

Delegated Access Control Extension

Version 1.1f

"Publication of this Working Draft for review and comment has been approved by the Cloud
Storage Technical Working Group. This draft represents a "best effort" attempt by the Cloud
Storage Technical Working Group to reach preliminary consensus, and it may be updated,
replaced, or made obsolete at any time. This document should not be used as reference
material or cited as other than a 'work in progress.' Suggestion for revision should be directed to
http:/snia.org/feedback."

Working Draft

© SNIA

Delegated Access Control Extension 1.1f Working Draft 2

Revision History

Date Version By Comments

2015-07-20 1.1a CDMI TWG Initial draft from Portland Face-to-face for TWG
review

2015-11-19 1.1b CDMI TWG Updates at the Colorado Springs TWG meeting

2016-01-19 1.1c CDMI TWG Updates at the San Jose TWG meeting

2016-03-14 1.1d CDMI TWG Updates at the Tuscon TWG meeting

2016-05-10 1.1e CDMI TWG Updates at the Colorado Springs TWG meeting

2016-06-15 1.1f CDMI TWG Final updates in preparation for public review

The SNIA hereby grants permission for individuals to use this document for personal use only,
and for corporations and other business entities to use this document for internal use only
(including internal copying, distribution, and display) provided that:

• Any text, diagram, chart, table, or definition reproduced shall be reproduced in its
entirety with no alteration, and,

• Any document, printed or electronic, in which material from this document (or any portion
hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall
credit the SNIA for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this
document, sell any excerpt or this entire document, or distribute this document to third parties.
All rights not explicitly granted are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be
requested by emailing tcmd@snia.org. Please include the identity of the requesting individual
and/or company and a brief description of the purpose, nature, and scope of the requested use.

Copyright © 2016 Storage Networking Industry Association.

© SNIA

Delegated Access Control Extension 1.1f Working Draft 3

Delegated Access Control (DAC) Extension
Overview

The Cloud Data Management Interface (CDMI) specifies metadata in Clause 16.1 that is used
to determine if a given operation requested by a given user can be performed against a given
object. This metadata is based on the industry-standard NFSv4 ACL system.

This ACL-based model assumes that the cloud server handling the client request has the
required authority and knowledge to allow or deny operations. In many use cases, this authority
may be resident on a different system, and at this time, no standardized methods are available
to delegate the access control decision.

To provide a standardized way that a cloud service can delegate access control decisions to
such a third-party system, this extension defines a set of metadata and a series of interactions
to indicate when delegated access control (DAC) is to be performed and how the DAC request
and response messages are formatted. This extension builds on top of the Encrypted Object
Extension but also has several uses for non-encrypted objects.

In the typical data flow, a client sends a request to a CDMI server in order to access or
manipulate an object. The CDMI server delegates the access control decision to a DAC
provider. Based on the response from the DAC provider, the CDMI server allows or denies the
client request and optionally passes through additional private information received from the
DAC provider.

To provide interoperable delegated access control, the following areas must be specified:

• How CDMI servers and clients determine when DAC is required for operations against
an object

• The way that CDMI servers determine how to contact the DAC provider

• How the DAC provider is sent information about:

o The operation the client is requesting
o The object the operation is being requested against
o The client that is requesting the operation
o The CDMI server performing the operation

• How the DAC provider:

o Returns the access control decision to the CDMI server
o Returns the decryption key to the CDMI server
o Passes through to the client additional information that may be relevant for the

access control decision

• How additional information from the client, which is relevant for the access control
decision, can be passed through to the DAC provider

• How the messages exchanged between the CDMI server and the DAC provider are
protected

© SNIA

Delegated Access Control Extension 1.1f Working Draft 4

Modifications to the CDMI 1.1 spec:
1) In Clause 2, add reference to the following RFCs:

• RFC 6068, The 'mailto' URI Scheme – https://www.ietf.org/rfc/rfc6068.txt

• RFC 7515, JSON Web Signature (JWS) - https://www.ietf.org/rfc/rfc7515.txt

• RFC 7516, JSON Web Encryption (JWE) - https://www.ietf.org/rfc/rfc7516.txt

• RFC 7517, JSON Web Key (JWK) - https://www.ietf.org/rfc/rfc7517.txt

2) In Clause 3, add the following terms:

delegated access control
DAC
the process of delegating an access control decision to a third party

delegated access control provider
DAC provider
a third-party system that is capable of making access control decisions

delegated access control request
DAC request
a request made to a DAC provider for an access control decision

delegated access control response
DAC response
a response from a DAC provider indicating the result of a request for an access control decision

intermediary CDMI server
a CDMI server that is capable of forwarding DAC requests and responses

JOSE
Javascript Object Signing and Encryption

JWE
JSON Web Encryption

JWK
JSON Web Key

JWS
JSON Web Signing

3) In Clause 12.1.1, add new rows at end of table "Table 100 - System-Wide Capabilities".

Capability Name Type Description

cdmi_dac JSON
String

If present and "true", this capability indicates that the cloud
storage system supports delegated access control.

© SNIA

Delegated Access Control Extension 1.1f Working Draft 5

4) In Clause 16.3, add new row at end of table "Table 118 – Storage System Metadata".

Metadata Name Type Description Requirement

cdmi_dac_uri JSON
String

Contains the URI that is used to submit a DAC
request for the data object.
URI schemes supported shall include "https"
and may include "mailto".
Both cdmi_dac_certificate and cdmi_dac_uri
shall be included for delegated access control
to be enabled for a given object.

Optional

cdmi_dac_certificate JSON
Object

A JSON object, containing a JWK which
contains a X.509 certificate or certificate chain
belonging to the DAC provider, that is used to
submit a DAC request for the data object.
Both cdmi_dac_certificate and cdmi_dac_uri
shall be included for delegated access control
to be enabled for a given object.

Optional

5) Add new clause 24, "Access Control"

24.1 Overview

CDMI access control is based around Access Control Lists (ACLs) that are stored as object
metadata. When a client requests to perform an operation against a CDMI object, the CDMI
server validates the client's identity and credentials against the object ACL to determine if the
operation is allowed. This request assumes that the CDMI server is trusted and capable of
making these access control decisions.

Figure 1 illustrates an ACL-based access control request:

Figure 1 – Non-delegated (ACL-based) access control data flow

When an access control decision needs to be made by a third party (such as by the originating
CDMI server in Figure 1), access control is delegated. When cdmi_dac_uri and

© SNIA

Delegated Access Control Extension 1.1f Working Draft 6

cdmi_dac_certificate object metadata is present, as specified in 16.3, Delegated Access Control
(DAC) shall be used.

The process by which objects are federated between systems is outside the scope of access
control delegation and involves how objects are replicated, synchronized, mirrored, or migrated
between CDMI servers. These processes are typically under the control of policies or external
policy management systems. Federation is typically performed by third-party systems that use
CDMI features including notification, serialization, and the preservation of globally unique object
identifiers, which forms the basis for client-transparent interoperability.

24.2 Delegated Access Control (DAC)

A cloud storage system may implement support for DAC, which is indicated by the presence of
the cdmi_dac system-wide capability.

DAC enables requests for operations against an object to be allowed or denied by a third-party
DAC provider, in addition to ACL access control. When an encrypted object is accessed, the
DAC provider may provide the decryption key. The decryption key enables access to encrypted
objects, even if the CDMI server cannot access the keys directly.

Clients often have different degrees to which they trust the CDMI server with which they are
interacting. Table 1 describes the four ways that DAC shall interact with stored objects.

Table 1. Access Modes for DAC

Mode of Access Degree of Trust

Client-side decryption CDMI server is not trusted with keys or to make delegated access
control decisions.

1. Client requests object.
2. Client is responsible for custom implementation for getting

decryption keys out of band.
3. Client receives ciphertext.
4. Client verifies signatures (if present).
5. Client verifies correct object.
6. Client decrypts object.
This mode of access does not use any functionality indicated by the
cdmi_dac capability and is supported by all CDMI servers.

Client-side decryption with
DAC

CDMI server is not trusted with keys and is used to establish an
opaque channel of communication between the client and the DAC
provider for key delivery.

1. Client requests object.
2. Client is responsible for custom implementation that gets

decryption keys through secure exchange between CDMI server
and DAC provider.

3. Client receives ciphertext.
4. Client verifies signatures (if present).
5. Client verifies correct object.
6. Client decrypts object.
This mode of access requires the cdm_dac capability but does not
require encrypted object support.

© SNIA

Delegated Access Control Extension 1.1f Working Draft 7

In this mode, data is exchanged between the client and the DAC
provider using one or more "CDMI-DAC-" headers, as described in
24.4.

Server-side decryption
with DAC

CDMI server is trusted with keys and to delegate access control
decisions. DAC message exchange is used to get the decryption
keys to decrypt the contents of the object, and keys are not revealed
to the client.

1. Client requests object.
2. CDMI server contacts the DAC provider to determine access

control decision and gets decryption keys, where the keys are not
revealed to the client.

3. CDMI server verifies signatures (if present).
4. CDMI server verifies correct object.
5. CDMI server decrypts object.
6. Client receives plaintext.
This mode of access requires DAC and encrypted object support.

Plaintext objects with DAC CDMI server is trusted with plaintext and to not bypass delegated
access control decisions.

1. Client requests object.
2. CDMI server contacts DAC provider to determine access control

decision.
3. CDMI server verifies signatures (if present).
4. CDMI server verifies correct object.
5. Client receives plaintext.
This mode of access requires DAC support.

The cdmi_dac_uri metadata item indicates where delegated access control requests are
submitted, and the cdmi_dac_certificate metadata item indicates how to securely communicate
with the delegated access control provider. Both of these metadata items shall be present for
DAC to be enabled for a given object.

DAC requests are submitted to a DAC provider using two typical methods:

Direct The DAC request is submitted directly to the absolute URI specified in the
cdmi_dac_uri metadata item. This approach requires the host specified in the URI to
be accessible from the CDMI server, and for the CDMI server making the request to
have sufficient permissions to send the DAC request to that location (for example,
HTTP PUT).

Indirect The DAC request is sent to the DAC provider using an indirect route. Indirect routing
is useful when the cdmi_dac_uri does not specify a host. An example of indirect
routing is when the cdmi_dac_uri contains a mailto URI; the Internet mail system is
then responsible for delivering the DAC request.

 In other cases, the certificate included with the DAC request (taken from the
cdmi_dac_certificate metadata) may be used by intermediary CDMI servers to
determine the further routing of the DAC request. For example, DAC requests using a
E.U.-issued certificate can be forwarded to a different intermediary CDMI server to

© SNIA

Delegated Access Control Extension 1.1f Working Draft 8

those requests using a U.S.-issued certificate. How certificate fields are used to
determine routing is not defined in this International Standard.

Both direct and indirect routing may be synchronous or asynchronous. If a DAC response is not
received within the CDMI server or client timeout windows, the client request may time out;
however a subsequent request may be processed locally if the DAC response allows response
caching. When the CDMI server times out while waiting for a DAC response, it shall return an
HTTP status code of 504 Gateway Timeout.

24.3 Delegated Access Control Message Exchange

When a client requests to access or modify an object containing DAC metadata on a CDMI
server that supports DAC, the CDMI server shall create and send a DAC request as specified in
24.5. Upon receiving a DAC response as specified in 24.6, the CDMI server shall allow or deny
the operation based on the contents of the response.

Figure 2 provides an example of access control delegation for a non-encrypted object. The
black solid lines show indirect routing, and gray dashed lines show direct routing.

Figure 2 – Delegated access control data flow example for non-encrypted object

For non-encrypted objects, an originating client indicates that DAC is requested by including the
DAC metadata items. It is important to emphasize that for non-encrypted objects, DAC cannot

© SNIA

Delegated Access Control Extension 1.1f Working Draft 9

be guaranteed to be enforced, as when an object with DAC metadata is accessed from a CDMI
server that does not support DAC; only ACL-based access control shall be evaluated.

Figure 3 provides a second example of access control delegation for an encrypted object. The
black solid lines show indirect routing, and gray dashed lines show direct routing.

Figure 3 – Delegated access control data flow example for encrypted object

For encrypted objects, as access to the decryption keys are provided in the DAC response, the
plaintext is inaccessible unless the CDMI server supports DAC.

When the DAC provider processes the DAC request, if the operation is allowed and the key is
requested by the CDMI server, the object key, if present, shall be obtained and sent back as
part of the DAC response. Upon receiving the DAC response, the CDMI server shall extract the
key to perform the client operation.

24.4 Client Header Passthrough

The Delegated Access Control extension provides facilities to allow client-provided HTTP
request headers to be passed through to the DAC provider, and for the DAC provider to pass
HTTP response headers back to the client. These headers are identified by the "CDMI-DAC-"
prefix.

© SNIA

Delegated Access Control Extension 1.1f Working Draft 10

The contents and full names of these headers are not defined in this International Standard.
However, it is anticipated that these headers shall be used to allow the client to provide
additional information that may be required for the access control decision-making process, for
audit purposes, or for secure key exchange.

For example, when an operation is allowed by a DAC provider, the object key may be encrypted
using the public key from a client-provided certificate (verified by the DAC provider), which is
included in a "CDMI-DAC-" request header, with the encrypted object key being sent back to the
client in a "CDMI-DAC-" response header. In this scenario, the CDMI server cannot decrypt the
ciphertext but can securely pass on the encrypted object key to the client. The client can then
use its private key to decrypt the response header to get the object key, which can then be used
to decrypt the object.

24.5 DAC Request

When a CDMI server that supports DAC needs to contact the DAC provider as specified in the
DAC metadata, it constructs a DAC request, as specified below:

Field Name Type Description Requirement

dac_request_version JSON
String

Indicates the version of the DAC request. This field is
currently set to the value "1".

Mandatory

dac_request_id JSON
String

Contains a system-specified identifier that is used to
match up the corresponding DAC response. This
identifier shall be unique within the window that multiple
DAC responses may be received.

Mandatory

server_identity JSON
Object

A JSON object containing a JWK, which contains a
X.509 certificate or certificate chain belonging to the
CDMI server that is generating the DAC request.
This certificate is used to ensure that only the CDMI
Server that generated the DAC request can read the
DAC response.

Mandatory

client_identity JSON
Object

A JSON object containing the following JSON entities:
JSON String, "acl_name", containing the ACL name of
the client requesting the operation.
JSON Array, "acl_group", containing the ACL group(s)
of the client requesting the operation.

Mandatory

acl_effective_mask JSON
String

A text or hexadecimal string representation of the ACE
mask that shall be used for the operation, as defined in
16.1.5.

Mandatory

client_headers JSON
Object

A JSON object containing a JSON string for each HTTP
header in the operation request that starts with "CDMI-
DAC-", where the JSON string name is the header
name, and the JSON string value is the header value.
These headers can be used for tunneling information
from the client to the DAC provider.

Mandatory

cdmi_objectID JSON Contains the object ID of the object the operation is Mandatory

© SNIA

Delegated Access Control Extension 1.1f Working Draft 11

String performed against.

cdmi_enc_keyID JSON
String

Contains the encryption key identifier, which is used to
indicate that the CDMI server is requesting the
encryption key.
Contains the unique key identifier (for example, a KMIP
identifier) for the symmetric key that is used to encrypt
and decrypt the object.

Optional

cdmi_operation JSON
String

Contains a string indicating which operation is being
requested to be performed against the object.
The following operations are defined:
"cdmi_read"
"cdmi_modify"
"cdmi_delete"

Mandatory

dac_response_uri JSON
String

An optional URI that specifies where to send the DAC
response. This URI is required for asynchronous DAC
requests, such as when sent via email URIs.
If this field is omitted, the DAC response shall be based
on the context of the request, for example, as a
message body returned for the request PUT when
using HTTPS, or an email reply when using a mailto
URI.

Optional

An example of a DAC request is shown below:

{
 "dac_request_version" : "1",
 "dac_request_id" : "F55AA0B6-8F54-4A03-AC21-87052D58485A",
 "server_identity" : {
 "kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgA
 sz2J_pqYW08PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1u
 CLNwBuUiCO11_-7dYbsr4iJmG0Qu2j8DsVyT1azpJC_N
 G84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4aY
 WAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKv
 j-nUy1wgzjYQDwHMTplCoLtU-o-8SNnZ1tmRoGE9uJkB
 Ldh5gFENabWnU5m1ZqZPdwS-qo-meMvVfJb6jJVWRpl2
 SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",
 "x5c": [
 "MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEB
 BQUAMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5
 MTVaMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC
 ggEBAL64zn8/QnHYMeZ0LncoXaEde1fiLm1jHjmQsF/4

© SNIA

Delegated Access Control Extension 1.1f Working Draft 12

 49IYALM9if6amFtPDy2yvz3YlRij66s5gyLCyO7ANuVR
 Jx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws
 6SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU
 1quGmFgHIXPLfnpnfajr1rVTAwtgV5LEZ4Iel+W1GC8u
 gMhyr4/p1MtcIM42EA8BzE6ZQqC7VPqPvEjZ2dbZkaBh
 PbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyV
 VkaZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEA
 ATANBgkqhkiG9w0BAQUFAAOCAQEAh8zGlfSlcI0o3rYD
 PBB07aXNswb4ECNIKG0CETTUxmXl9KUL+9gGlqCz5iWL
 OgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5Cp
 Oe1zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCy
 ybEpOGVwe8fnk+fbEL2Bo3UPGrpsHzUoaGpDftmWssZk
 hpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo4tpzd5rFXhj
 Rbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkum
 GmTqgawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA
 6SdS4xSvdXK3IVfOWA=="
]
 }
 }
 "client_identity" : {
 "acl_name" : "jdoe",
 "acl_group" : ["users"]
 },
 "acl_effective_mask" : "READ_ALL"
 "client_headers" : {
 "CDMI-DAC-TEST" : "Testing"
 },
 "cdmi_objectid" : "00007ED90010D891022876A8DE0BC0FD",
 "cdmi_enc_keyID" : "testkey",
 "cdmi_event_type" : "cdmi_read",
 "dac_response_uri" : "https://cloud.example.com/dacr"
}

The above JSON (DAC request) is encrypted in JWE format, where the recipient is the public
key of the DAC provider certificate (as specified in the DAC object metadata), and is JWS
signed using the private key of the CDMI server that corresponds to the server identity
certificate included in the DAC request. The certificate of the DAC provider from the object is
then attached:

Field Name Type Description Requirement

dac_request JSON
Object

JOSE encrypted and signed request Mandatory

dac_request_dest_certificate JSON
Object

The cdmi_dac_certificate metadata value, (a
JSON object containing a JWK, which contains
a X.509 certificate or certificate chain belonging
to the DAC provider) indicating where the DAC
request is to be sent.

Mandatory

dac_request_dest_uri JSON
String

The cdmi_dac_uri metadata value indicating
where the DAC request is to be sent.

Mandatory

Once created, the DAC request is submitted using the DAC request URI specified in the DAC
object metadata, for example, as an HTTP PUT operation or via an SMTP email. The

© SNIA

Delegated Access Control Extension 1.1f Working Draft 13

dac_request_dest_certificate and dac_request_dest_uri can also be used to route the request
through intermediary hops if needed.

24.6 DAC Response

When a DAC provider receives a DAC request, it decrypts the request using its private key,
verifies the signature of the CDMI server, and evaluates the request. Based on the information
provided, the DAC provider shall allow or deny operations by modifying or replacing the ACL
mask that was initially determined by the CDMI server.

To indicate the result of the DAC request to the requesting CDMI server, the DAC provider
constructs a DAC response, as specified below:

Field Name Type Description Requirement

dac_response_version JSON
String

Indicates the version of the DAC response.
Currently set to the value "1".

Mandatory

dac_response_id JSON
String

Contains the system-specified identifier
specified in the corresponding
dac_request_id.

Mandatory

dac_identity JSON
Object

A JSON object containing a JWK, which
contains a X.509 certificate or certificate chain
belonging to the DAC provider that is
generating the DAC response.
This certificate is used to ensure that the
CDMI server can validate the identity of the
DAC provider.

Mandatory

dac_applied_mask JSON
String

A text or hexadecimal string representation of
the ACE mask to be used, as defined in
16.1.5.

Mandatory

dac_object_key JSON
Object

The key for the object in JWK format (See
RFC 7517). This key is only disclosed when
cdmi_enc_keyID is included in the DAC
request and the DAC provider allows access.

Optional

dac_response_headers JSON
Object

A series of headers that start with "CDMI-
DAC-" to be returned to the client.
These headers can be used to pass
information from the DAC provider back to the
client.

Optional

dac_key_cache_expiry JSON
String

The complete date/time when the object key
is no longer to be cached, specified in ISO
8601 date/time format.
If this field is not included, the key shall not be
cached.

Optional

© SNIA

Delegated Access Control Extension 1.1f Working Draft 14

dac_response_cache_expiry JSON
String

The complete date/time when the DAC
response is no longer to be cached, specified
in ISO 8601 date/time format.
If this field is not included, the response shall
not be cached.

Optional

dac_redirect_objectID JSON
String

Indicates an alternate CDMI Object ID used to
access the requested object. If present, the
CDMI server shall send an HTTP Redirect to
the client.

Optional

dac_audit_uri JSON
String

Indicates a URI to a CDMI queue where audit
logging messages associated with the
operations shall be submitted.
When present, audit logging messages shall
be generated for receiving the response,
performing the operation, and determining
when to purge the key (see 20.2).

Optional

An example of a DAC response is shown below:

{
 "dac_response_version" : "1",
 "dac_response_id" : "<identifier of request>",
 "dac_identity" : {
 "kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgA
 sz2J_pqYW08PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1u
 CLNwBuUiCO11_-7dYbsr4iJmG0Qu2j8DsVyT1azpJC_N
 G84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4aY
 WAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKv
 j-nUy1wgzjYQDwHMTplCoLtU-o-8SNnZ1tmRoGE9uJkB
 Ldh5gFENabWnU5m1ZqZPdwS-qo-meMvVfJb6jJVWRpl2
 SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",
 "x5c": [
 "MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEB
 BQUAMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5
 MTVaMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC
 ggEBAL64zn8/QnHYMeZ0LncoXaEde1fiLm1jHjmQsF/4
 49IYALM9if6amFtPDy2yvz3YlRij66s5gyLCyO7ANuVR
 Jx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws
 6SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU
 1quGmFgHIXPLfnpnfajr1rVTAwtgV5LEZ4Iel+W1GC8u
 gMhyr4/p1MtcIM42EA8BzE6ZQqC7VPqPvEjZ2dbZkaBh
 PbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyV
 VkaZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEA

© SNIA

Delegated Access Control Extension 1.1f Working Draft 15

 ATANBgkqhkiG9w0BAQUFAAOCAQEAh8zGlfSlcI0o3rYD
 PBB07aXNswb4ECNIKG0CETTUxmXl9KUL+9gGlqCz5iWL
 OgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5Cp
 Oe1zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCy
 ybEpOGVwe8fnk+fbEL2Bo3UPGrpsHzUoaGpDftmWssZk
 hpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo4tpzd5rFXhj
 Rbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkum
 GmTqgawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA
 6SdS4xSvdXK3IVfOWA=="
]
 }
 }
 "dac_effective_mask" : "ALL_PERMS",
 "dac_object_key" {
 "kty" : "oct",
 "alg" : "A128KW",
 "k" : "GawgguFyGrWKav7AX4VKUg"}
 },
 "dac_key_cache_expiry" : "2015-07-20T14:12:44.835294Z",
 "dac_response_cache_expiry" : "2015-07-20T14:12:44.835294Z",
 "dac_audit_uri" : "<URI to Audit Queue>"
}

The above JSON (DAC response) is encrypted in JWE format where the recipient is the public
key of the CDMI server certificate (as specified in the DAC request), and is JWS-signed using
the private key of the DAC provider that corresponds to the DAC identity certificate that is
included in the DAC response.

Once created, the DAC response is returned to the CDMI server or is submitted to the
dac_response_uri specified in the DAC request. The certificate of the server included with the
DAC request is then attached:

Field Name Type Description Requirement

dac_response JSON
Object

JOSE encrypted and signed response Mandatory

dac_response_dest_certificate JSON
Object

A JSON object containing a JWK, which
contains a X.509 certificate or certificate chain
belonging to the server that initiated the DAC
requester (taken from the DAC request)

Mandatory

dac_response_dest_uri JSON
String

A URI indicating where the DAC response is
to be sent (taken from the DAC request)

Mandatory

Once created, the DAC response is submitted using the DAC response URI specified in the
DAC request, for example, as an HTTP PUT operation or via an SMTP email. The
dac_response_dest_certificate and dac_response_dest_uri can also be used to route the
request through intermediary hops if needed.

When the CDMI server receives a DAC response message, it shall decrypt it using its private
key and verify the signature using the public key from the object's DAC metadata. If the
decryption and signature verification are successful, the CDMI server shall use the provided
dac_applied_mask in place of the ACL computed mask.

© SNIA

Delegated Access Control Extension 1.1f Working Draft 16

If the CDMI server supports key or DAC response caching, cache expiry values shall be
honored. Cached responses and keys can only be used for identical client operations, where
the client identity, objectID, operation, and "CDMI-DAC-" request headers are identical.
Otherwise, the cached response shall be expired. If an audit URI is present in the cached
response, audit messages shall also be generated for all operations allowed using the cached
response.

The CDMI server shall also implement audit logging as specified in the DAC response.

If a dac_redirect_objectID field is returned in the DAC response, the CDMI server shall return an
HTTP redirect to the specified Object ID. This redirect allows a DAC provider to create a client
operation-specific instance of the object that is encrypted with a single-use key so that the
object key is not disclosed.

24.7 Error Handling

In the following scenarios, the following HTTP response codes shall be returned to a client:

• When a DAC response denies the requested operation, an HTTP status code of 403
Forbidden shall be returned to the client along with any dac_response_headers included
in the response.

• When a DAC response includes a dac_redirect_objectID, an HTTP status code of 302
Found shall be returned to the client along with any dac_response_headers included in
the response.

• When a DAC request to access or modify an encrypted object is allowed, but the key is
not included in the DAC response, an HTTP status code of 401 Unauthorized shall be
returned to the client along with any dac_response_headers included in the response.

• When a DAC request to access or modify an encrypted object is allowed, but cannot be
performed due to lack of support for an encryption algorithm, signing algorithm, or key
type, an HTTP status code of 501 Not Implemented shall be returned along with any
dac_response_headers included in the response.

• When a DAC request times out, an HTTP status code of 500 Internal Server Error shall
be returned to the client.

• When a DAC request cannot be sent or routed because the DAC metadata is not
supported or valid, an HTTP status code of 501 Not Implemented shall be returned to
the client.

• When a DAC request cannot be sent or routed because an upstream system is
unavailable, an HTTP status code of 500 Internal Server Error shall be returned to the
client.

24.8 Examples

The following examples illustrate the primary ways that DAC requests are performed.

24.8.1 GET ciphertext of encrypted object with delegated access control

The following CDMI operation is performed against an encrypted CDMI object with delegated
access control metadata:

© SNIA

Delegated Access Control Extension 1.1f Working Draft 17

GET /MyContainer/MyEncryptedObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cms, application/jose+json

The CDMI server verifies local access controls and determines that the request can proceed.
The following DAC request is generated:

{
 "dac_request_version" : "1",
 "dac_request_id" : "F55AA0B6-8F54-4A03-AC21-87052D58485A",
 "server_identity" : {
 "kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgA
 sz2J_pqYW08PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1u
 CLNwBuUiCO11_-7dYbsr4iJmG0Qu2j8DsVyT1azpJC_N
 G84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4aY
 WAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKv
 j-nUy1wgzjYQDwHMTplCoLtU-o-8SNnZ1tmRoGE9uJkB
 Ldh5gFENabWnU5m1ZqZPdwS-qo-meMvVfJb6jJVWRpl2
 SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",
 "x5c": [
 "MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEB
 BQUAMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5
 MTVaMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC
 ggEBAL64zn8/QnHYMeZ0LncoXaEde1fiLm1jHjmQsF/4
 49IYALM9if6amFtPDy2yvz3YlRij66s5gyLCyO7ANuVR
 Jx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws
 6SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU
 1quGmFgHIXPLfnpnfajr1rVTAwtgV5LEZ4Iel+W1GC8u
 gMhyr4/p1MtcIM42EA8BzE6ZQqC7VPqPvEjZ2dbZkaBh
 PbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyV
 VkaZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEA
 ATANBgkqhkiG9w0BAQUFAAOCAQEAh8zGlfSlcI0o3rYD
 PBB07aXNswb4ECNIKG0CETTUxmXl9KUL+9gGlqCz5iWL
 OgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5Cp
 Oe1zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCy
 ybEpOGVwe8fnk+fbEL2Bo3UPGrpsHzUoaGpDftmWssZk
 hpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo4tpzd5rFXhj
 Rbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkum
 GmTqgawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA
 6SdS4xSvdXK3IVfOWA=="
]
 }
 }
 "client_identity" : {
 "acl_name" : <acl name of client>
 "acl_group" : [<acl groups of clients>]
 },

© SNIA

Delegated Access Control Extension 1.1f Working Draft 18

 "acl_effective_mask" : <acl mask of client>,
 "cdmi_objectid" : <CDMI Object ID of object being accessed>,
 "cdmi_event_type" : "cdmi_read",
 "dac_response_uri" : "https://cloud.example.com/dacr"
}

The DAC provider processes the request and returns the following DAC response:

{
 "dac_response_version" : "1",
 "dac_response_id" : "F55AA0B6-8F54-4A03-AC21-87052D58485A",
 "dac_identity" : {
 "kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgA
 sz2J_pqYW08PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1u
 CLNwBuUiCO11_-7dYbsr4iJmG0Qu2j8DsVyT1azpJC_N
 G84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4aY
 WAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKv
 j-nUy1wgzjYQDwHMTplCoLtU-o-8SNnZ1tmRoGE9uJkB
 Ldh5gFENabWnU5m1ZqZPdwS-qo-meMvVfJb6jJVWRpl2
 SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",
 "x5c": [
 "MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEB
 BQUAMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5
 MTVaMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC
 ggEBAL64zn8/QnHYMeZ0LncoXaEde1fiLm1jHjmQsF/4
 49IYALM9if6amFtPDy2yvz3YlRij66s5gyLCyO7ANuVR
 Jx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws
 6SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU
 1quGmFgHIXPLfnpnfajr1rVTAwtgV5LEZ4Iel+W1GC8u
 gMhyr4/p1MtcIM42EA8BzE6ZQqC7VPqPvEjZ2dbZkaBh
 PbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyV
 VkaZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEA
 ATANBgkqhkiG9w0BAQUFAAOCAQEAh8zGlfSlcI0o3rYD
 PBB07aXNswb4ECNIKG0CETTUxmXl9KUL+9gGlqCz5iWL
 OgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5Cp
 Oe1zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCy
 ybEpOGVwe8fnk+fbEL2Bo3UPGrpsHzUoaGpDftmWssZk
 hpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo4tpzd5rFXhj
 Rbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkum
 GmTqgawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA
 6SdS4xSvdXK3IVfOWA=="
]
 }
 }
 "dac_effective_mask" : "ALL_PERMS"
}

© SNIA

Delegated Access Control Extension 1.1f Working Draft 19

Since the operation is allowed by the DAC provider, the following response is sent:

HTTP/1.1 200 OK
Content-Type: application/cms
Content-Length: 1425

<CMS Encrypted Object>

24.8.2 GET ciphertext of encrypted object with passthrough key access

The following CDMI operation is performed against an encrypted CDMI object with delegated
access control metadata:

GET /MyContainer/MyEncryptedObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cms, application/jose+json
CDMI-DAC-N: <client-specific headers requesting decryption key>

The CDMI server verifies local access controls and determines that the request can proceed.
The following DAC request is generated:

{
 "dac_request_version" : "1",
 "dac_request_id" : "F55AA0B6-8F54-4A03-AC21-87052D58485A",
 "server_identity" : {
 "kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgA
 sz2J_pqYW08PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1u
 CLNwBuUiCO11_-7dYbsr4iJmG0Qu2j8DsVyT1azpJC_N
 G84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4aY
 WAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKv
 j-nUy1wgzjYQDwHMTplCoLtU-o-8SNnZ1tmRoGE9uJkB
 Ldh5gFENabWnU5m1ZqZPdwS-qo-meMvVfJb6jJVWRpl2
 SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",
 "x5c": [
 "MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEB
 BQUAMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5
 MTVaMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC
 ggEBAL64zn8/QnHYMeZ0LncoXaEde1fiLm1jHjmQsF/4
 49IYALM9if6amFtPDy2yvz3YlRij66s5gyLCyO7ANuVR
 Jx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws
 6SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU
 1quGmFgHIXPLfnpnfajr1rVTAwtgV5LEZ4Iel+W1GC8u
 gMhyr4/p1MtcIM42EA8BzE6ZQqC7VPqPvEjZ2dbZkaBh
 PbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyV
 VkaZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEA
 ATANBgkqhkiG9w0BAQUFAAOCAQEAh8zGlfSlcI0o3rYD
 PBB07aXNswb4ECNIKG0CETTUxmXl9KUL+9gGlqCz5iWL

© SNIA

Delegated Access Control Extension 1.1f Working Draft 20

 OgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5Cp
 Oe1zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCy
 ybEpOGVwe8fnk+fbEL2Bo3UPGrpsHzUoaGpDftmWssZk
 hpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo4tpzd5rFXhj
 Rbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkum
 GmTqgawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA
 6SdS4xSvdXK3IVfOWA=="
]
 }
 }
 "client_identity" : {
 "acl_name" : <acl name of client>
 "acl_group" : [<acl groups of clients>]
 },
 "acl_effective_mask" : <acl mask of client>
 "client_headers" : {
 <CDMI-DAC- headers from client>
 },
 "cdmi_objectid" : <CDMI Object ID of object being accessed>,
 "cdmi_event_type" : "cdmi_read",
 "dac_response_uri" : "https://cloud.example.com/dacr"
}

The DAC provider processes the request and returns the following DAC response:

{
 "dac_response_version" : "1",
 "dac_response_id" : "F55AA0B6-8F54-4A03-AC21-87052D58485A",
 "dac_identity" : {
 "kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgA
 sz2J_pqYW08PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1u
 CLNwBuUiCO11_-7dYbsr4iJmG0Qu2j8DsVyT1azpJC_N
 G84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4aY
 WAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKv
 j-nUy1wgzjYQDwHMTplCoLtU-o-8SNnZ1tmRoGE9uJkB
 Ldh5gFENabWnU5m1ZqZPdwS-qo-meMvVfJb6jJVWRpl2
 SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",
 "x5c": [
 "MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEB
 BQUAMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5
 MTVaMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC
 ggEBAL64zn8/QnHYMeZ0LncoXaEde1fiLm1jHjmQsF/4
 49IYALM9if6amFtPDy2yvz3YlRij66s5gyLCyO7ANuVR
 Jx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws
 6SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU
 1quGmFgHIXPLfnpnfajr1rVTAwtgV5LEZ4Iel+W1GC8u
 gMhyr4/p1MtcIM42EA8BzE6ZQqC7VPqPvEjZ2dbZkaBh

© SNIA

Delegated Access Control Extension 1.1f Working Draft 21

 PbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyV
 VkaZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEA
 ATANBgkqhkiG9w0BAQUFAAOCAQEAh8zGlfSlcI0o3rYD
 PBB07aXNswb4ECNIKG0CETTUxmXl9KUL+9gGlqCz5iWL
 OgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5Cp
 Oe1zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCy
 ybEpOGVwe8fnk+fbEL2Bo3UPGrpsHzUoaGpDftmWssZk
 hpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo4tpzd5rFXhj
 Rbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkum
 GmTqgawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA
 6SdS4xSvdXK3IVfOWA=="
]
 }
 }
 "dac_effective_mask" : "ALL_PERMS"
 "client_headers" : {
 <CDMI-DAC- headers to client>
 },
}

Since the operation is allowed by the DAC provider, the following response is sent:

HTTP/1.1 200 OK
Content-Type: application/cms
Content-Length: 1425
CDMI-DAC-N: <client-specific headers including decryption key>

<CMS Encrypted Object>

24.8.3 GET plaintext of encrypted object with delegated access control

The following CDMI operation is performed against an encrypted CDMI object with DAC
metadata:

GET /MyContainer/MyEncryptedObject.txt HTTP/1.1
Host: cloud.example.com
Accept: */*

The CDMI server verifies local access controls and determines that the request can proceed.
The following DAC request is generated:

{
 "dac_request_version" : "1",
 "dac_request_id" : "F55AA0B6-8F54-4A03-AC21-87052D58485A",
 "server_identity" : {
 "kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgA
 sz2J_pqYW08PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1u
 CLNwBuUiCO11_-7dYbsr4iJmG0Qu2j8DsVyT1azpJC_N
 G84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4aY
 WAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKv
 j-nUy1wgzjYQDwHMTplCoLtU-o-8SNnZ1tmRoGE9uJkB
 Ldh5gFENabWnU5m1ZqZPdwS-qo-meMvVfJb6jJVWRpl2
 SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",

© SNIA

Delegated Access Control Extension 1.1f Working Draft 22

 "x5c": [
 "MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEB
 BQUAMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5
 MTVaMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC
 ggEBAL64zn8/QnHYMeZ0LncoXaEde1fiLm1jHjmQsF/4
 49IYALM9if6amFtPDy2yvz3YlRij66s5gyLCyO7ANuVR
 Jx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws
 6SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU
 1quGmFgHIXPLfnpnfajr1rVTAwtgV5LEZ4Iel+W1GC8u
 gMhyr4/p1MtcIM42EA8BzE6ZQqC7VPqPvEjZ2dbZkaBh
 PbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyV
 VkaZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEA
 ATANBgkqhkiG9w0BAQUFAAOCAQEAh8zGlfSlcI0o3rYD
 PBB07aXNswb4ECNIKG0CETTUxmXl9KUL+9gGlqCz5iWL
 OgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5Cp
 Oe1zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCy
 ybEpOGVwe8fnk+fbEL2Bo3UPGrpsHzUoaGpDftmWssZk
 hpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo4tpzd5rFXhj
 Rbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkum
 GmTqgawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA
 6SdS4xSvdXK3IVfOWA=="
]
 }
 }
 "client_identity" : {
 "acl_name" : <acl name of client>
 "acl_group" : [<acl groups of clients>]
 },
 "acl_effective_mask" : <acl mask of client>
 "cdmi_objectid" : <CDMI Object ID of object being accessed>,
 "cdmi_enc_keyID" : "testkey",
 "cdmi_event_type" : "cdmi_read",
 "dac_response_uri" : "https://cloud.example.com/dacr"
}

The DAC provider processes the request and returns the following DAC response:

{
 "dac_response_version" : "1",
 "dac_response_id" : "F55AA0B6-8F54-4A03-AC21-87052D58485A",
 "dac_identity" : {
 "kty":"RSA",
 "use":"sig",
 "kid":"1b94c",
 "n":"vrjOfz9Ccdgx5nQudyhdoR17V-IubWMeOZCwX_jj0hgA
 sz2J_pqYW08PLbK_PdiVGKPrqzmDIsLI7sA25VEnHU1u
 CLNwBuUiCO11_-7dYbsr4iJmG0Qu2j8DsVyT1azpJC_N
 G84Ty5KKthuCaPod7iI7w0LK9orSMhBEwwZDCxTWq4aY
 WAchc8t-emd9qOvWtVMDC2BXksRngh6X5bUYLy6AyHKv
 j-nUy1wgzjYQDwHMTplCoLtU-o-8SNnZ1tmRoGE9uJkB
 Ldh5gFENabWnU5m1ZqZPdwS-qo-meMvVfJb6jJVWRpl2

© SNIA

Delegated Access Control Extension 1.1f Working Draft 23

 SUtCnYG2C32qvbWbjZ_jBPD5eunqsIo1vQ",
 "e":"AQAB",
 "x5c": [
 "MIIDQjCCAiqgAwIBAgIGATz/FuLiMA0GCSqGSIb3DQEB
 BQUAMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDAeFw0xMzAyMjEyMzI5MTVaFw0xODA4MTQyMjI5
 MTVaMGIxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDTzEP
 MA0GA1UEBxMGRGVudmVyMRwwGgYDVQQKExNQaW5nIElk
 ZW50aXR5IENvcnAuMRcwFQYDVQQDEw5CcmlhbiBDYW1w
 YmVsbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC
 ggEBAL64zn8/QnHYMeZ0LncoXaEde1fiLm1jHjmQsF/4
 49IYALM9if6amFtPDy2yvz3YlRij66s5gyLCyO7ANuVR
 Jx1NbgizcAblIgjtdf/u3WG7K+IiZhtELto/A7Fck9Ws
 6SQvzRvOE8uSirYbgmj6He4iO8NCyvaK0jIQRMMGQwsU
 1quGmFgHIXPLfnpnfajr1rVTAwtgV5LEZ4Iel+W1GC8u
 gMhyr4/p1MtcIM42EA8BzE6ZQqC7VPqPvEjZ2dbZkaBh
 PbiZAS3YeYBRDWm1p1OZtWamT3cEvqqPpnjL1XyW+oyV
 VkaZdklLQp2Btgt9qr21m42f4wTw+Xrp6rCKNb0CAwEA
 ATANBgkqhkiG9w0BAQUFAAOCAQEAh8zGlfSlcI0o3rYD
 PBB07aXNswb4ECNIKG0CETTUxmXl9KUL+9gGlqCz5iWL
 OgWsnrcKcY0vXPG9J1r9AqBNTqNgHq2G03X09266X5Cp
 Oe1zFo+Owb1zxtp3PehFdfQJ610CDLEaS9V9Rqp17hCy
 ybEpOGVwe8fnk+fbEL2Bo3UPGrpsHzUoaGpDftmWssZk
 hpBJKVMJyf/RuP2SmmaIzmnw9JiSlYhzo4tpzd5rFXhj
 Rbg4zW9C+2qok+2+qDM1iJ684gPHMIY8aLWrdgQTxkum
 GmTqgawR+N5MDtdPTEQ0XfIBc2cJEUyMTY5MPvACWpkA
 6SdS4xSvdXK3IVfOWA=="
]
 }
 }
 "dac_effective_mask" : "ALL_PERMS",
 "dac_object_key" {
 "kty" : "oct",
 "alg" : "A128KW",
 "k" : "GawgguFyGrWKav7AX4VKUg"}
 },
 "dac_key_cache_expiry" : "2015-07-20T14:12:44.835294Z",
 "dac_response_cache_expiry" : "2015-07-20T14:12:44.835294Z"
}

Since the operation is allowed by the DAC provider and the key is provided, the object is
decrypted by the CDMI server and the following response is sent:

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 252

<Decrypted contents of Encrypted Value>

	Working Draft
	Delegated Access Control (DAC) Extension
	Overview

	Modifications to the CDMI 1.1 spec:
	1) In Clause 2, add reference to the following RFCs:
	2) In Clause 3, add the following terms:
	3) In Clause 12.1.1, add new rows at end of table "Table 100 - System-Wide Capabilities".
	4) In Clause 16.3, add new row at end of table "Table 118 – Storage System Metadata".
	5) Add new clause 24, "Access Control"
	24.1 Overview
	24.2 Delegated Access Control (DAC)
	24.3 Delegated Access Control Message Exchange
	24.4 Client Header Passthrough
	24.5 DAC Request
	24.6 DAC Response
	24.7 Error Handling
	24.8 Examples
	24.8.1 GET ciphertext of encrypted object with delegated access control
	24.8.2 GET ciphertext of encrypted object with passthrough key access
	24.8.3 GET plaintext of encrypted object with delegated access control

