COMPUTE + MEMORY S + STORAGE SUMMIT

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

Universal Chiplet Interconnect ExpressTM (UCleTM): On-Package Innovation Slot for Compute, Memory, and Storage Applications

Presented by

Dr. Debendra Das Sharma, Intel Senior Fellow Chair of UCIe Consortium

Agenda

- Interconnects in Compute Landscape
- UCIe: An Open Standard for Chiplets for innovations in Compute, Memory, and Storage Applications
- Future Directions and Conclusions

Explosion of data enabling data-centric revolution

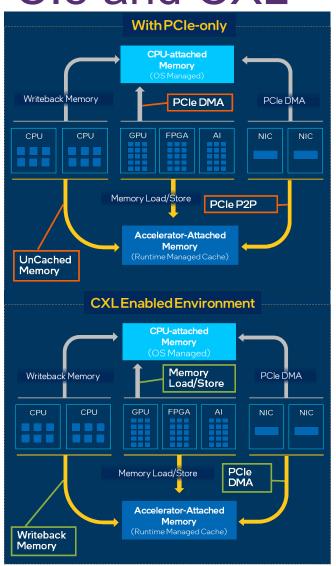
Drivers: Cloud, 5G, sensors, automotive, IoT, etc.. Large data sets with aggressive time to insight goals! Scaling challenges: Latency, Bandwidth, Capacity all important!

Move faster, Store more, Process everything seamlessly, efficiently, and securely

✓ COMPUTE + MEMORY

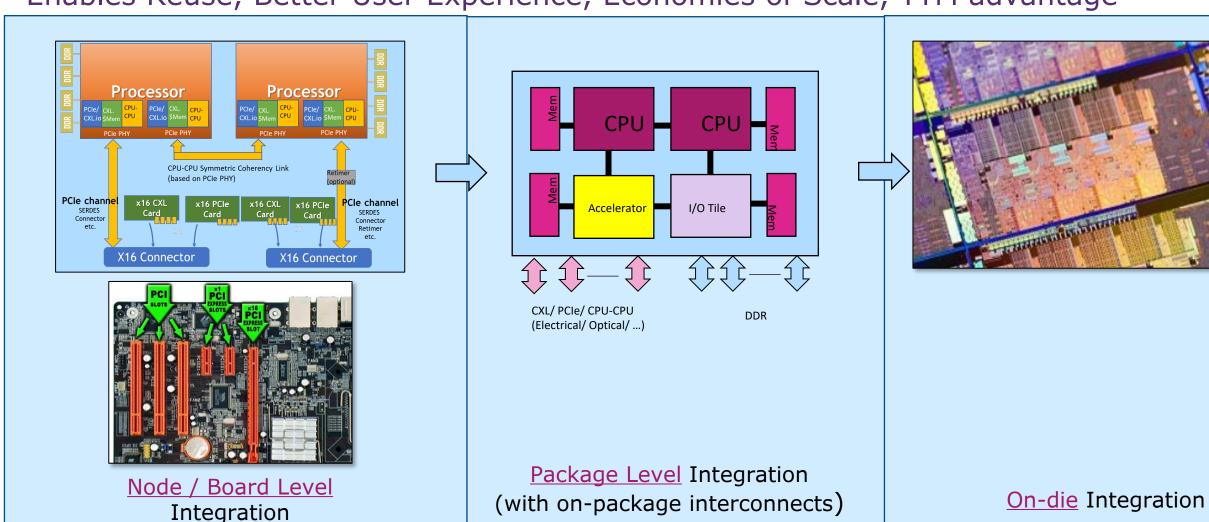
Compute Landscape and Interconnects

Category	Type and Scale	Data Rate/ Characteristics	PHY Latency (Tx + Rx)	Wireless
Latency Tolerant (Narrow, very high speed)	Networking / Fabric for Data Center Scale	56/ 112 GT/s-> 224 GT/s (PAM4) 4-8 Lanes, cables/ backplane	20+ ns (+ >100 FEC)	interconnect Router Inter DC tinks Core/Edge Network Spine Switch
Latency Sensitive (Wide, high speed)	Load-Store I/O Arch. Ordering (PCIe/ CXL / SMP cache coherency – PCIe PHY) Node (-> Rack)	32 GT/s (NRZ) -> PCIe Gen6 64 GT/s (PAM4) Hundreds of Lanes Power, Cost, Si-Area, Backwards Compatible, Latency, On-board -> cables/ backplanes	<10ns (Tx+ Rx: PHY- PIPE) 0-1ns FEC overhead	Data center interconnect Rack Rack Rack Rack Rack Rack UPI Leaf Switch CXL 2/3
Latency Sensitive (super-wide, high speed)	Load-Store and proprietary	4 G – 32G (single-ended, NRZ) 2D, 2.5D (-> 3D) Thousands of Lanes Ultra low power, ultra low latency High b/w density	<2ns (PHY – Transaction Layer)	Processor interconnect PCIe CXL UIO: UPI, PCIe, CXL UCIe SoC interconnect PIPE, LPIF, CPI,UFI


Load-Store I/O: From Package/ Node to Rack / Pod

On-Package

Off-Package Load-Store Interconnects: PCIe and CXL


- With PCIe: (900+ member companies)
 - Memory Connected to CPU Cacheable
 - Memory Connected to PCIe device is Uncacheable
 - Different Ordering rules across I/O vs coherency domains
 - Ubiquitous I/O for compute continuum
- With CXL: (~200 member companies)
 - Caching and memory protocols on top of PCIe
 - Device can cache memory
 - Memory attached to device is cacheable
 - Leverages PCIe infrastructure
- PCle and CXL very successful industry standards:
 - Multi-generational, backward compatible, IP/ tools
 - Compliance program with plug-and-play

On-Package Interconnects should leverage PCIe/CXL infrastructure for standardization and Load-Store Usages.. Need to seamlessly move functionality from node to package to die level

Design Choice: Seamless Integration from Node → Package → On-die

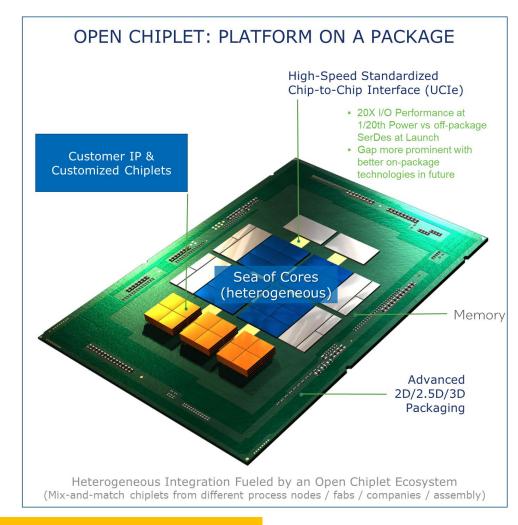
Enables Reuse, Better User Experience, Economies of Scale, TTM advantage

Architectures, Solutions, and Community VIRTUAL EVENT, APRIL 11-12, 2023

UCIe: An Open Standard for Chiplets for innovations in Compute, Memory, and Storage Applications: Open Ecosystem, Best Power/ Performance/ Cost metrics, Ubiquitous, Continuous innovation with backward compatibility

Moore Predicted "Day of Reckoning"

"It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected¹."


Gordon E. Moore

1: "Cramming more components onto integrated circuits", Electronics, Volume 38, Number 8, April 19, 1965

Motivation for UCIe

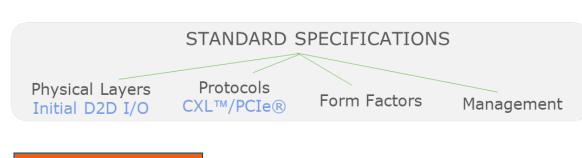
- Enables SoC construction that exceeds maximum reticle size
 - Package becomes new System-on-a-Chip (SoC) with same dies (Scale Up)
- Reduces time-to-solution (e.g., enables die reuse)
- Lowers portfolio cost (product & project)
 - Enables optimal process technologies
 - Smaller (better yield)
 - Reduces IP porting costs
 - Lowers product SKU cost
- Enables a customizable, standard-based product for specific use cases (bespoke solutions)
- Scales innovation (manufacturing/ process locked IPs)

Align the industry around an open platform to enable chiplet based solutions

UCIe: Key Metrics and Adoption Criteria

Key Performance Indicators

- Bandwidth density (linear & area)
 - Data Rate & Bump Pitch
- Energy Efficiency (pJ/b)
 - Scalable energy consumption
 - Low idle power (entry/exit time)
- Latency (end-to-end: Tx+Rx)
- Channel Reach
 - Technology, frequency, & BER
- Reliability & Availability
- Cost: Standard vs advanced packaging


Factors Affecting Wide Adoption

- Interoperability
 - •Full-stack, plug-and-play with existing s/w
 - Different usages/segments ubiquity
- Technology
 - •Across process nodes & packaging options
 - Power delivery & cooling
 - •Repair strategy (yield improvement)
 - Debug controllability & observability
- Broad industry support / Open ecosystem
 - Learnings from other standards efforts

UCIe is architected and specified from the ground-up to deliver the best KPIs while meeting wide adoption criteria

Jumpstarting UCle

- Focus of UCIe 1.0 Specification
 - Physical Layer: Die-to-Die I/O with industry-leading KPIs
 - Protocol: CXL[™]/PCIe® for near term volume attach
 - SoC construction issues are addressed since CXL/PCIe is a board-to-board interface
 - CXL/PCIe addresses common use cases
 - I/O attach with PCIe/CXL.io
 - Memory use cases: CXL.mem
 - Accelerator use cases: CXL.cache
 - Well defined specification: ensure interoperability and future evolution

PROTOCOL LAYER

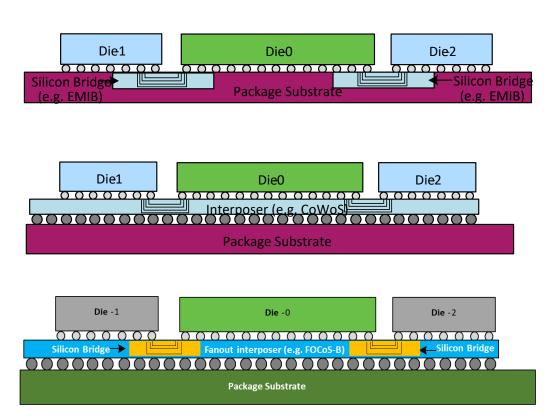
DIE-TO-DIE ADAPTER

ARB/MUX (when applicable) CRC/RETRY (when applicable) LINK STATE MANAGEMENT PARAMETER NEGOTIATION

PHYSICAL LAYER

LINK TRAINING
LANE REPAIR (when applicable)
LANE REVERSAL (when applicable)
SCRAMBLING/DE-SCRAMBLING (opt-in)
SIDEBAND TRAINING & TRANSFERS
ANALOG FRONT END
CLOCK FORWARD

UCIe 1.0: Supports Standard and Advanced Packages

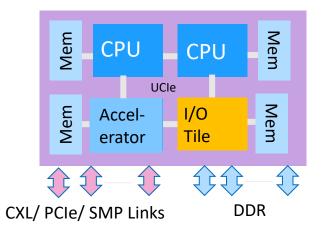


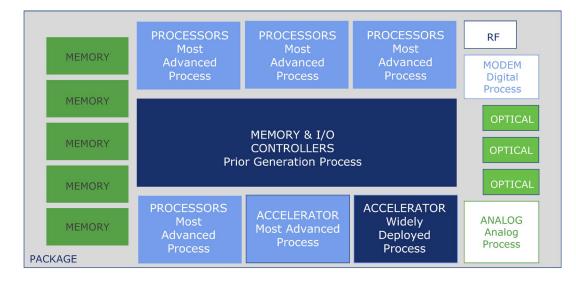
(Standard Package)

Standard Package: 2D – cost effective, longer distance

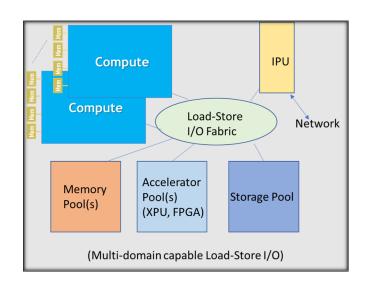
Advanced Package: 2.5D – power-efficient, high bandwidth density

Dies can be manufactured anywhere and assembled anywhere – can mix 2D and 2.5D in same package – Flexibility for SoC designer

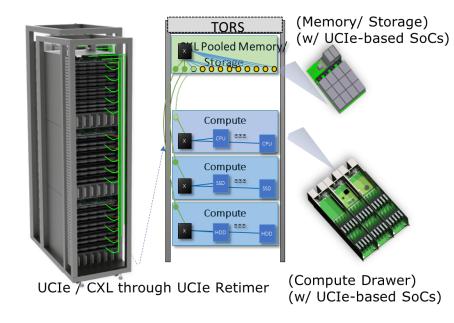



(Multiple Advanced Package Options)

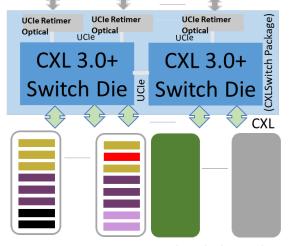
One UCIe 1.0 Spec covers both type of packaging options


UCIe Usage Model: SoC at Package Level

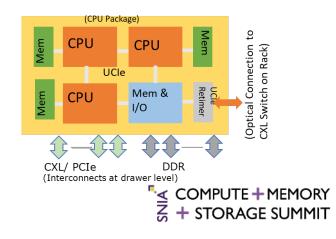
- SoC as a Package level construct
 - Standard and/ or Advanced package
 - Homogeneous and/or heterogeneous chiplets
 - Mix and match chiplets from multiple suppliers
- Across segments: Hand-held, Client, Server,
 Workstation, Comms, HPC, etc
 - Similar to PCIe/ CXL at board level



UCIe Usage: Off-package connectivity w/ Retimers



(Use Case: Load-Store I/O (CXL) as the fabric across the Pod providing low-latency and high bandwidth resource pooling/ sharing as well as message passing)


Provision to extend off-package with UCIe Retimers connecting to other media (e.g., optics)

(Optical connections: Intra-Rack and Pod)

(Pooled/ Shared Memory) (Pooled Accelerator)

(Switch dies connected through UCIe PHY + Adapter Running a proprietary switch internal protocol)

UCIe 1.0: Characteristics and Key Metrics

CHARACTERISTICS	STANDARD PACKAGE	ADVANCED PACKAGE	COMMENTS
Data Rate (GT/s)	4, 8, 12, 16, 24, 32		Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device)
Width (each cluster)	16	64	Width degradation in Standard, spare lanes in Advanced
Bump Pitch (um)	100 – 130	25 - 55	Interoperate across bump pitches in each package type across nodes
Channel Reach (mm)	<= 25	<=2	

KPIs / TARGET FOR KEY METRICS	STANDARD PACKAGE	ADVANCED PACKAGE	COMMENTS	
B/W Shoreline (GB/s/mm)	28 - 224	165 – 1317	Conservatively estimated: AP: 45u; Standard: 110u; Proportionate	
B/W Density (GB/s/mm²)	22-125	188-1350	data rate (4G – 32G)	
Power Efficiency target (pJ/b)	0.5	0.25		
Low-power entry/exit latency	0.5ns <=16G, 0.5-1ns >=24G		Power savings estimated at >= 85%	
Latency (Tx + Rx)	< 2ns		Includes D2D Adapter and PHY (FDI to bump and back)	
Reliability (FIT)	0 < FIT (Failure In Time) << 1		FIT: #failures in a billion hours (expecting ~1E-10) w/ UCIe Flit Mode	

UCIe 1.0 delivers the best KPIs while meeting the projected needs for the next 5-6 years across the compute continuum.

"

✓ COMPUTE + MEMORY

✓ + STORAGE SUMMIT

Future Directions and Conclusions

- UCIe Consortium is incorporated with board elections in June 2022 adding two board members
- UCIe is an open industry standard that establishes an open chiplet ecosystem and ubiquitous interconnect at the package level.
 - Tremendous support across the industry with several companies announcing IP/VIP availability
 - Poised to be the interconnect of SoCs the same way PCIe and CXL are at the board level
 - UCIe 1.0 Specification is available to the public https://www.uciexpress.org/specification
- UCIe Consortium welcomes interested companies and institutions to join the organization at the Contributor or Adopter level.
- 5 Technical Working Groups (Electrical, Protocol, Form Factor/Compliance, Manageability / Security, Systems and Software) and Marketing Working Group driving the technology forward
 - Plenty of innovations happening in the consortium
- Join us if you have not done so! Learn more by visiting www.UCIexpress.org

Please take a moment to rate this session.

Your feedback is important to us.