

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Compute, Memory and Storage: Optimized Configurations for a New Era of Workloads

Presented by David McIntyre Director, Product Planning Samsung

In the Era of AI & ML

Swift increase in demand for memory capacity and performance

(1) Balancing Application-Driven Resources

Memory Hierarchy

Keep hot data close to CPU using data locality

Memory Hierarchy Disparity for Modern Workloads

Not all workloads exhibit the conventional pattern of data locality

New Memory Hierarchy

Deeper and more efficient memory hierarchy to fill the performance gap

+ STORAGE SUMMIT

Data-Centric Computing Concept

Move the computation to the data for large datasets

Data-Centric Computing

Data-Centric Computing Concept

Move the computation to the data for large datasets

Data-Centric Computing Benefits

Power-optimized scalable processing for large data

Challenges in Data-Centric Computing

CXL[™] 1.0/CXL 1.1 Usage Models

CXL[™] 2.0: Resource Pooling at Rack Level, Persistent Memory

- Resource pooling/disaggregation
 - Managed hot-plug flows to move resources
 - Type-1/Type-2 device assigned to one host
 - Type-3 device (memory) pooling at rack level
 - Direct load-store, low-latency access similar to memory attached in a neighboring CPU socket (vs. RDMA over network)
- Persistence flows for persistent memory
- Fabric Manager/API for managing resources
- Security: authentication, encryption
- Beyond node to rack-level connectivity!

Disaggregated system with CXL optimizes resource utilization delivering lower TCO and power efficiency

CXL 3.0 supports Heterogeneous Compute

CXL 3.0: FABRICS EXAMPLE USE CASE

CXL[™] : Targeting Usage Models

SAMSUNG

CXL Memory Device Types

(2) Blending Application-Driven Resources

Summary

CXL is the enabling foundation for:

- Application-oriented memory topologies
- Data-centric Computing
- Heterogeneous Compute

Challenges to exploit CXL-based architectures

- Architectures that address CXL latencies by coupling to the application layer
- Open source accelerator programming frameworks
- Data-centric and heterogeneous computing adoption
- Workload validation and support

Support the End Market: Become One With Our Application Developers

COMPUTE + MEMORY

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Please take a moment to rate this session.

Your feedback is important to us.