

• Support for the ability to create a queue object using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.

30) Modify Clause "11.2.4 Request Headers", Table "Table 82 - Request Headers - Create a
Queue Object using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-queue" or "multipart/mixed".
If "multipart/mixed" and the “deserializevalue” field is specified
with the value of the MIME “boundary” parameter, the body shall
consist of two or more MIME parts, where the first part shall
contain a body of content-type "application/cdmi-queue", the
second part shall contain the serialized queue object, and
optionally the third and subsequent parts shall each contain a
queue value as described in 8.5.

Mandatory

31) Modify Clause "11.2.5 Request Message Body", Table "Table 83 - Request Message Body
- Create a Queue Object using CDMI Content Type"

Field Name Type Description Requirement

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.
If multi-part MIME is being used and this field contains the
value of the MIME “boundary” parameter, the contents of the
second MIME part shall be assigned as the field value. If the
serialized queue object in the second MIME part does not
include a “value” field the contents of the third and
subsequent MIME parts shall be assigned as the field value
of the “value” field.

Optionala

32) Append to end of Clause "11.2.9 Examples"

EXAMPLE 2 - PUT to the container object URI the queue object name and a serialized queue
object and its values using multi-part MIME:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com

© SNIA

Multi-part MIME Extension 1.0g Working Draft 29

Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue
{
 "deserializevalue": "gc0p4Jq0M2Yt08j34c0p"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
 "objectType": "application/cdmi-queue",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "MyQueue",
 "parentURI": "/MyContainer/",
 "parentID" : " 0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "0-1"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response:

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.0.1

{
 "objectType": "application/cdmi-queue",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "MyQueue",
 "parentURI": "/MyContainer/",
 "parentID" : " 0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "0-1"

© SNIA

Multi-part MIME Extension Working Draft 30

}

33) Append to end of Clause "11.3.2 Capabilities"

• Support for the ability to read a queue object using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.

34) Modify Clause "11.3.3 Request Headers", Table "Table 87 - Request Headers - Read a
Queue Object using CDMI Content Type"

Header Type Description Requirement

Accept Header String "application/cdmi-queue" or "multipart/mixed". Mandatory

35) Modify Clause "11.3.5 Response Headers", Table "Table 88 - Response Headers - Read a
Queue Object using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-queue" or "multipart/mixed".
If "multipart/mixed", the body shall consist of one or more
MIME parts, where the first part shall contain a body of
content-type "application/cdmi-queue", and the second and
subsequent parts shall each contain a queue value as
described in 8.5.

Mandatory

36) Modify Clause "11.3.6 Response Message Body", Table "Table 89 - Response Message
Body - Read a Queue Object using CDMI Content Type"

Field Name Type Description Requirement

value JSON
Array of
JSON
Strings

The oldest enqueued queue object values.

• The values in the JSON array are returned in order from
oldest to newest.

• If the valuetransferencoding field indicates UTF-8
encoding, the corresponding value field shall contain a
UTF-8 string using JSON escaping rules described in
RFC 4627.

• If the valuetransferencoding field indicates base64
encoding, the corresponding value field shall contain a
base 64-encoded string as described in RFC 4648.

• The value field shall not be provided when using multi-part
MIME.

• The value field shall only be provided when the
completionStatus field contains "Complete".

Conditional

© SNIA

Multi-part MIME Extension 1.0g Working Draft 31

37) Append to end of Clause "11.3.8 Examples"

EXAMPLE 5 - GET to the queue object URI to read the queue object using multi-part MIME:

GET /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.0.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
 "objectType": "application/cdmi-queue",
 "objectID": "00007ED9001035E14BD1BA70C2EE98FC",
 "objectName": "MyQueue",
 "parentURI": "/MyContainer/",
 "parentID" : " 0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "1-2",
 "mimetype": [
 "application/octet-stream",
 "application/octet-stream"
],
 "valuerange": [
 "0-19",
 "0-36"
],
 "valuetransferencoding": [
 "base64",
 "base64"
]
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

© SNIA

Multi-part MIME Extension Working Draft 32

38) Append to end of Clause "11.4.2 Capabilities"

• Support for the ability to modify an existing queue object using multi-part MIME is indicated
by the presence of the "cdmi_multipart_mime" system-wide capability.

39) Modify Clause "11.4.3 Request Headers", Table "Table 91 - Request Headers - Update a
Queue Object using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-queue" or "multipart/mixed".
If "multipart/mixed" and the “deserializevalue” field is specified
with the value of the MIME “boundary” parameter, the first part
shall contain a body of content-type "application/cdmi-queue", the
second part shall contain the serialized queue object, and the
subsequent parts shall optionally contain the queue values as
described in 8.5.

Mandatory

40) Modify Clause "11.4.4 Request Message Body", Table "Table 92 - Request Message Body
- Update a Queue Object using CDMI Content Type"

Field Name Type Description Requirement

deserializevalue JSON
String

URI of a serialized CDMI queue object that shall be
deserialized to update an existing queue object. The object
ID of the serialized queue object shall match the object ID of
the destination queue object.
All enqueued items in the serialized queue object shall be
added to the destination queue object.
If multi-part MIME is being used and this field contains the
value of the MIME “boundary” parameter, the contents of the
second MIME part shall be assigned as the field value. If the
serialized queue object in the second MIME part does not
include a “value” field the contents of the third and
subsequent MIME parts shall be assigned as the field value
of the “value” field.

Optionala

41) Append to end of Clause "11.4.8 Examples"

EXAMPLE 2 - PUT to the queue object URI a serialized queue object and its values using multi-
part MIME:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

© SNIA

Multi-part MIME Extension 1.0g Working Draft 33

{
 "deserializevalue": "gc0p4Jq0M2Yt08j34c0p"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
 "objectType": "application/cdmi-queue",
 "objectID": "0000706D0010B84FAD185C425D8B537E",
 "objectName": "MyQueue",
 "parentURI": "/MyContainer/",
 "parentID" : " 0000706D0010B84FAD185C425D8B537E",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "0-1"
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

42) Append to end of Clause "11.6.2 Capabilities"

• Support for the ability to modify the value of an existing queue object using multi-part MIME
is indicated by the presence of the "cdmi_multipart_mime" system-wide capability.

43) Modify Clause "11.6.3 Request Headers", Table "Table 97 - Request Headers - Enqueue a
New Queue Object Value using CDMI Content Type"

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-object" or "multipart/mixed".
If "multipart/mixed", the first part shall contain a body of content-
type "application/cdmi-queue", and the subsequent parts shall
contain the queue values as described in 8.3.

Mandatory

© SNIA

Multi-part MIME Extension Working Draft 34

44) Modify Clause "11.6.4 Request Message Body", Table "Table 98 - Request Message Body
- Enqueue a New Queue Object Value using CDMI Content Type"

Field Name Type Description Requirement

mimetype JSON
Array of
JSON
Strings

MIME type of the data to be enqueued into the
queue object.

• This field shall be stored as part of the object.

• If this field is not included and multi-part MIME
is not being used, the value of "text/plain" shall
be assigned as the field value.

• If this field is not included and multi-part MIME
is being used, the value of the “Content-Type”
header of the corresponding MIME part shall be
assigned as the field value.

• The same number of array elements shall be
present as is present in the value field, and the
mimetype shall be associated with the value in
the corresponding position.

• This mimetype value shall be converted to
lowercase before being stored.

Optional

© SNIA

Multi-part MIME Extension 1.0g Working Draft 35

Field Name Type Description Requirement

valuetransferencoding JSON
Array of
JSON
Strings

The value transfer encoding used for the queue
object value. Two value transfer encodings are
defined.

• "utf-8" indicates that the data object contains a
valid UTF-8 string, and it shall be transported
as a UTF-8 string in the value field.

• "base64" indicates that the data object may
contain arbitrary binary sequences, and it shall
be transported as a base 64-encoded string in
the value field. Setting the contents of the data
object value field to any value other than a valid
base 64 string shall result in error 400 Bad
Request being returned to the client.

• If this field is not included and multi-part MIME
is not being used, the value of "utf-8" shall be
assigned as the field value.

• If this field is not included and multi-part MIME
is being used, the value of "utf-8" shall be
assigned as the field value if the “Content-
Type” header of the corresponding MIME part
includes the charset parameter as defined in
RFC 2046 of "utf-8" (e.g., ";charset=utf-8").
Otherwise, the value of "base64" shall be
assigned as the field value. This field applies
only to the encoding of the value when
represented in JSON; the “Content-Transfer-
Encoding” header of the part specifies the
encoding of the value within a multi-part MIME
request, as defined in RFC 2045.

• This field shall be stored as part of the object.

Optional

value JSON
Array of
JSON
Strings

Data to be enqueued into the queue object.

• If this field is not included and multi-part MIME
is being used, the contents of the MIME parts
shall be assigned as the field value.

• If the corresponding valuetransferencoding field
indicates UTF-8 encoding, the value shall be a
UTF-8 string escaped using the JSON
escaping rules described in RFC 4627.

• If the corresponding valuetransferencoding field
indicates base64 encoding, the value shall be
first encoded using the base 64 encoding rules
described in RFC 4648.

Optionala

© SNIA

Multi-part MIME Extension Working Draft 36

45) Append to end of Clause "11.6.8 Examples"

EXAMPLE 6 - POST to the queue object URI the binary contents of two new values using multi-
part MIME:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No content

EXAMPLE 7 - POST to the queue object URI the mime types and binary contents of two new
values using multi-part MIME:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.0.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
 "mimetype" : [
 "application/pdf",
 "image/jpeg"
]
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

© SNIA

Multi-part MIME Extension 1.0g Working Draft 37

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No content

46) Insert into Clause "12.1.1 Cloud Storage System-Wide Capabilities", Table "Table 102 -
System-Wide Capabilities"

Capability Name Type Description

cdmi_multipart_mime JSON String If present and "true", this capability indicates that the cloud
storage system supports storing and retrieving the value of data
and queue objects using multi-part MIME.

cdmi_create_value_ra
nge_by_ID

JSON String If present and "true", this capability indicates that the system
allows a new data object’s value to be created with byte ranges
through “/cdmi_objectid/”.

47) Insert into Clause "12.1.5 Container Capabilities", Table "Table 106 – Capabilities for
Containers"

Capability Name Type Description

cdmi_create_value_ra
nge

JSON String If present and "true", this capability indicates that the container
allows a new data object’s value to be created with byte
ranges.

	Working Draft
	Multi-part MIME Transfer Extension
	Overview
	Modifications to the CDMI 1.0.1 spec:
	1) Insert into Clause "2 Normative References"
	2) Append to end of Clause "8.1 Overview"
	3) Append to end of Clause "8.2.3 Capabilities"
	4) Modify Clause "8.2.4 Request Headers", Table "Table 5 - Request Headers for Creating a CDMI Data Object using CDMI Content Type"
	5) Modify Clause "8.2.5 Request Message Body", Table "Table 6 - Request Message Body - Create a Data Object using CDMI Content Type"
	6) Append to end of Clause "8.2.9 Examples"
	7) Append to end of Clause "8.3.2 Capabilities"
	8) Modify Clause "8.3.3 Request Headers", Table "Table 10 - Request Headers - Create a CDMI Data Object using a Non-CDMI Content Type"
	9) Append to end of Clause "8.4.2 Capabilities"
	10) Modify Clause "8.4.3 Request Headers", Table "Table 12 - Request Headers - Read a CDMI Data Object using CDMI Content Type"
	11) Modify Clause "8.4.5 Response Headers", Table "Table 13 - Response Headers - Read a CDMI Data Object using CDMI Content Type"
	12) Modify Clause "8.4.6 Response Message Body", Table "Table 14 - Response Message Body - Read a Data Object using CDMI Content Type"
	13) Append to end of Clause "8.4.8 Examples"
	14) Append to end of Clause "8.6.2 Capabilities"
	15) Modify Clause "8.6.3 Request Headers", Table "Table 19 - Request Headers - Update a CDMI Data Object using CDMI Content Type"
	16) Modify Clause "8.6.4 Request Message Body", Table "Table 20 - Request Message Body - Update a CDMI Data Object using CDMI Content Type"
	17) Append to end of Clause "8.6.8 Examples"
	18) Append to end of Clause "9.9.3 Capabilities"
	19) Modify Clause "9.9.4 Request Headers", Table "Table 49 - Request Headers - Create a New Data Object using CDMI Content Type"
	20) Modify Clause "9.9.5 Request Message Body", Table "Table 50 - Request Message Body - Create a New Data Object using CDMI Content Type"
	21) Append to end of Clause "9.9.9 Examples"
	22) Append to end of Clause "9.10.2 Capabilities"
	23) Modify Clause "9.10.3 Request Headers", Table "Table 54 - Request Headers - Create a New Data Object using a Non-CDMI Content Type"
	24) Append to end of Clause "9.11.3 Capabilities"
	25) Modify Clause "9.11.4 Request Headers", Table "Table 57 - Request Headers - Create a New Queue Object using CDMI Content Type"
	26) Modify Clause "9.11.5 Request Message Body", Table "Table 58 - Request Message Body - Create a New Queue Object using CDMI Content Type"
	27) Append to end of Clause "9.11.9 Examples"
	28) Append to end of Clause "11.1 Overview"
	29) Append to end of Clause "11.2.3 Capabilities"
	30) Modify Clause "11.2.4 Request Headers", Table "Table 82 - Request Headers - Create a Queue Object using CDMI Content Type"
	31) Modify Clause "11.2.5 Request Message Body", Table "Table 83 - Request Message Body - Create a Queue Object using CDMI Content Type"
	32) Append to end of Clause "11.2.9 Examples"
	33) Append to end of Clause "11.3.2 Capabilities"
	34) Modify Clause "11.3.3 Request Headers", Table "Table 87 - Request Headers - Read a Queue Object using CDMI Content Type"
	35) Modify Clause "11.3.5 Response Headers", Table "Table 88 - Response Headers - Read a Queue Object using CDMI Content Type"
	36) Modify Clause "11.3.6 Response Message Body", Table "Table 89 - Response Message Body - Read a Queue Object using CDMI Content Type"
	37) Append to end of Clause "11.3.8 Examples"
	38) Append to end of Clause "11.4.2 Capabilities"
	39) Modify Clause "11.4.3 Request Headers", Table "Table 91 - Request Headers - Update a Queue Object using CDMI Content Type"
	40) Modify Clause "11.4.4 Request Message Body", Table "Table 92 - Request Message Body - Update a Queue Object using CDMI Content Type"
	41) Append to end of Clause "11.4.8 Examples"
	42) Append to end of Clause "11.6.2 Capabilities"
	43) Modify Clause "11.6.3 Request Headers", Table "Table 97 - Request Headers - Enqueue a New Queue Object Value using CDMI Content Type"
	44) Modify Clause "11.6.4 Request Message Body", Table "Table 98 - Request Message Body - Enqueue a New Queue Object Value using CDMI Content Type"
	45) Append to end of Clause "11.6.8 Examples"
	46) Insert into Clause "12.1.1 Cloud Storage System-Wide Capabilities", Table "Table 102 - System-Wide Capabilities"
	47) Insert into Clause "12.1.5 Container Capabilities", Table "Table 106 – Capabilities for Containers"

