
Information Management – Extensible
Access Method (XAM) – Part 3: Java API

Version 1.01

“This document has been released and approved by the SNIA. The SNIA
believes that the ideas, methodologies, and technologies described in this
document accurately represent the SNIA goals and are appropriate for
widespread distribution. Suggestion for revision should be directed to the
SNIA Technical Council Managing Director at tcmd@snia.org.”

TECHNICAL POSITION

June 19, 2009

© SNIA

ii TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

Revision History

The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

• Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

• Any document, printed or electronic, in which material from this document (or any portion hereof)
is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any
excerpt or this entire document, or distribute this document to third parties. All rights not explicitly granted
are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing tcmd@snia.org please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

Copyright © 2009 Storage Networking Industry Association.

Version Date Originator Sections Comments

1.0 7/9/08 M. McMinn All Released and approved by SNIA membership on June
23; changed to Technical Position document.

1.01 6/19/09 M. McMinn All Incorporated errata from SNIA XAM v1 JavaSpec -
Errata draft v19.doc.; added Acknowledgements to the
Foreword.

© SNIA
Contents

Foreword ...x
Introduction... xi

1 Scope ...1

2 Normative References..2

3 Terms and Conventions...3
3.1 Terms ...3
3.2 Conventions ...3

4 Java API Overview..4
4.1 Basic XAM concepts ..4
4.2 The XAM programming model ...5

4.2.1 The XAM Library object ...5
4.2.2 An XSystem...5

4.2.2.1 Authentication of XSystem instances..6
4.2.3 An XSet ...6
4.2.4 Fields (properties and XStreams)..6

4.2.4.1 Type and length attributes – properties vs. XStreams6
4.2.4.2 Binding attribute vs. readonly attribute..7

4.2.5 The XAsync ...7
4.2.6 The XIterator ...8
4.2.7 XAM status ..8
4.2.8 The method hierarchy ...8

4.3 The XAM object interfaces ...10
4.3.1 org.snia.xam.XAMLibrary ..12
4.3.2 org.snia.xam.XSystem ..12
4.3.3 org.snia.xam.XSet ...12
4.3.4 org.snia.xam.FieldContainer ...12
4.3.5 org.snia.xam.XStream...12
4.3.6 org.snia.xam.XAsync...12
4.3.7 org.snia.xam.XASyncListener ...13
4.3.8 org.snia.xam.XIterator ...13
4.3.9 org.snia.xam.XAMException ...13
4.3.10 org.snia.xam.vim.VIM..13

4.4 VIM implementation models ...13
4.4.1 Java VIMs..14
4.4.2 Non-Java VIMs..15
4.4.3 VIM Initialization ..15

4.5 Using the XAM API – abstract samples ...15
4.5.1 Write an XSet ..15
4.5.2 Read an XSet ..16
4.5.3 Query for data with the string literal...16

5 Public Java API Reference...18
5.1 Design goals...18
5.2 Supporting data types ..18

5.2.1 stypes ..18
5.2.2 XAM status type ..19
5.2.3 XOPID ...20
5.2.4 Callbacks ..20

5.3 Methods..20
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION iii

© SNIA
5.3.1 XAM Library methods..20
5.3.1.1 connect..20

5.3.2 XSystem methods ...21
5.3.2.1 XSystem connect ..21
5.3.2.2 authenticate...21
5.3.2.3 authenticate...22
5.3.2.4 close..23
5.3.2.5 abandon ..23
5.3.2.6 deleteXSet...23
5.3.2.7 isXSetRetained ...24
5.3.2.8 holdXSet..25
5.3.2.9 releaseXSet...25
5.3.2.10 accessXSet ...26
5.3.2.11 getXSetAccessTime..27
5.3.2.12 createXSet ..27
5.3.2.13 openXSet ..28
5.3.2.14 copyXSet...29
5.3.2.15 asyncOpenXSet ..29
5.3.2.16 asyncCopyXSet...30
5.3.2.17 createXUID..31
5.3.2.18 createXUID..32

5.3.3 XSet methods..32
5.3.3.1 applyAccessPolicy ..32
5.3.3.2 resetAccessFields ...33
5.3.3.3 applyManagementPolicy ...33
5.3.3.4 resetManagementFields..34
5.3.3.5 createRetention...34
5.3.3.6 setRetentionEnabledFlag..35
5.3.3.7 applyRetentionEnabledPolicy ...36
5.3.3.8 setRetentionDuration ..37
5.3.3.9 applyRetentionDurationPolicy ...38
5.3.3.10 setRetentionStarttime..39
5.3.3.11 setBaseRetention..39
5.3.3.12 applyBaseRetentionPolicy ..40
5.3.3.13 setAutoDelete..41
5.3.3.14 applyAutoDeletePolicy ..42
5.3.3.15 setShred..42
5.3.3.16 applyShredPolicy ..43
5.3.3.17 applyStoragePolicy ...44
5.3.3.18 getActualRetentionDuration ..44
5.3.3.19 getActualRetentionEnabled...45
5.3.3.20 getActualAutoDelete ...45
5.3.3.21 getActualShred..46
5.3.3.22 commit...47
5.3.3.23 close..47
5.3.3.24 abandon ..48
5.3.3.25 submitJob..48
5.3.3.26 haltJob...49
5.3.3.27 openExportXStream..49
5.3.3.28 openImportXStream ..50
5.3.3.29 asyncCommit ..50

5.3.4 Field container methods ..51
5.3.4.1 openFieldIterator ...51
5.3.4.2 containsField ...52
5.3.4.3 createProperty - xam_boolean..52
iv TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
5.3.4.4 createProperty - xam_int ...53
5.3.4.5 createProperty - xam_double..54
5.3.4.6 createProperty - xam_xuid ..55
5.3.4.7 createProperty - xam_string..55
5.3.4.8 createProperty - xam_datetime...56
5.3.4.9 setProperty - xam_boolean ...57
5.3.4.10 setProperty - xam_datetime ..58
5.3.4.11 setProperty - xam_double ...59
5.3.4.12 setProperty - xam_int ..59
5.3.4.13 setProperty - xam_string ...60
5.3.4.14 setProperty - xam_xuid ...61
5.3.4.15 getBoolean - xam_boolean ...61
5.3.4.16 getDatetime - xam_datetime ...62
5.3.4.17 getDouble - xam_double ...63
5.3.4.18 getLong - xam_int ...63
5.3.4.19 getString - xam_string ...64
5.3.4.20 getXUID - xam_xuid ..65
5.3.4.21 createXStream ..65
5.3.4.22 openXStream ..66
5.3.4.23 getFieldType ...67
5.3.4.24 getFieldLength ..68
5.3.4.25 getFieldBinding ...68
5.3.4.26 getFieldReadOnly ...69
5.3.4.27 setFieldAsBinding ...70
5.3.4.28 setFieldAsNonbinding ...70
5.3.4.29 deleteField...71
5.3.4.30 asyncOpenXStream ..72

5.3.5 XStream methods..73
5.3.5.1 tell..73
5.3.5.2 seek...73
5.3.5.3 write...74
5.3.5.4 write...74
5.3.5.5 write...75
5.3.5.6 read ...76
5.3.5.7 read ...77
5.3.5.8 read ...77
5.3.5.9 close..78
5.3.5.10 abandon ..78
5.3.5.11 asyncRead ..79
5.3.5.12 asyncWrite ..80
5.3.5.13 asyncClose..81

5.3.6 XAsync methods ...81
5.3.6.1 halt ..81
5.3.6.2 isComplete ..82
5.3.6.3 getXOPID ..82
5.3.6.4 getStatus ...82
5.3.6.5 getXSet ...83
5.3.6.6 getXStream ...83
5.3.6.7 getXUID...84
5.3.6.8 getBytesWritten...84
5.3.6.9 getBytesRead..84
5.3.6.10 close..85
5.3.6.11 XAsyncCallback ..85

5.3.7 XUID methods ...85
5.3.7.1 toBytes ..86
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION v

© SNIA
5.3.7.2 toString..86
5.3.7.3 equals..86

5.3.8 XIterator methods..86
5.3.8.1 next ...86
5.3.8.2 hasNext ...87
5.3.8.3 remove ..87
5.3.8.4 close..87

5.3.9 XAM exceptions ..87
5.3.9.1 XAMException - Constructor...88
5.3.9.2 XAMException - Constructor...88
5.3.9.3 XAMException - Constructor...88
5.3.9.4 XAMException - Constructor...88
5.3.9.5 XAMException - Constructor...88
5.3.9.6 XAMException - Constructor...89
5.3.9.7 getStatusCode ..89
5.3.9.8 getMessage...89

5.3.10 XAM Specific Exception Classes ..89
5.4 Interface constant fields ...92

5.4.1 org.snia.xam.XAMLibrary Fields ...92
5.4.2 org.snia.xam.XSystem Fields..94
5.4.3 org.snia.xam.XSet Fields ..96
5.4.4 org.snia.xam.XStream Constants..99

6 Private (VIM) Java API Reference..100
6.1 VIM methods ..100

6.1.1 XSystem createXSystem...100

Annex A
(normative)
Public Interfaces .. 101
A.1 XAMLibrary.java ...101
A.2 XSystem.java ...102
A.3 XSet.java ..106
A.4 FieldContainer.java ..112
A.5 XStream.java..116
A.6 XAsync.java..118
A.7 XASyncListener.java ..119
A.8 XUID.java ...119
A.9 XIterator.java ..120

Annex B
(normative)
VIM Interface .. 121

Annex C
(normative)
Java-Specific Toolkit ... 122
C.1 Extended FieldContainer..122

C.1.1 createProperty ..123
C.1.2 setProperty ...124
C.1.3 getProperty ...125
C.1.4 fieldIsProperty...125
C.1.5 fieldIsXStream ..126

C.2 XUID...126
vi TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
C.2.1 XUID Constructor ...127
C.2.2 XUID Constructor ...127
C.2.3 toBytes..127
C.2.4 toString ...127
C.2.5 equals ...128

C.3 Java Input Stream ..128
C.3.1 XStreamInputStream ..129
C.3.2 XStreamInputStream ..130
C.3.3 close ...130
C.3.4 markSupported ...130
C.3.5 available ...131
C.3.6 read ..131
C.3.7 read ..131
C.3.8 read ..132

C.4 Java Output Stream ...133
C.4.1 XStreamOutputStream..134
C.4.2 XStreamInputStream ..135
C.4.3 close ...136
C.4.4 flush ..136
C.4.5 write ..136
C.4.6 write ..136
C.4.7 write ..137

Annex D
(informative)
Java API Method Mapping .. 138
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION vii

© SNIA

viii TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

Figures

Figure 1 – XAM architecture ..5
Figure 2 – XAM API method hierarchy ..9
Figure 3 – XAM API field methods (includes properties and XStreams) ...10
Figure 4 – UML description of XAM interfaces ..11
Figure 5 – Application interaction with pure Java VIM ...14
Figure 6 – VIM Initialization ...15
Figure 7 – XAM status type diagram ...19

© SNIA

XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION ix

Tables

Table 1 – Field stypes (a.k.a. simple types) ..7
Table 2 – Java XAM interfaces ..10
Table 3 – Exceptions that extend XAMException ..89
Table 4 – Exceptions that extend FieldContainerException ..90
Table 5 – Exceptions that extend JobException ..91
Table 6 – Exceptions that extend XSetException ..91
Table 7 – Exceptions that extend XStreamException ...92
Table 8 – Exceptions that extend XSystemException ...92
Table 9 – XAMLibrary Constants ...92
Table 10 – XSystem constants ..94
Table 11 – XSet Constants ..96
Table 12 – XStream Constants ...99
Table D.1 – Java Method Name Mapping to XAM Architecture Specification ...138

© SNIA

XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION xi

Introduction

Purpose and Audience

This document forms part of the XAM Software Development Kit (SDK). It is a complete reference
document for Java application development using the XAM API. It is intended for experienced
programmers, for those developing applications that interface with storage systems which support the
XAM API, and for those developing components of the XAM Library itself.

For an overview of the SNIA XAM, refer to the Business Overview chapter in the [XAM-ARCH].

Organization

The chapter contents of this document are described as follows:

Chapter Contents

Chapter 1, “Scope” Defines the subject of the document and the aspects covered.

Chapter 2, “Normative References” Lists the referenced documents that are indispensable for
the application of this document.

Chapter 3, “Terms and Conventions” Defines the terms and conventions used in this document.

Chapter 4, “Java API Overview” Contains an overview of the Java API.

Chapter 5, “Public Java API Reference” Contains a reference guide to the public Java API for applications.

Chapter 6, “Private (VIM) Java API
Reference”

Contains a reference guide to the private Java API for the VIMs.

Annex A, “(normative) Public Interfaces” Contains the Java code for implementing the methods described in
Chapter 5, “Public Java API Reference”.

Annex B, “(normative) VIM Interface” Provides a series of methods allowing the XAM Library to
communicate to VIMs.

Annex C, “(normative) Java-Specific Toolkit” Defines toolkit functions that will extend the XAM Java API to make
it easier to use with Java run-time systems.

Annex D, “(informative) Java API Method
Mapping”

Lists the methods in [XAM-ARCH] and the corresponding
method name for the Java binding.

Scope © SNIA

1 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

1 Scope
This part of the XAM standard specifies the syntax of the Java application programming interface (Java
API). This document also specifies how a Java-based XAM Library is to map Java VIM API calls to
C-based VIM implementations, and vice versa. It applies to programmers who are generating XAM
applications in the Java programming language. It also applies to storage system vendors who are
creating vendor interface modules (VIMs) in the Java programming language.

This document does not normatively specify the semantics of the interfaces; the specification of the
semantics in the XAM standard is contained in the XAM Architecture Specification [XAM-ARCH]. Any
semantics described in this document are intended to be informative and to simplify the understanding of
the interfaces described herein.

© SNIA

x TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

Foreword

Parts of this Standard

This standard is subdivided in the following parts:

• Information Management – Extensible Access Method (XAM) – Part 1: Architecture

• Information Management – Extensible Access Method (XAM) – Part 2: C API

• Information Management – Extensible Access Method (XAM) – Part 3: Java API

SNIA Web Site

Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent to the Storage Networking Industry Association, 500 Sansome Street, Suite #504,
San Francisco, CA 94111, U.S.A.

Acknowledgements

The SNIA FCAS (Fixed Content Aware Storage) Technical Working Group, which developed this standard,
would like to recognize the significant contributions made by the following members:

Alan Yoder, Aloke Guha, Avishai Hochberg, Ben Isherwood, Cristian Teodorescu, David Black, David Slik,
David Sobeck, Drew McDaniel, Jered Floyd, James Pinkerton, Jim Carlson, Kalman Meth, Kristina Tripp,
Lance Evans, Leeat Ramati, Mark Carlson, Michael Allison, Michael Kilian, Mike Horgan, Nick Maliwacki,
Paul Monday, Peter Cudhea, Rich Ramos, Sacha Arnoud, Scott Ostapovicz, Steve Quinn, Steve Vernon,
Toby Marek, Wayne Hineman, and Zoran Cakeljic.

© SNIA Normative References

XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 2

2 Normative References
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

[IANA-SASL] “Simple Authentication and Security Layer (SASL) Mechanisms”
http://www.iana.org/assignments/sasl-mechanisms

[JAVA-SASL] “The Java SASL API Implementation and Deployment Guide”, Sun.com

[XAM-ARCH] “Information Management - Extensible Access Method (XAM) - Part 1: Architecture”, SNIA
draft specification.

[XAM-C-API] “Information Management - Extensible Access Method (XAM) - Part 2: C API”, SNIA draft
specification.

Terms and Conventions © SNIA

3 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

3 Terms and Conventions

3.1 Terms
For the purposes of this document, the definitions in the [XAM-ARCH] apply.

3.2 Conventions
Typographical conventions used in this document include the following:

Convention Description

Note: Contains additional or useful informative text.

CAUTION:
Indicates that you should pay careful attention to the probable action, so that you may
avoid system failure or harm.

Fixed-width text Indicates text that you enter at a keyboard or text that is displayed on an output device,
such as a screen. This convention is most commonly used for command syntax and
examples.

Italicized text Indicates a property or field name, i.e., .xset.xuid.

© SNIA Java API Overview
4 Java API Overview

4.1 Basic XAM concepts
As an interface, XAM abstracts access methods from storage and provides a globally flat namespace. This
interface supports the mobility of information, independent from storage, to allow longevity, distribution,
and management of information. The XAM interface is intended to achieve interoperability, storage
transparency, and automation for Information Lifecycle Management-based practices, long-term records
retention, and information assurance (security).

The primary design goals behind the XAM interface are as follows:

• Provide a generic interface for applications: XAM interface methods have the same syntax and
semantics without regard to the underlying storage. No methods were created that “lock-in” an
application to a specific storage system; in fact, the systems themselves should be semantically
indistinguishable when viewed from the XAM API.

• Minimal yet complete: there was a desire to keep the interface as simple and small (e.g., have as
few API methods as possible, and keep these methods easy to use and understand), yet at the
same time, make sure that the methods make all forms of data manipulation possible. If
functionality could have been achieved by composing other methods (in a way that sufficiently
ensures performance and scalabilty), then a new method was not created for that function.

• Expose no implementation detail: the interface does not expose any internal functionality which
would serve to place restrictions on storage system vendors.

XAM consists of a set of libraries. The ‘topmost’ library will contain the public XAM interfaces; thus, only
the topmost library will be used by applications that wish to integrate with the XAM API. However,
extension libraries may also be provided that implement higher levels of functionality (e.g., placing an
export method, an import method, and a delete method in series to create a ‘move’ function). When such
libraries are provided, applications may wish to use these libraries as well.

The actual implementation of the interfaces will be in the VIMs (Vendor Interface Modules). A XAM Library
may utilize one or more VIMs. The implementation details of the VIMs themselves are beyond the scope of
this document. The XAM API programmer should view the VIM as an internal implementation detail and
avoid coding with specific VIMs in mind, if portable code is the goal. For more detailed information on the
architecture of XAM, please see [XAM-ARCH].
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 4

Java API Overview © SNIA
The architecture of the XAM SDK is briefly illustrated in Figure 1, “XAM architecture”:

4.2 The XAM programming model
The XAM interface programming model supports a hierarchy of class constructs in a containment/
aggregation organization.The top level contains the singleton XAM object itself. Below (inside) the XAM
object is one or more XSystems. Finally, each XSystem can contain XSets. Note that all of these object
classes contain fields, and these fields are accessed in the same way without regard to the class of object
that contains the field.

4.2.1 The XAM Library object

Pronunciation zam: The XAM object is the top level class for the XAM API library.

• It contains methods to get fields that describe the configuration of the XAM system.

• It contains methods to set fields that control the configuration of the XAM system.

• It acts as a factory for XSystems.

4.2.2 An XSystem

Pronunciation ‘ek-sis-tm: An XSystem is the class that abstracts the connection between the application
and storage system.

• It encapsulates any resource management associated with the connection.

• It contains those methods used to authenticate operations.

Figure 1 – XAM architecture

Application

XAM interface

XAM Library

Exension interface
Exension library

Reference
VIM library

VIM

Vendor VIM
library 2

VIM

Vendor VIM
library 1

VIM

Vendor VIM
library ‘N’

VIM

File System Storage
System 1

Storage
System 2

Storage
System ‘N’...
5 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Java API Overview
• It acts as a virtual storage system, partitioning content.

• It is a factory for creating XSystem instances.

In this document, we will refer to an XSystem as a single storage unit. Applications can only perform
XSystem functions when an XSystem is open; otherwise, run-time errors will be generated.

4.2.2.1 Authentication of XSystem instances
An XSystem instance must be authenticated in order to be useable. As defined in the XAM Architecture
Specification, authentication is initiated using the SASL protocol. Client application authors and Storage
VIM authors may find the java.sasl package to be useful [JAVA-SASL].

Any method executed on any XAM object can potentially throw the non-fatal error
org.snia.xam.AuthenticationExpiredException. While this exception does not result in a corrupt object, the
method must be re-executed in order to affect the XAM object. Applications are encouraged to understand
the authentication expiration cycle and take proactive steps to maintain authentication. See Chapter 11 of
the XAM Architecture Specification [XAM-ARCH].

4.2.3 An XSet

Pronunciation ‘ek-set: An XSet is the class that contains application data and metadata.

• The XSet is assigned a globally unique identifier when stored. This globally unique identifier is
called a XUID (pronounced ‘zoo-id), which stands for XSet Unique Identifier.

• Data and metadata (content) stored in the XSet is marked as binding or nonbinding. A contract
exists between the binding content of the XSet and XUID, such that if any data or metadata in the
XSet changes, the identifier will become invalid (or more precisely, a new XSet will be created with
a new XUID). Nonbinding content can be changed with no effect on the XUID.

4.2.4 Fields (properties and XStreams)

Pronunciation feeld: A field is the construct where XSets, XSystems, and XAM objects store actual data
and metadata. Fields have a number of attributes, which are listed below:

• Fields have names: Field names are assigned by the creator of the field and are unique within the
container’s scope.

• Fields have types: Field types are assigned by the creator of the field.

• Fields have values: These values can be changed, but the semantics of what happens to an XSet
that contains a field depends on the binding nature of the field.

• Fields have lengths: These lengths are derived from the type and value assigned to the field but
cannot be directly set by the application.

• Fields can be binding or nonbinding: This attribute is assigned by the application. Note that only
fields on XSets can be marked as binding.

• Fields can be read/write or readonly: These attributes are controlled by XAM and cannot be set by
the application.

4.2.4.1 Type and length attributes – properties vs. XStreams
Field types are identified using MIME types. XAM defines some primitive or “simple” MIME types (stypes),
which include xam_boolean, xam_int, xam_double, xam_string, xam_datetime, and xuid types. The
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 6

Java API Overview © SNIA
associated MIME types are, respectively; “application/vnd.snia.xam.boolean”, “application/
vnd.snia.xam.int”, “application/vnd.snia.xam.double”, “application/vnd.snia.xam.string”, “application/
vnd.snia.xam.datetime”, and application/vnd.snia.xam.xuid”. These types all have fixed sizes (even the
string type). Fields that have one of these MIME types are referred to as properties. Note that when setting
the value of a property, the XAM API will validate that the value is of the correct type (e.g., for XUID
property fields, that the value actually contains a properly formatted XUID). The mapping between field
type and field length is described in Table 1, “Field stypes (a.k.a. simple types)”:

Other MIME types are also legal. In fact, any MIME type is acceptable. Fields with other MIME types (e.g.,
non-stypes) are referred to as XStreams. For XStream fields, the associated length is the number of bytes
in the value. Unlike properties, XStreams are not validated. The application programmer is expected to
validate that the specified value is of the specified MIME type.

4.2.4.2 Binding attribute vs. readonly attribute
Finally, we have the attributes binding and readonly. While these may seem related, they are, in fact,
significantly different. To use the XAM API, you must understand the differences between these two field
attributes.

Binding fields are those fields whose values participate in the contract of the XSet, binding the name of the
XSet to the data of the XSet. Thus, if a field whose binding attribute is set to TRUE is changed, it is said
that a new XSet has been created and on storing (committing) the XSet, a new XUID will be generated.
The original XSet (and its requisite XUID) will be unchanged. Fields whose binding attribute is set to
FALSE (nonbinding) can be changed without affecting the XSet/XUID contract. Thus, if an XSet only has
nonbinding fields changed, the XUID will be unchanged when the modified XSet is committed. Because
only XSets (not XSystems or XAM objects) can be committed, this field attribute can only be set on XSet
fields. The binding attribute can be set by applications.

The readonly attribute controls if the application is allowed to edit a field at all. A field with the readonly
attribute set to TRUE will generate a run-time error when any method is used to edit the field. The readonly
attribute is set by XAM; applications cannot alter the readonly attribute. Note that while having a field’s
readonly attribute set to TRUE may seem similar to setting the field’s binding attribute to TRUE, it is not. A
field may be binding and readonly, in which case, an error will occur when trying to edit the field. A field
may be binding and read/write (e.g., readonly = FALSE), in which case, the edit is allowed, but on commit
of the XSet, a new XSet with a new XUID is created, and the original XSet/XUID pair is unchanged.

4.2.5 The XAsync

Pronunciation eks-’A-sink: The XAsync is an object used to access information about an asynchronous
operation. These asynchronous operations allow applications to connect to XSystems and to read and
write XSets that are associated with the XSystem, without blocking, or losing control of, the thread that

Table 1 – Field stypes (a.k.a. simple types)

Stype MIME type Java Type Length (in bytes)

xam_boolean application/vnd.snia.xam.boolean boolean 1

xam_int application/vnd.snia.xam.int long 8

xam_double application/vnd.snia.xam.double double 8

XUID application/vnd.snia.xam.xuid org.snia.xam.XUID 9 to 80

xam_string application/vnd.snia.xam.string java.lang.String 0 to XAM_MAX_STRING

xam_datetime application/vnd.snia.xam.datetime java.util.Calendar 0 to XAM_MAX_STRING
7 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Java API Overview
invokes the method. This object is returned when an asynchronous method is called, which allows
applications to poll the status of the operations. The object is also passed as a parameter to any callbacks
associated with an asynchronous method.

Applications may use the asynchronous operations to perform potentially long duration operations, without
affecting the time-sensitive nature of their process flow. For instance, an application can provide a
maximum duration on any of the asynchronous operations by using a timer utility. If the timer expires
before the operation is complete, the application code may cancel the outstanding operation by calling the
halt method on the associated XAsync object.

4.2.6 The XIterator

Pronunciation ek-’zi-ter-a-ter: The XIterator is a field discovery class. This interface was created because
XSets, XSystems, and XAM objects can all have an arbitrary number of fields. (The maximum number of
fields on an XSet is 2^63-1; while not actually an arbitrary number, it is still a lot.) The XIterator:

• Allows the discovery of all fields on the XSet, XSystem, or XAM object

• Takes a prefix that allows only a subset of fields to be discovered

4.2.7 XAM status

Pronunciation zam ‘sta-tus: XAM methods executed via the Java language bindings signal errors by
throwing a Java exception. Successful execution of the method does not return an explicit error code.

4.2.8 The method hierarchy

The XAM, XSystem, and XSet classes are hierarchical in nature. An application uses a XAM method to
create an XSystem instance and an XSystem instance to create an XSet instance. Different methods are
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 8

Java API Overview © SNIA
available when working at each level of the hierarchy. The hierarchical relationship between the methods
of the XAM API is illustrated in Figure 2, “XAM API method hierarchy”.

As illustrated in the hierarchy in Figure 2, field manipulation can be done at any level of the hierarchy and
on any XSet, XSystem, or XAM object. Property fields can be accessed directly. However, XStream fields
require the use of an XStream class to read and write to the field value. The XStream supports POSIX-like
semantics, and XStreams open for reading allow seeking within the XStream. In addition, the ability to
enumerate the field names of all fields on the XSet, XSystem, or XAM object is also needed at all levels of
the hierarchy.

Figure 2 – XAM API method hierarchy

XAMLibrary

XSystem

XSetXSet.<field edits>

XAMLibrary.connect

Load library

Unload library

XSet.close

XSystem.openXSet

XSystem.close

XSystem.<field edits>

XSystem.authenticate
XSystem.accessXSet
XSystem.deleteXSet
XSystem.holdXSet

XSet.submitJob
XSet.haltJob
XSet.import/export
XSet.commit

XAMLibrary.<field edits>
9 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Java API Overview
Figure 3 illustrates the relationship between these field methods:

4.3 The XAM object interfaces
[XAM-ARCH] details the behavior of XAM Storage Systems and the methods that support the storage
systems. The Java language bindings for the XAM API is implemented as a set of interfaces. Each of the
interfaces represent a XAM primary or secondary object. The XAM API itself operates with references to
these interfaces.

Figure 3 – XAM API field methods (includes properties and XStreams)

Table 2 – Java XAM interfaces

XAM Object Java Object

XAM Library org.snia.xam.XAMLibrary

XSystem org.snia.xam.XSystem

XSet org.snia.xam.XSet

- org.snia.xam.FieldContainer

XStream org.snia.xam.XStream

XAsync org.snia.xam.XAsync

xasync_callback org.snia.xam.XAsyncListener

XIterator org.snia.xam.XIterator

xam_status org.snia.xam.XAMException

- org.snia.xam.vim.VIM

XSet, XSystem,
or XAM XIterator

XStream

<GetFieldIterator>

Xiterator.Next

Xiterator.Close

XStream.Close

OpenXStream

XStream.Read
XStream.Write

<field editing>

XStream.Seek
XStream.Tell
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 10

Java API Overview © SNIA
The UML description of the XAM interfaces is shown in Figure 4. This UML shows the inheritance
relationship between the interfaces. Methods are listed, without full prototypes, to provide context to the
reader. The normative method definitions are in Chapter 5, “Public Java API Reference”.

Figure 4 – UML description of XAM interfaces

+openFieldIterator()
+containsField()
+createProperty()
+getProperty()
+setProperty()
+getBoolean()
+getDateTime()
+getDouble()
+getLong()
+getString()
+getXUID()
+getFieldType()
+getFieldLength()
+getFieldBinding()
+createXStream()
+getFieldReadOnly()
+openXStream()
+deleteField()
+setFieldAsBinding()
+setFieldAsNonBinding()
+asyncOpenXStream()

«interface»
org.snia.xam.FieldContainer

+connect()()

«interface»
org.snia.xam.XAM

+authenticate()
+close()
+abandon()
+deleteXSet()
+holdXSet()
+releaseXSet()
+accessXSet()
+isXSetRetained()
+getXSetAccessTime()
+createXSet()
+openXSet()
+copyXSet()
+asyncOpenXSet()
+asyncCopyXSet()

«interface»
org.snia.xam.XSystem

+applyAccessPolicy()
+resetAccessFields()
+applyManagementPolicy()
+resetManagementFields()
+createRetention()
+setRetentionEnabledFlag()
+applyRetentionEnabledPolicy()
+getActualRetentionEnabled()
+setRetentionDuration()
+applyRetentionDurationPolicy()
+getActualRetentionDuration()
+setRetentionStarttime()
+setBaseRetention()
+applyBaseRetentionPolicy()
+setAutoDelete()
+applyAutoDeletePolicy()
+getActualAutoDelete()
+setShred()
+applyShredPolicy()
+getActualShred()
+applyStoragePolicy()
+abandon()
+commit()
+close()
+submitJob()
+haltJob()
+openExportXStream()
+openImportXStream()
+asyncCommit()

«interface»
org.snia.xam.XSet

+tell()
+seek()
+write()
+read()
+close()
+abandon()
+asyncRead()
+asyncWrite()
+asyncClose()

«interface»
org.snia.xam.XStream

+toBytes()
+toString()
+equals()

«interface»
org.snia.xam.XUID

+createXSytem()

«interface»
org.snia.xam.vim.VIM

+next()
+hasNext()
+close()
+remove()

«interface»
XIterator

«interface»
java.util.Iterator

+close()
+getBytesRead()
+getBytesWritten()
+getStatus()
+getXOPID()
+getXSet()
+getXStream()
+getXUID()
+halt()
+isComplete()

«interface»
XAsync

+XASyncCallback()

«interface»
XAsyncListener
11 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Java API Overview
The intention of the interface design is to allow VIM objects to be manipulated by the application with as
little mediation by the XAM Library as possible. A VIM is loaded by the XAM Library in response to a
connect method call. The XAM Library will then call connect on that VIM. The VIM constructs an XSystem
object, and it is returned to the application. All further calls will be through the XSystem, and thus in VIM-
supplied code.

The only other VIM-specific method is update. The update method is used when a change to the XAM
Library fields needs to be communicated to the VIM. For instance, an application setting a logging property
would cause the XAM Library to call update for each VIM, passing in the XAM Library instance. The VIM
may then interrogate the XAM Library using FieldContainer methods to read the fields.

4.3.1 org.snia.xam.XAMLibrary

This interface contains all the methods and behavior specified by the [XAM-ARCH]. An application creates
an instance of a XAM Library and will use it via the XAM interface. Details on obtaining the library instance
are not specified by either the [XAM-ARCH] or this document.

4.3.2 org.snia.xam.XSystem

This interface contains all the methods and behavior specified by the [XAM-ARCH]. An application may
only create instances of objects that are implementing this interface by calling XAMLibrary.connect.

4.3.3 org.snia.xam.XSet

This interface contains all the methods and behavior specified by the [XAM-ARCH]. An application may
only create instances of objects that are implementing this interface by calling XSystem.createXSet,
XSystem.openXSet, or XSystem.copyXSet.

4.3.4 org.snia.xam.FieldContainer

This interface is not specified by the [XAM-ARCH]. A FieldContainer is a common interface which is
implemented by XAM, XSystem, and XSet objects. This interface defines field manipulation methods that
are common to all three XAM objects. No FieldContainer objects exist apart from a XAM, XSystem, or
XSet object.

4.3.5 org.snia.xam.XStream

This interface contains all the methods and behavior specified by the [XAM-ARCH]. An application may
only create instances of objects that are implementing this interface by calling FieldContainer.openStream
or FieldContainer.createStream. The methods defined by this interface match the POSIX-style stream
methods defined in the [XAM-ARCH]. For interoperability with most of the Java I/O system, a wrapper
class providing Java I/O stream capabilities should be provided by a XAM Java implementation.

4.3.6 org.snia.xam.XAsync

Pronunciation eks-’A-sink: The XAsync is an object used to access information about an asynchronous
operation. These asynchronous operations allow applications to connect to XSystems and read and write
XSets associated with the XSystem without blocking, or losing control of, the thread that invokes the
method. This object is returned when an asynchronous method is called, which allows applications to poll
the status of the operations. The object is also passed as a parameter to any callbacks associated with an
asynchronous method.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 12

Java API Overview © SNIA
4.3.7 org.snia.xam.XASyncListener

The XAsyncListener in an interface that an application may implement to provide notification when an
XAsync operation has completed. When the operation completes, the XAM Library will call the method
XAsyncListener.XAsyncCallback, passing in the associated XAsync object. The application may then
perform its completion logic as appropriate.

An application may simply respond to completion of asynchronous operations, or it may perform more
advanced operations. For instance, an application can limit the amount of time an operation is active by
using a timer task to cancel the asynchronous operation, if the operation has been active for longer than an
application-defined maximum time period.

4.3.8 org.snia.xam.XIterator

Applications have access to collections of fields from the XAM Library, XSystems, and XSets. The
org.snia.xam.XIterator interface extends the Java interface java.util.Iterator. The methods next and
hasNext are required to be implemented by the XIterator interface. Note that the interface defined by
java.util.Iterator also specifies an optional remove method. XAM XIterator implementations shall provide
the method to satisfy the interface, but it shall throw the exception
java.lang.UnsupportedOperationException.

All open XIterators shall be closed before closing the FieldContainer from which the Iterator was opened.
The XIterator interface specifies the close method and shall be consistent with the XAM Architecture
Specification.

4.3.9 org.snia.xam.XAMException

Errors encountered during XAM API method calls will cause an exception to be thrown. All possible
exceptions extend the base class XAMException. This API specification does not specify all possible
exceptions which may be thrown. All implementations are required to extend this base class.

4.3.10 org.snia.xam.vim.VIM

All VIM implementations must implement the VIM interface. This requirement allows the XAM Library to
load VIMs, connect to systems, and provide XAM capabilities to the application. After the XAM Library has
connected to a XAM Storage System, the VIM provides an object that implements an XSystem interface.
All further operations by the application are then directed to the VIM by using the polymorphism inherent in
Java.

4.4 VIM implementation models
A Java version of the XAM Library still relies on VIMs to mediate between the XAM Library and a XAM
Storage System. As required by the [XAM-ARCH], VIMs may be written in Java or other languages.
Because non-Java code may not run on the computer architectures that a JVM would, use of a non-Java
VIM may limit the number of computer architectures in which an application may be deployed.

VIMs generally should be considered as a collection of classes that implement all of the required XAM
Java interfaces. These VIMs may or may not use additional code to accomplish its task. The use of this
additional code is acceptable, but VIM authors are cautioned to ensure that this additional code is not used
in a way which will limit VIM portability between XAM Library implementations.

VIM authors should note that the VIM interface for the Java libraries is very different than the VIM
interfaces required by the C implementation of a XAM Library. This difference is because of basic
differences between polymorphism implemented in C and Java. The Java implementation of the XAM
Library strongly leverages the use of polymorphism. When the application connects to a XAM Storage
System, the VIM object returns an object that implements the XSystem interface. This object is not part of
13 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Java API Overview
the XAM Library; it is completely storage-vendor defined. This vendor object contains the code appropriate
to interact with the storage vendor’s system. Likewise, XSet instances are not part of the XAM Library.

For purposes of discussion, a VIM supported by a Java XAM Library is a collection of classes
implementing the required interfaces. These classes will utilize other functionality as required by the XAM
Storage System vendor.

4.4.1 Java VIMs

For a Java-implemented VIM, most of the methods called by the application will be sent directly to VIM-
supplied objects (e.g., XSystem instance, XSet instance). This happens because when some of the factory
methods are called, the vendor code is invoked directly to generate an instance that satisfies the interface.
For instance, the application will call XAMLibrary.connect, which then causes the library to locate the
correct VIM, and then call connect on the VIM, which returns a VIM-created XSystem object. After these
calls, when the application calls XSystem methods, these calls will be directed into VIM-supplied code.
Figure 5, “Application interaction with pure Java VIM” illustrates this example. In this example, the
application connects to an XAM Storage System and then uses the XSystem instance to create an XSet.

Figure 5 – Application interaction with pure Java VIM

Application XAM Library VIM

connect()

XAM Library locates
VIM from XRI,
creates instance
of VIM

new VIM instance

XSystem

authenticate()

authenticate return

XSystem

new XSystem

VIM code performs
connection and creates
XSystem object to
contain connection
info.

XSet

XSystem

createXSet()

new XSet

XSet

XSet

XSystem

createProperty(Int)

createProperty return()
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 14

Java API Overview © SNIA
4.4.2 Non-Java VIMs

Since most Java implementations allow for linking to non-Java code (JNI), non-Java VIMs can be used.
Doing this with the most common JNI model is relatively straightforward. All C-based VIMs shall follow the
standard VIM API as defined in the C API Specification [XAM-C-API].

4.4.3 VIM Initialization

As described in the XAM Architecture Specification [XAM-ARCH], the XAM Library copies XAM field
information into the XSystem during initialization. As illustrated in Figure 6, “VIM Initialization”, the XAM
Library asks the VIM to create a new, unconnected, unauthenticated XSystem instance. Before connecting
to a system, the XAM Library copies all the XAM Library fields to the XSystem, using createProperty/
setProperty or XStream methods.

The XAM Library first creates the property, .xsystem.initializing, with the value of TRUE. Then the XAM
Library copies all fields to the XSystem instance. Third, the XAM Library sets the value of
.xsystem.initializing to FALSE. Finally, the unconnected and unauthenticated XSystem instance is
returned to the application.

4.5 Using the XAM API – abstract samples
The following samples show how to program a few common operations using the SNIA XAM Java API.
Note that these examples are not intended to exhaustively show all possible methods or illustrate a strong
and robust error-handling use case.

4.5.1 Write an XSet

This example creates an XSet, storing a xam_string property and a JPEG stream.

Figure 6 – VIM Initialization

Application XAM Library VIM

connect()

XAM Library locates
VIM from XRI,
creates instance
of VIM

createNewXSystem

XSystem

XSystem

new XSystem

XSystemXSystem

createProperty(Boolean)

createProperty() / createXStream()

deleteField()

XAM Library creates ".xsystem.initializing" and sets it to TRUE

XAM Library deletes ".xsystem.initializing"

XAM Library creates field for each field in the XAM Library

connect()
15 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Java API Overview
// Connect to the archive system
String xri = “snia-xam://ExampleVIM!lcom.example.xamstore"
XSystem sys = s_xam.connect(xri);

// NOTE: Authentication code not shown.

// Create an XSet to store the data in
XSet xset = sys.createXSet(XSet.MODE_UNRESTRICTED);
xset.createProperty(“com.example.name_of_subject”, false, “John Smith”);
XStream str = xset.createStream(“com.example.picture”, false, “image/jpeg”

);

// Write the bytes of a JPEG image
str.close();

XUID new_id = xset.commit();
xset.close();
sys.close();

4.5.2 Read an XSet

This example opens the same XSystem and reads the data, using the XUID value from the previous
example.

// Connect to the archive system
String xri = “snia-xam://ExampleVIM!lcom.example.xamstore"
XSystem sys = s_xam.connect(xri);

// NOTE: Authentication code not shown.

// Open the XSet from which to read data
XSet xset = sys.openXSet(new_id, XSet.MODE_READ_ONLY);
String value = xset.getString(“com.example.name_of_subject”);
XStream str = xset.openStream(“com.example.picture”,

XStream.MODE_READ_ONLY);

// Read the bytes of a JPEG image
str.close();

xset.close();
sys.close();

4.5.3 Query for data with the string literal

This method connects to the same XSystem (using the same connection string), runs a query job querying
for XSets that have the “name of subject” fields set to “John Smith”, opens the XSets one at a time, and
processes the contents.

Note: This example uses an XUID implementation, named XUIDImpl, which is presumed to follow the
toolkit requirements detailed in Annex C, “(normative) Java-Specific Toolkit”.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 16

Java API Overview © SNIA
// Connect to the archive system
String xri = “snia-xam://ExampleVIM!lcom.example.xamstore"
XSystem sys = s_xam.connect(xri);

// NOTE: Authentication code not shown.

XSet query;
query = sys.createXSet(XSet.MODE_RESTRICTED);
query.createProperty(XSet.XAM_JOB_COMMAND, false, XSet.XAM_JOB_QUERY);
XStream qStream = query.createStream(XSet.XAM_JOB_QUERY_COMMAND, false,
 "text/plain;charset=utf-8");
String qString = "select \".xset.xuid\" where \"com.example.name\"" +
 " = \'John Smith\'" ;
qStream.write(qString.getBytes("UTF-8"), 0, qString.length());
qStream.close();

// Wait for the job to complete.

String queryStatus = query.getString(XSet.XAM_JOB_ERROR);
if(queryStatus.equals(XSet.XAM_JOB_ERRORHEALTH_OK))
{
 XStream results = query.openXStream(XSet.XAM_JOB_QUERY_RESULTS,

 XStream.MODE_READ_ONLY);
 byte rawXUID[] = new byte[80];
 int bytesRead = 0;
 while((bytesRead = results.read(rawXUID)) >= 0)
 {
 XUID localXUID = new XUIDImpl(rawXUID);
 XSet data = sys.openXSet(localXUID, XSet.MODE_READ_ONLY);
 // Process results
 data.close();
 }
 results.close();
}
query.close();
17 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5 Public Java API Reference
This chapter describes the public interfaces of the XAM Library. These interfaces are intended to be used
by application programmers.

5.1 Design goals
Some simple design goals were kept in mind while defining the XAM Java API. These goals are for all
methods to:

• Return output values by reference

• Support the XAM object model

• Be thread safe

• Support asynchronous operations for operations in the data path

• Present a minimum number of methods

• Favor compilation errors over runtime errors

5.2 Supporting data types

5.2.1 stypes

All XAM fields have type information that is described using MIME types. Complex fields require that the
value of the field (the data associated with the field) be stored in an XStream. However, some predefined
MIME types have also been defined for XAM fields. These MIME types (also known as simple MIME types
or stypes) have data types associated with them, which allows the values to be checked at compile time.

The stypes and the data types are defined in the XAM interface and are also described below:

• “application/vnd.snia.xam.boolean”: This MIME type is associated with a standard Boolean
type, xam_boolean. A xam field with this type will have a length of 1. A valid field of this type will
contain a zero (0) when FALSE or a non-zero value when TRUE.

• “application/vnd.snia.xam.int”: This MIME type is associated with a 64-bit integer value on all
platforms, xam_int. Note that this is not the same as a standard long type. The value stored in this
field can be positive or negative. A xam field with this type will have a length of 8.

• “application/vnd.snia.xam.double”: This MIME type is associated with a standard double
precision float, xam_double. A xam field with this type will have a length of 8.

• “application/vnd.snia.xam.xuid”: This MIME type is associated with an 80-element byte array,
xam_xuid. A valid field of this type will have a value that is a canonical XUID. A xam field with this
type will have a length of 80.

• “application/vnd.snia.xam.string”: This MIME type is associated with a XAM_MAX_STRING
element byte array, xam_string. A valid field of this type will have XAM_MAX_STRING or fewer
bytes which describe the string. The encoding of a string type is UTF-8. Note that xam_strings
may not contain nulls; thus, null termination will be used in the Java API to mark the end of a
string. A xam field with this type will have a length which matches the number of bytes that
describes the actual string; nulls or other trailing bytes are not included in the length.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 18

Public Java API Reference © SNIA
• “application/vnd.snia.xam.datetime”: This field is associated with a XAM_MAX_STRING
element byte array, xam_datetime. It is an ISO 8601-compliant timestamp string, UTF-8 encoded,
with 4 digit years, negative years allowed, no truncated years, no week dates, no ordinal dates, no
24:00 representation of midnight, time zone designators allowed, no duration or interval formats,
and a millisecond resolution.

5.2.2 XAM status type

Most methods in the Java API have the ability to throw a XAMException. When the method has completed
successfully, no exception is thrown. XAMExceptions may be generated in the XAM Java Library or in
VIM-supplied code. Each XAMException contains the xam_status error code and descriptive text. The
structure of the xam_status code is a 32-bit integer, as defined below:

The top bit is used as a flag, while the remaining 31 bits are used to hold the status payload. The topmost
bit (bit 0) is set to zero when the payload contains a standard value, and 1 when the payload contains a
non-standard (vendor-specific) value. The status format is illustrated in Figure 7, “XAM status type
diagram”:

Note: Success is denoted with a status set to zero (bit 0 set to zero because it is a standard code, and
the payload for success uses the standard code of 0).

The method XAMException getMessage returns the error token as a String. The string starts with a prefix
(“xam” for standard errors or the reverse DNS of the vendor for non-standard errors) followed by a
separator (“/”) and ends with a non-localized UTF-8 substring that briefly describes the error. For example,
an “out of memory” error might generate the following error token:

“xam/out of memory”

This method requires an XSystem or a XAM Library object. If a XAM Library object is used, the method will
not be able to generate vendor-specific error tokens. Such cases will result in the following error token:

“xam/unknown error”

Figure 7 – XAM status type diagram

Byte 0 Byte 1 Byte 2 Byte 3

Payload

Payload

Bit 0:
0 for standard status codes
1 for specific status codes

0 7
19 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
XAMExceptions shall include both the status code and the error token, when printing the stack trace as
part of the Java Exception printStackTrace method. The status code may be retrieved via the
XAMException method getStatusCode.

5.2.3 XOPID

Every asynchronous method takes as an input argument a XAM asynchronous operation identifier
(XOPID). It can be retrieved from either a pending or completed asynchronous operation. The XOPID type
is as defined below:

long XOPID;

The XOPID is intended to provide a fast mechanism for the application to retrieve its state associated with
the asynchronous operation. Because the 64-bit value is specified by the application and is opaque to the
XAM Storage System, the application can attach any meaning to it that it wishes, including an index into an
application’s data structure, a pointer, or a bitfield.

5.2.4 Callbacks

Every asynchronous method takes a callback method as an optional input argument. The callback method
will be called when the operation completes (either successfully or unsuccessfully). The XAM callback
method is defined by the interface org.snia.xam.XAsyncListener.

public void XAsyncCallback(XAsync operation);

Within the callback routine, the XAM application should first retrieve the status of the operation. If the
operation was successful, the XAM application can also retrieve the output arguments, using the
appropriate methods. It can also retrieve the XOPID (see Section 5.2.3) to help retrieve the application
state that is associated with the operation.

CAUTION: Since the callback method is called asynchronously from the XAM Library, the application
must write the callback method in a thread-safe manner. The application-supplied listener
shall not throw any exceptions.

5.3 Methods

5.3.1 XAM Library methods

public interface org.snia.xam.XAMLibrary implements org.snia.xam.FieldContainer

A XAM system represents the XAM Library running locally. An application wanting to use the XAM Library
must create an instance of the XAM Library. This library object will manage and create instances of VIMs
to connect to XAM Storage Systems. The XAM Library object may also contain toolkit functions for
convenience.

5.3.1.1 connect

public org.snia.xam.XSystem connect(
String XRI)

Connects to the specified XAM archive and returns an XSystem object, to allow the application to use the
XAM API. XRI values are in the form of VIM names, and parameters are optional. Use of optional
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 20

Public Java API Reference © SNIA
parameters is specific to any XAM Storage System and its configuration. The XRI format is defined in
section 7.2.1 of the XAM Architecture Specification [XAM-ARCH].

Note: A connected XSystem instance is not fully usable until authenticated.

• Parameters: XRI - The XAM Storage System Resource specification

• Returns: The XSystem object representing the connection

• Throws:

— InvalidXRIException - The XRI is null or malformed.

— ConnectException - A connection could not be made.

— VIMLoadException - a VIM could not be found to handle this connection.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2 XSystem methods

public interface org.snia.xam.XSystem implements org.snia.xam.FieldContainer

Represents a connection to a XAM Storage System. XSystem classes are implemented by storage system
vendors and implement the XSystem interface. XSystem instances are created via the VIM.connect factory
method. XSystem instances act as a factory for XSet instances and XStream instances.

5.3.2.1 XSystem connect

 public void connect(String xri)

The connect method is called by the VIM after the XSystem has been created and initialized. This connect
method operates identically to the specified method for XAMLibrary.connect but shall not be not called by
the application. This method shall be called only once by the XAM Library and shall throw an exception if
called more than once on the same XSystem instance. This method is used by the XAM Library to
complete the XSystem initialization process.

• Parameters: xri - The application supplied XRI of the XAM Storage System

• Throws: XAMException - An error exists with the underlying XAM Storage System or VIM.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until complete.

5.3.2.2 authenticate

deprecated public byte[] authenticate(byte[] buffer)

This method will allow an application to authenticate an XSystem instance. It provides a generic interface
to exchange data as part of the authentication process. The application must check the XSystem
properties, prefixed constant value XAM_XSYSTEM_SASL_LIST, to determine which patterns of
21 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
authentication are available for use. After a pattern is selected, the appropriate sequence of data
exchanges should be made (using this call) in order to authenticate.

Note: SASL negotiations can require more information from an application. This method does not
provide an indication that more information is required. This method shall be deprecated in the
java interfaces. Applications are encouraged to use the alternate authenticate method providing
this information.

• Parameters: buffer - Data being passed to the authentication system. The XSystem will use
buffer.length to determine the significant bytes to be used by the authentication process. The
format of the buffer differs, depending on the authentication mechanism chosen. Application
authors are encouraged to refer to the appropriate SASL specifications [IANA-SASL].

• Returns: Output from the authentication method.

• Throws:

— AuthenticationException - The authentication process encountered an error.

— InvalidArgumentException - The buffer argument is null.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.3 authenticate
public int authenticate(byte[] in_buffer, ByteArrayOutputStream
response_buffer)

This method will allow an application to authenticate an XSystem instance. It provides a generic interface
to exchange data as part of the authentication process. The application must check the XSystem
properties, prefixed constant value XAM_XSYSTEM_SASL_LIST, to determine which patterns of
authentication are available for use. After a pattern is selected, the appropriate sequence of data
exchanges should be made (using this call) in order to authenticate.

• Parameters:

— in_buffer - Data being passed to the authentication system. The XSystem will use buffer.length
to determine the significant bytes to be used by the authentication process. The format of the
buffer differs, depending on the authentication mechanism chosen. Application authors are
encouraged to refer to the appropriate SASL specifications [IANA-SASL].

— response_buffer – The XSystem’s response to the authenticate call. The contents of the
stream are not read, and shall be reset before any response in written into the Stream.

• Returns: A status indicating if the authentication is complete: XAM_SASL_COMPLETE or
XAM_SASL_IN_PROCESS.

• Throws:

— AuthenticationException - The authentication process encountered an error.

— InvalidArgumentException - The buffer argument is null.

— XAMException - Another error exists with the underlying XAM Storage System.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 22

Public Java API Reference © SNIA
• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.4 close

public void close()

Closes this XSystem instance, preventing any further changes. Any resources associated with this
XSystem instance will be released. This method blocks until complete.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException - There are open XStreams on the XSystem preventing the close
method from completing.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.5 abandon

public void abandon()

Abandons all changes to this XSystem. No unsaved data is written, and all open XSets are abandoned,
allowing close to be called.

CAUTION: Inappropriate use of this call will result in data loss. Applications are encouraged to track
open XSets and close them properly instead of using this method.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.6 deleteXSet

public void deleteXSet(
XUID xsetid)

Deletes the specified XSet without opening it.

• Parameters: xsetid - XUID of the XSet to be deleted.
23 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
• Throws:

— AuthorizationException - The delete operation is not allowed.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XSetUnderRetentionException - The XSet may not be deleted because of retention.

— XSetUnderHoldException - The XSet is under hold and cannot be deleted.

— InvalidArgumentException - XUID is null.

— XSetInaccessibleException - XSet does not exist or is not accessible; it cannot be deleted.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.7 isXSetRetained

public boolean isXSetRetained(
XUID xsetid)

This method evaluates all of the retention settings on the specified XSet, to determine if the XSet is
currently under retention protection.

• Parameters: xsetid - XUID of the XSet to be evaluated.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - XUID is null.

— XSetInaccessibleException - XSet does not exist or cannot be accessed.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 24

Public Java API Reference © SNIA
5.3.2.8 holdXSet

public void holdXSet(
XUID xsetid,
String holdID)

Puts the specified XSet on hold. This method prevents applications from making changes to the XSet. An
XSet may participate in multiple holds. The hold is specified by the application.

• Parameters:

— xsetid - The XSet to hold.

— holdID - The ID of the HOLD operation.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— AuthorizationException - The application is not authorized to place a hold.

— InvalidFieldNameException - The field name for the hold is too long or malformed.

— HoldIdException - The hold id is already in use

— InvalidArgumentException - xsetid or holdid arguments are null.

— XSetInaccessibleException - XSet does not exist or is not accessible.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.9 releaseXSet

public void releaseXSet(
XUID xsetid,
String holdID)

Releases XSet from a specific hold, making it subject to normal retention processing.

• Parameters:

— xsetid - The XSet to be released.

— holdID - The ID of the corresponding HOLD operation.

• Throws:

— AuthorizationException - The application is not authorized to release a hold.
25 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— HolidIdException - The hold id specified is not used as a hold on this XSet.

— XSetInaccessibleException - XSet does not exist or is not accessible.

— InvalidArgumentException - xsetid or hold id arguments are null.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.10 accessXSet

public boolean accessXSet(
XUID xsetid,
long mode)

Tests if a specified XSet is accessible, according to the modes specified.

• Parameters:

— xsetid - The XSet to test.

— mode - Bitset of modes

• ACCESS_READ_OK

• ACCESS_WRITE_APPLICATION_OK

• ACCESS_WRITE_SYSTEM_OK

• ACCESS_DELETE_OK

• ACCESS_HOLD_OK

• ACCESS_RETENTION_EVENT_OK

• ACCESS_JOB_OK

• ACCESS_JOB_COMMMIT_OK

• Returns: TRUE if the application can access the XSet, FALSE otherwise.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - xsetid is null or the mode specified is invalid.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 26

Public Java API Reference © SNIA
— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.11 getXSetAccessTime

public java.util.Calendar getXSetAccessTime(
XUID xsetid)

Retrieves the XSet's last access time, most recent of either time of last open or commit. This method will
not alter the access time of the XSet.

• Parameters: xsetid - The XUID of the XSet.

• Returns: The last access time of the XSet.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - xsetid is null.

— XSetInaccessibleException - XSet does not exist or is not accessible.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.12 createXSet

public org.snia.xam.XSet createXSet(
String createMode)

Create a new, unsaved XSet, in this XSystem. The open XSet will initially be fully writeable but will be in
the specified mode after the first commit.

• Parameters: createMode - The mode the XSet should be in after the first commit. One of:

— XSet.MODE_RESTRICTED

— XSet.MODE_UNRESTRICTED

• Returns: The new XSet object.

• Throws:
27 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— AuthorizationException - The application is not authorized to create an XSet.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - createMode is either null or an invalid mode value.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.13 openXSet

public org.snia.xam.XSet openXSet(
XUID xsetid,
String openMode)

Open the specified XSet for access by the application.

• Parameters:

— xsetid - The XUID of the XSet to open

— openMode - One of the following:

• XSet.MODE_READ_ONLY

• XSet.MODE_RESTRICTED

• XSet.MODE_UNRESTRICTED

• Returns: The XSet object to be opened.

• Throws

— AuthorizationException - The application is not authorized to use the specified mode.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - xsetid or openMode are null, or the mode is invalid.

— InvalidXSetModeException - The specified mode is not recognized by the XSystem.

— XSetInaccessibleException - XSet does not exist or is not accessible.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 28

Public Java API Reference © SNIA
• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.14 copyXSet

public org.snia.xam.XSet copyXSet(
XUID xsetid,
String copyMode)

Copy the specified XSet to a new XSet. The new XSet will be "open" in the mode specified.

• Parameters:

— xsetid - The source XSet to copy.

— copyMode - One of the following:

•]XSET_MODE_RESTRICTED

• XSET_MODE_UNRESTRICED

• Returns: The newly copied XSet.

• Throws:

— AuthorizationException - The application is not authorized to perform the copy.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - xsetid or copyMode are null, or copyMode is invalid.

— InvalidXSetModeException - The specified mode is not recognized by the XSystem.

— XSetInaccessibleException - The specified XSet does not exist or is not accessible.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.2.15 asyncOpenXSet
public org.snia.xam.XAsync asyncOpenXSet(
 XUID inXuid,
 String mode,
 long xopid,
 XAsyncListener listener)

Begins the asynchronous opening of an XSet in the XSystem, ultimately returning a handle to an XSet
instance associated with the XSystem. The specified callback will be invoked as part of the asynchronous
opening. To monitor the status of this operation, the application can poll the Async instance that is
29 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
generated by this method. A handle to an Async instance is also passed to any provided callback method,
when that callback method is invoked.

• Parameters:

— inXuid - The XUID of the XSet to be opened.

— mode - The mode the XSet should be opened in. One of the following:

• MODE_READ_ONLY

• MODE_RESTRICTED

— xopid - The application XOPID of this XAsync operation.

— listener - An optional parameter, which may be null, of the XASyncListener object to be
notified when the operation has completed.

• Returns: XAsync object representing this operation.

• Throws, or returns via the XAsync object:

— AuthorizationException - The application is not authorized to open XSets.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - inXuid or mode are null, or the Xopid may already be in use.

— XSetInaccessibleException - The specified XSet does not exist or is not accessible.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe. The XAsyncListener must be coded in a thread-safe
manner.

• Blocking: This method will return immediately.

5.3.2.16 asyncCopyXSet
public org.snia.xam.XAsync asyncCopyXSet(
 XUID inXuid,
 String mode,
 long xopid,
 XAsyncListener listener)

Copies the specified XSet to a new XSet. The new XSet will be "open" in the mode specified.

• Parameters:

— inXuid - The XUID of the XSet to copy.

— mode - The mode in which the XSet will be opened in. One of the following:

• XSet.MODE_UNRESTRICTED
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 30

Public Java API Reference © SNIA
• XSet.MODE_RESTRICTED

— xopid - The application supplied XOPID of this XAsync operation.

— listener - An optional parameter, which may be null, of the XASyncListener object to be
notified when the operation has completed.

• Returns: XAsync object representing this operation.

• Throws, or returns via the XAsync object:

— AuthorizationException - The application is not authorized to perform this operation.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - inXuid or mode are null, or the Xopid id may already be in use.

— XSetInaccessibleException - XSet does not exist or is not accessible.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe. The XAsyncListener must be coded in a thread-safe
manner.

• Blocking: This method will return immediately.

5.3.2.17 createXUID

public XUID createXUID(String base64XUID)

This method allows an application to create a XUID from a base64 encoded XUID value. The use of this
method isolates the application from XAM Library implementations and allows the reconfiguration of an
application’s XAM implementation without needing to recompile. Applications are encouraged to use this
method for creating XUID objects.

• Parameters: base64XUID – The base64 encoded string version of the XUID value.

• Returns: A XUID object.

• Throws:

— AuthenticationException - The authentication process encountered an error.

— InvalidXUIDException - The base64 string was invalid, the decoded XUID failed the CRC
check, or the XUID value was malformed.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
31 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5.3.2.18 createXUID

public XUID createXUID(byte binaryXUID[])

This method allows an application to create a XUID from a binary XUID byte array value. The use of this
method isolates the application from XAM Library implementations and allows the reconfiguration of an
application’s XAM implementation without needing to recompile. Applications are encouraged to use this
method for creating XUID objects.

• Parameters: binaryXUID – The binary XUID value.

• Returns: A XUID object.

• Throws:

— AuthenticationException - The authentication process encountered an error.

— InvalidXUIDException - The XUID value was malformed or failed a CRC check.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3 XSet methods

public interface org.snia.xam.XSet implements org.snia.xam.FieldContainer

An XSet is the basic unit of storage for the XAM Storage System. XSet classes are implemented by
storage system vendors and implement the XSystem interface. XSystem instances are created via the
XSystem factory methods of openXSet, copyXSet, and createXSet.

Note: Changing the BINDING information on any persistently stored XSet field will result in a new XSet
being created on commit. This is only TRUE when the XSet has been opened in UNRESTRICTED
mode. Changes may alter the value of a BOUND field or change the BINDING attribute of a field.

5.3.3.1 applyAccessPolicy
 public void applyAccessPolicy(
 boolean binding,
 String policyName)

Creates or modifies a property field with the name of .xset.access.policy and a type set to ‘application/
vnd.snia.xam.string’ on the XSet. Its value and binding attributes will be set according to the user-provided
parameters. This field will be used by the XAM Storage System to determine the policies to use when
accessing this XSet.

Note: If an access policy has not been applied to an XSet at the time of the initial commit, then the
property will be created and set as the default access policy of the XSystem (i.e., the first string in
.xsystem.access.policy.list.).

• Parameters:

— binding - TRUE if this value is to be BOUND.

— policyName - Name of the policy.

• Throws:
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 32

Public Java API Reference © SNIA
— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— MaximumFieldException - Too many fields in the XSet.

— PolicyNameException - The policy name is null or invalid for this operation.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.2 resetAccessFields

public void resetAccessFields()

This method will remove all access fields from the XSet.

Note: If an access policy has not been applied to an XSet at the time of the initial commit, then the
property will be created and set as the default access policy of the XSystem (i.e., the first string in
.xsystem.access.policy.list.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException -The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.3 applyManagementPolicy

public void applyManagementPolicy(
boolean binding,
String policyName)

Creates and sets the XAM string property .xam.management.policy. This field is used by the XAM Storage
System to determine the default policies when managing the XSet. If the management policy has not been
set at the time of first commit, then the property will be created and set as the default management policy
of the XSystem.
33 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
• Parameters:

— binding - TRUE if this value is to be BOUND.

— policyName - Name of the policy.

• Throws:

— MaximumFieldException - Too many fields in the XSet.

— PolicyNameException - The policy name is null or invalid for this operation.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.4 resetManagementFields

public void resetManagementFields()

Removes all management fields from the XSet. This includes .xset.base.retention.starttime. Because this
is a binding field, a new XSet will be created on commit, if the XSet was opened in the unrestricted mode.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.5 createRetention
 public void createRetention(boolean binding,
 String retentionID)

Creates a scope for storing and evaluating retention criteria. It creates a field with the type of “application/
vnd.snia.xam.string” and sets the value to the retention ID. The field name is formed by appending the
retention id to the prefix .xset.retention.list.. The final form of the field name is
.xset.retention.list.<retentionID>. An exception shall be thrown if the retentionID is “base”. The binding
attribute of this field is set according to the parameter binding.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 34

Public Java API Reference © SNIA
• Parameters:

— binding - Sets the binding attribute of the field to TRUE or FALSE.

— retentionID - A String containing the retention identifier of the retention being created.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - The parameter retentionID is null or malformed or the value
“base” was supplied.

— InvalidFieldNameException - The generated field name is too long.

— ObjectInUseException - The XSet has open import/export streams.

— RetentionValueException - When the retentionID is “event” and binding is FALSE.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.6 setRetentionEnabledFlag
 public void setRetentionEnabledFlag(String retentionID,
 boolean binding,
 boolean enabled)

Enables or disables retention that is scoped by the specified retention id. This flag is stored in a field of
type “application/vnd.snia.xam.boolean”. The name of the field is formed by inserting the retention id
between a prefix (.xset.retention.) and a suffix (.enabled); thus, the final format of the name is
.xset.retention.<retention id>.enabled. An exception shall be thrown if the retentionID is “base”. If the field
does not exist, it will be created; otherwise, the value will be updated only if the value is changed from
FALSE to TRUE; if the value is set to TRUE, it cannot be changed. It will have its binding attribute set
according to the binding flag that is set by the application.

• Parameters:

— retentionID - A String containing the retention identifier of the retention being enabled or
disabled.

— binding - Sets the binding attribute of the field to TRUE or FALSE.

— enabled - Enables the retention if the parameter is TRUE or disables it unless it was already
TRUE.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.
35 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— InvalidArgumentException - The parameter retentionID is null or malformed or the value
“base” was supplied.

— InvalidFieldNameException - The generated field name is too long.

— ObjectInUseException - The XSet has open import/export streams

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— RetentionValueException - A previously enabled retention is being disabled.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.7 applyRetentionEnabledPolicy
 public void applyEventRetentionEnabledPolicy(String retentionID,
 boolean binding,
 String policyName)

Enables or disables retention that is scoped by the specified retention id, as determined by the named
policy. The policy name of the policy holding the enabled flag is stored in a field of type “application/
vnd.snia.xam.string”. The name of the field is formed by inserting the retention id between a prefix
(.xset.retention.) and a suffix (.enabled.policy); thus, the final format of the name is
.xset.retention.<retention id>.enabled.policy. An exception shall be thrown if the retentionID is “base”. If
the field does not exist, it will be created; otherwise, the value will be updated only if the value is changed
from FALSE to TRUE; if the value is set to TRUE, it cannot be changed. It will have its binding attribute set
according to the binding flag that is set by the application.

Note: If the .xset.retention.<retention id>.enabled field is also present on the XSet, it will be used by the
XAM Storage System in preference to this field.

• Parameters:

— retentionID - A String containing the retention identifier of the retention being enabled or
disabled.

— binding - Sets the binding attribute of the field to TRUE or FALSE.

— policyName - A String containing the name of the policy to be used.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - The parameter retentionID is null or malformed or the value
“base” was supplied.

— InvalidFieldNameException - The generated field name is too long.

— PolicyNameException - The policy name is null or invalid for this operation.

— ObjectInUseException - The XSet has open import/export streams.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 36

Public Java API Reference © SNIA
— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— RetentionValueException - A previously enabled retention is being disabled.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.8 setRetentionDuration
 public void setRetentionDuration(String retentionId,
 boolean binding,
 long duration)

Sets the duration of retention that is scoped by the specified retention id. This flag is stored in a field of
type “application/vnd.snia.xam.int”. The name of the field is formed by inserting the retention id between a
prefix (.xset.retention.) and a suffix (.duration); thus, the final format of the name is
.xset.retention.<retention id>.duration. An exception shall be thrown if the retentionID is “base”. If the field
does not exist, it will be created; otherwise, the value will be updated only if the duration is increased. It will
have its binding attribute set according to the binding flag that is set by the application.

• Parameters:

— retentionID - A String containing the retention identifier of the retention being enabled or
disabled.

— binding - Sets the binding attribute of the field to TRUE or FALSE.

— duration - a long value indicating the duration (in milliseconds) to be used for this retention.
Zero indicates no retention, while negative one (-1) indicates infinite retention.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - The parameter retentionID is null or malformed or the value
“base” was supplied.

— InvalidFieldNameException - The generated field name is too long.

— RetentionValueException - Thrown if the duration parameter specifies an illegal duration, such
as a value which attempts to shorten the existing duration value.

— ObjectInUseException- The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— RetentionValueException – The supplied duration value is less than the duration previously
specified for this retention definition.
37 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.9 applyRetentionDurationPolicy
 public void applyRetentionDurationPolicy(String retentionID,
 boolean binding,
 String policyName)

Sets the duration of retention that is scoped by the specified retention id as specified by the named policy.
This policy name is stored in a field of type “application/vnd.snia.xam.string”. The name of the field is
formed by inserting the retention id between a prefix (.xset.retention.) and a suffix (.duration.policy); thus,
the final format of the name is .xset.retention.<retention id>.duration.policy. An exception shall be thrown if
the retentionID is “base”. If the field does not exist, it will be created; otherwise, the value will be updated
only if the duration is increased. It will have its binding attribute set according to the binding flag that is set
by the application.

Note: If the .xset.retention.<retention id>.duration field is also present on the XSet, it will be used by the
XAM Storage System in preference to this field.

• Parameters:

— retentionID - A String containing the retention identifier of the retention being enabled or
disabled.

— binding - Sets the binding attribute of the field to TRUE or FALSE.

— policyName - A String containing the name of the policy to be used.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - The parameter retentionID is null or malformed or the value
“base” was supplied.

— InvalidFieldNameException - The generated field name is too long.

— PolicyNameException - The policy name is null or invalid for this operation.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 38

Public Java API Reference © SNIA
5.3.3.10 setRetentionStarttime
 public void setRetentionStarttime(String retentionID,
 boolean binding)

Sets the start time of retention that is scoped by the specified retention id. The current time of the XSystem
is stored in a field of type “application/vnd.snia.xam.datetime”. The name of the field is formed by inserting
the retention id between a prefix (.xset.retention.) and a suffix (.starttime); thus, the final format of the
name is .xset.retention.<retention id>.starttime. An exception shall be thrown if the retentionID is “base”. If
the field does not exist, it will be created. If the field does exist, an exception will be thrown, since the
retention start time is not allowed to be changed, once set. The field will have its binding attribute set
according to the binding flag that is set by the application.

The start time for any specific retention ID may only be set once.

• Parameters:

— retentionID - A String containing the retention identifier of the retention being enabled or
disabled.

— binding - Sets the binding attribute of the field to TRUE or FALSE.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— FieldExistsException -The property .xset.retention.<retentionID>.starttime exists, meaning
that the start time has already been set for this retention ID.

— InvalidArgumentException - The parameter retentionID is null or malformed or the value
“base” was supplied.

— InvalidFieldNameException - The generated field name is too long.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.11 setBaseRetention
 public void setBaseRetention(boolean binding,
 long duration)

If this XSet does not already contain the field .xset.retention.list.base, this method will create the field with
a type of “application/vnd.snia.xam.string” and set the value to “base”. It will also create the “application/
vnd.snia.xam.boolean” field .xset.retention.base.enabled and set the value to TRUE. The duration will be
stored in a field named .xset.retention.base.duration. This field is of type “application/vnd.snia.xam.int”. If
the field already exists, its value will be changed to match the passed in duration only if the duration of the
retention is not reduced; the method will generate an error if the duration is reduced. If the field does not
already exist, it will be created with the specified duration as the value. The .xset.retention.base.duration
39 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
field will have its binding attribute set according to the binding flag that is set by the application. The
.xset.retention.list.base is always a binding field.

These fields will be used by the XAM Storage System to determine the base retention duration to use
when managing this XSet.

Note: When an XSet instance containing the field .xset.retention.list.base is first committed, the field
.xset.retention.base.starttime will be created as a binding field and have its value set to
.xset.time.xuid.

• Parameters:

— binding - Sets the binding attribute of the field to TRUE or FALSE.

— duration - a long value indicating the duration to be used for this retention. Zero indicates no
retention, while negative one (-1) indicates infinite retention.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— RetentionValueException - Thrown if the duration parameter specifies an illegal duration, such
as a value which attempts to shorten the existing duration value.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.12 applyBaseRetentionPolicy
 public void applyBaseRetentionPolicy(boolean binding,
 String policyName)

If this XSet does not already contain the field .xset.retention.list.base, this method will create the field with
a type of “application/vnd.snia.xam.string” and set the value to “base”. It will also create the “application/
vnd.snia.xam.boolean” field .xset.retention.base.enabled and set the value to TRUE. The duration policy
will be stored in a field named .xset.retention.base.duration.policy. This field is of type “application/
vnd.snia.xam.string”. If the field already exists, its value will be changed to match the passed-in policy only
if the policy would not reduce the duration of the retention; the method will generate an error if the policy
reduces the duration. If the field does not already exist, it will be created with the specified policy name as
the value. These fields will have their binding attributes set according to the binding flag that is set by the
application.

These fields will be used by the XAM Storage System to determine the base retention duration to use
when managing this XSet.

Note: If the .xset.retention.base.duration field is also present on the XSet, it will be used by the XAM
Storage System in preference to this policy field.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 40

Public Java API Reference © SNIA
Note: When an XSet instance containing the field .xset.retention.list.base is first committed, the field
.xset.retention.base.starttime will be created as a binding field and have its value set to
.xset.time.xuid.

• Parameters:

— binding - Sets the binding attribute of the field to TRUE or FALSE.

— policyName - A String containing the name of the policy to be used.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— PolicyNameException - The policy name is null or invalid for this operation.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.13 setAutoDelete

public void setAutoDelete(
boolean binding,
boolean autoDelete)

If this XSet does not have auto delete set on it, this method will create a property field on the XSet with the
name of .xset.deletion.autodelete with the type “application/vnd.snia.xam.boolean”. Its value and binding
attributes will be set according to the user-provided parameters. If the field already exists on the XSet, then
its value will be updated with the specified value. This field will be used by the XAM Storage System to
determine if the XSet should be automatically deleted when retention expires.

• Parameters:

— binding - TRUE if the property is BOUND.

— autoDelete - TRUE if the system should auto-delete the object on expiration, FALSE
otherwise.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.
41 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.14 applyAutoDeletePolicy

public void applyAutoDeletePolicy(
boolean binding,
String policyName)

If this XSet does not have an auto delete policy applied to it, this method will create a property field on the
specified XSet with the name of .xset.deletion.autodelete.policy with the type set to “application/
vnd.snia.xam.string.” Its value and binding attributes will be set according to the user-provided parameters.
If the field already exists on the XSet, then its value will be updated with the specified value. This field will
be used by the XAM Storage System to determine if the XSet should be automatically deleted when
retention expires.

Note: If the explicit autodelete field is present on the XSet, it will be used by the XAM Storage System in
preference to this field.

• Parameters:

— binding - TRUE if the property is BOUND.

— policyName - Name of the policy.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— PolicyNameException - The policy name is null or invalid for this operation.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.15 setShred

public void setShred(
boolean binding,
boolean shred)

If this XSet does not have the shred property set, this method creates a property field on the XSet with the
name .xset.deletion.shred with type “application/vnd.snia.xam.boolean”. Its value and binding attributes
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 42

Public Java API Reference © SNIA
will be set according to the user-provided parameters. If the field already exists on the XSet, then its value
will be updated with the specified value. This field will be used by the XAM Storage System to determine if
the XSet should be shredded after deletion.

• Parameters:

— binding - TRUE if the property is BOUND.

— shred - TRUE if the XSet is to be shredded on delete, FALSE otherwise.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.16 applyShredPolicy

public void applyShredPolicy(
boolean binding,
String policyName)

If this XSet does not have an auto shred policy applied to it, this method will create a property field on the
specified XSet with the name of .xset.deletion.shred.policy set to type “application/vnd.snia.xam.string”. Its
value and binding attributes will be set according to the user-provided parameters. If the field already
exists on the XSet, then its value will be updated with the specified value. This field will be used by the
XAM Storage System to determine if the XSet should be shredded after XSet deletion. If .xset.shred is also
present on the XSet, it will be used by the XAM Storage System in preference to this field.

• Parameters:

— binding - TRUE if the property is BOUND.

— policyName - Name of the policy.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— MaximumFieldException - Too many fields in the XSet.

— PolicyNameException - The policy name is null or invalid for this operation.

— ObjectInUseException - The XSet has open import/export streams.
43 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.17 applyStoragePolicy

public void applyStoragePolicy(
boolean binding,
String policyName)

If this XSet does not have a storage policy applied to it, this method will create a property field on the XSet
with the name of .xset.storage.policy with a type of “application/vnd.snia.xam.string”. Its value and binding
attributes will be set according to the user-provided parameters. If the field already exists on the XSet, then
its value will be updated with the specified value. This field will be used by the XAM Storage System to
determine the storage policy of the XSet.

• Parameters:

— binding - TRUE if the property is BOUND.

— policyName - Name of the policy.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— MaximumFieldException - Too many fields in the XSet.

— PolicyNameException - The policy name is invalid for this operation.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.18 getActualRetentionDuration

public long getActualRetentionDuration(String retentionID)

Evaluates all management settings for this XSet to return the effective retention duration.

• Parameters: retentionID - A String containing the name of the retention being interrogated.

• Returns: The effective event retention duration, in milliseconds, for this XSet.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 44

Public Java API Reference © SNIA
• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - The retention ID is null or malformed.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— PolicyMismatchException - When an imported XSet's policy does not match the policy present
in the XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.19 getActualRetentionEnabled

public boolean getActualRetentionEnabled(String retentionID)

Evaluates all management settings for this XSet to return the effective event retention.

• Parameters: retentionID - A String containing the name of the retention being interrogated.

• Returns: The effective enabled state for the retention specified on this XSet.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - The retention ID is null or malformed.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— PolicyMismatchException - When an imported XSet's policy does not match the policy present
in the XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.20 getActualAutoDelete

public boolean getActualAutoDelete()
45 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
Evaluates all management settings for this XSet to return the effective auto delete settings for this XSet.

• Returns: Effective auto delete settings.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— PolicyMismatchException - When an imported XSet's policy does not match the policy present
in the XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.21 getActualShred

public boolean getActualShred()

Evaluates all management settings for this XSet to return the effective auto shred settings for this XSet.

• Returns: Effective auto shred settings.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— PolicyMismatchException - When an imported XSet's policy does not match the policy present
in the XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 46

Public Java API Reference © SNIA
5.3.3.22 commit

public org.snia.xam.XUID commit()

Stores an XSet in the XSystem. Note that this does not close the XSet, which can still be modified as
allowed by the authorization of the XSystem and/or the mode with which the XSet was created. A XUID will
be assigned by the XAM Storage System, and this XUID will be returned.

Open XStreams will not cause the commit to fail. Only the data that was successfully written to such
XSteams will be committed.

If this is a modified XSet (e.g., an existing XSet was opened and changed), then a new XUID may or may
not be assigned by the commit, according to the following rules:

• If only nonbinding fields are edited (created, deleted, or changed), then the XAM Storage System
may not assign a new XUID.

• If any binding fields are edited (created, deleted, or changed), then the XAM Storage System must
assign a new XUID.

In any case, an application should be coded to handle cases where the XUID changes when a modified
XSet is committed.

If a management policy has not been applied to the XSet before commit, a default management policy will
be applied to the XSet at the time of commit.

• Returns: The XUID of the stored XSet.

• Throws:

— AuthorizationException - The application is not authorized to perform this operation.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— JobRunningException - This XSet is running a job and the XSystem does not support saving
running jobs.

— XSetUnderHoldException - The XSet is being held and may not be changed.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.23 close

public void close()

Closes the XSet, making it unavailable for further use. Any resources used by the open XSet will be
released. After calling this method, the XSet instance may not be reused.
47 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
Note: This call will fail if there are any open XStreams associated with this XSet.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException - The XSet has open import/export streams.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.24 abandon

public void abandon()

Allows an XSet to be closed after it has been corrupted. This method will allow the XSet to be closed
without regard to any open XStreams. After calling this method, the only usable method is XSet.close; all
other XSet operations will fail unsaved XSet changes.

CAUTION: This method should only be used on a corrupt XSet. Calling it at other inappropriate times
can result in data loss. Applications are encouraged to track open XSets and close them
appropriately.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.25 submitJob

public void submitJob()

Submits a job request to the XAM Storage System. Fields in the XSet are evaluated as input to the job
according to the XAM job control subsystem.

• Throws:

— AuthorizationException - The application is not authorized to perform this operation.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— JobCommandException - One or more of the required job fields are not present in the XSet.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 48

Public Java API Reference © SNIA
— JobUnsupportedException - The specified job is not supported by the XSystem.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— ObjectInUseException – The XSet has open import/export streams.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.26 haltJob

public void haltJob()

If this XSet is a running job, halts the job and fills in the appropriate fields for the completion of the job.

• Throws:

— AuthorizationException - The application is not authorized to perform this operation.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.27 openExportXStream

public org.snia.xam.XStream openExportXStream()

Opening a new XStream contains the normalized export format for the specified XSet. The XSet must
have been committed and the instance must have been unchanged since opening. The application may
read the XStream using the normal XStream methods. The application must close this XStream so that the
XSet can be used for other XSet operations.

Note: The XSet cannot be modified while the export XStream is open.

• Returns: The XStream containing the XSet export format.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException - The XSet has open import/export streams.
49 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.28 openImportXStream

public org.snia.xam.XStream openImportXStream()

Opens an import stream that the application will use to write the normalized import format for the XSet. The
XSet must have been created using either the RESTRICTED or UNRESTRICTED mode. When the import
stream has been completely written and closed, the XAM Storage System will validate the data from the
import stream. If the data has been found to be invalid or improperly formatted, the XSet will enter the
corrupt state, and only the abandon method will succeed. After a successful import, the XSet may be
committed via the normal commit semantics, and the returned XUID is the value described in the
normalized import stream. Any modification to binding fields or binding attributes in the XSet will result in a
new XSet and new XUID value.

• Returns: The XStream the application will use to write the canonical export format data.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.3.29 asyncCommit
public org.snia.xam.XAsync asyncCommit(
 long xopid,
 XAsyncListener listener)

 This method is an asynchronous version of the XSet.commit method.

• Parameters:

— xopid - The application XOPID of this XAsync operation.

— listener - An optional parameter, which may be null, of the XASyncListener object to be
notified when the operation has completed.

• Returns: XAsync object representing this operation.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 50

Public Java API Reference © SNIA
• Throws, or returns via the XAsync object:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - Xopid id may already be in use.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe. The XAsyncListener must be coded in a thread-safe
manner.

• Blocking: This method will return immediately.

5.3.4 Field container methods

public interface org.snia.xam.FieldContainer

Details methods common to all first class XAM objects that have a property field associated with them.

5.3.4.1 openFieldIterator

public java.util.Iterator openFieldIterator(String prefix)

Iterates over a set of fields belonging to the primary XAM object. These iterators yield String objects, the
name of the field selected. The filter pattern is a simple, regular expression that is limited to a prefix of
character literals. To find all fields beginning with "com.example" make the call:

openFieldIterator("com.example");

• Parameters: prefix - A prefix string describing the fields to be returned by the iterator. The
expression is simple: a series of byte values which are treated as a "prefix" to match. For example
"com.example" will match all fields starting with "com.example".

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - prefix is null or malformed.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.
51 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.2 containsField

public boolean containsField(String fieldName)

Returns a boolean value of TRUE, indicating if the named field is contained within the referenced
FieldContainer object (XAM Library, XSystem, or XSet); returns FALSE in all other cases/

• Parameters: fieldName - The name of the field to test.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldName - fieldName is null or malformed.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.3 createProperty - xam_boolean

public void createProperty(
String fieldName,
boolean binding,
boolean value)

Create a XAM Boolean valued property. XAM Boolean is Boolean in Java.

• Parameters:

— fieldName - The name of this property.

— binding - TRUE if this property is to be BOUND.

— value - The Boolean value for this property.

• Throws:
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 52

Public Java API Reference © SNIA
— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldName - fieldName is null or malformed.

— FieldExistsException - The specified field already exists.

— InvalidOperationException - An attempt to create a bound field on a XAMLibrary or XSystem.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.4 createProperty - xam_int

public void createProperty(
String fieldName,
boolean binding,
long value)

Creates a XAM Int valued property. XAM Int is long in Java.

• Parameters:

— fieldName - The name of this property.

— binding - TRUE if this property is to be BOUND.

— value - The long value for this property.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldExistsException - The specified field already exists.

— InvalidOperationException - An attempt to create a bound field on a XAMLibrary or XSystem.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.
53 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.5 createProperty - xam_double

public void createProperty(
String fieldName,
boolean binding,
double value)

Create a XAM Float valued property. XAM Float is double in Java.

• Parameters:

— fieldName - The name of this property.

— binding - TRUE if this property is to be BOUND.

— value - The double value for this property.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldExistsException - The specified field already exists.

— InvalidOperationException - An attempt to create a bound field on a XAMLibrary or XSystem.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 54

Public Java API Reference © SNIA
• Blocking: This method blocks until completion.

5.3.4.6 createProperty - xam_xuid

public void createProperty(
String fieldName,
boolean binding,
XUID value)

Creates a XUID valued property.

• Parameters:

— fieldName - The name of the property.

— binding - TRUE if the property is to be BOUND

— value - The XUID value of the property.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - value is null or malformed.

— InvalidFieldNameException - fieldName or malformed.

— InvalidOperationException - An attempt to create a bound field on a XAMLibrary or XSystem.

— FieldExistsException - The specified field already exists.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.7 createProperty - xam_string

public void createProperty(
String fieldName,
boolean binding,
String value)
55 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
Creates a XAM string valued property. Note that Java strings may be much longer than XAM strings. If the
Java string is longer than the XAM MAX String, an exception will be thrown.

• Parameters:

— fieldName - The name of the property.

— binding - TRUE if the property is to be BOUND.

— value - The string value of the property.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - value is null or an invalid UTF-8 string.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidOperationException - An attempt to create a bound field on a XAMLibrary or XSystem.

— FieldExistsException - The specified field already exists.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.8 createProperty - xam_datetime

public void createProperty(
String fieldName,
boolean binding,
Calendar value)

Creates a XAM Date valued property. XAM Date is java.util.Calendar in Java.

• Parameters:

— fieldName - The name of the property.

— binding - TRUE if the property is to be BOUND.

— value - The date and time value of the property.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 56

Public Java API Reference © SNIA
• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - value is null or a non valid ISO-8601 date.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidOperationException - An attempt to create a bound field on a XAM Library or XSystem.

— FieldExistsException - The specified field already exists.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.9 setProperty - xam_boolean

public void setProperty(
String fieldName,
boolean value)

Sets the named field to the specified Boolean value.

• Parameters:

— fieldName - The name of the field to set.

— value - The Boolean value to set

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_boolean stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.
57 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.10 setProperty - xam_datetime

public void setProperty(
String fieldName,
Calendar value)

Sets the named field to the specified Date/Time.

• Parameters:

— fieldName - The name of the field to set.

— value - The Date/Time value to set.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - value is null.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_datetime stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 58

Public Java API Reference © SNIA
5.3.4.11 setProperty - xam_double

public void setProperty(
String fieldName,
double value)

Sets the named field to the specified XAM Float.

• Parameters: fieldName - The name of the field to set.

• Throws:

— InvalidFieldNameException - fieldName is null or malformed.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldTypeException - The field is not a xam_double stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.12 setProperty - xam_int

public void setProperty(
String fieldName,
long value)

Sets the named field to the specified XAM Int.

• Parameters:

— fieldName - The name of the field to set.

— value - The XAM Int value to set.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.
59 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— InvalidFieldTypeException - The field is not a xam_int stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.13 setProperty - xam_string

public void setProperty(
String fieldName,
String value)

Sets the named field to the specified String.

• Parameters:

— fieldName - The name of the field to set.

— value - The string value to set. String length must not exceed the maximum XAM string limit.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - value is null or a non-valid UTF-8 string.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_string stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 60

Public Java API Reference © SNIA
— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.14 setProperty - xam_xuid

public void setProperty(
String fieldName,
XUID value)

Sets the named field to the specified XUID.

• Parameters:

— fieldName - The name of the field to set.

— value - The XUID value to set.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - value is null.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_xuid stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.15 getBoolean - xam_boolean

public boolean getBoolean(
String fieldName)
61 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
Gets the Boolean value of the named field.

• Parameters: fieldName - The name of the property to get the value.

• Returns: The Boolean value of the named field.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_boolean stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.16 getDatetime - xam_datetime

public java.util.Calendar getDateTime(
String fieldName)

Gets the DateTime value of the named field.

• Parameters: fieldName - The name of the property to get the value.

• Returns: The Calendar instance of the named field.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_datetime stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 62

Public Java API Reference © SNIA
— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.17 getDouble - xam_double

public double getDouble(
String fieldName)

Gets the XAM Float value of the named field.

• Parameters: fieldName - The name of the property to get the value.

• Returns: The double value of the named field.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_double stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.18 getLong - xam_int

public long getLong(
String fieldName)
63 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
Gets the XAM Int value of the named field.

• Parameters: fieldName - The name of the property to get the value.

• Returns: The Java long value of the named field.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_int stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.19 getString - xam_string

public java.lang.String getString(
String fieldName)

Gets the XAM string value of the named field.

• Parameters: fieldName - The name of the property to get the value.

• Returns: The Java string value of the named field.

• Throws:

— InvalidFieldNameException - fieldName is null or malformed.

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldTypeException - The field is not a xam_string stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 64

Public Java API Reference © SNIA
— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.20 getXUID - xam_xuid

public org.snia.xam.XUID getXUID(
String fieldName)

Gets the XUID value of the named field.

• Parameters: fieldName - The name of the property to get the value.

• Returns: The XUID value of the named field.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The field is not a xam_xuid stype.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

— FieldDoesNotExistException - The specified field does not exist.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.21 createXStream

public org.snia.xam.XStream createXStream(
String fieldName,
boolean binding,
String mimeType)
65 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
Creates a new XStream-valued field in the XSet. The new stream will be opened in WRITE-Truncate
mode, with a zero length value.

• Parameters:

— fieldName - The name of the new XStream.

— binding - TRUE if this field is to be BOUND.

— mimeType - The mime type of the new XStream.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - mimeType is null or malformed.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidOperationException - An attempt to create a bound field on this object is not supported.

— FieldExistsException - The specified field already exists.

— MaximumFieldException - Too many fields in the XSet.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.22 openXStream

public org.snia.xam.XStream openXStream(
String fieldName,
String mode)

Opens the named XStream for read or write. If the XStream has not been opened, the data manipulation
methods will throw an exception.

• Parameters:

— fieldName - The name of the XStream to be opened.

— mode - A mode value indicating if the XStream should be opened MODE_READ_ONLY,
MODE_WRITE_TRUNCATE, MODE_WRITE_APPEND.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 66

Public Java API Reference © SNIA
• Returns: The XStream containing the data.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.23 getFieldType

public java.lang.String getFieldType(
String fieldName)

Returns the MIME type of the specified field.

• Parameters: fieldName - Name of the field from which to get the type.

• Returns The string value of the field's type.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.
67 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.24 getFieldLength

public long getFieldLength(
String fieldName)

Returns the length of the field, in bytes.

• Parameters: fieldName - Name of the field from which to get the length.

• Returns: The number of bytes for the length of the field.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.25 getFieldBinding

public boolean getFieldBinding(
String fieldName)

Returns TRUE if the field is bound, FALSE otherwise.

• Parameters: fieldName - Name of the field from which to get the binding info.

• Returns

— The Boolean value of the binding mode of the field.

— The XStream containing the data.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 68

Public Java API Reference © SNIA
• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.26 getFieldReadOnly

public boolean getFieldReadOnly(String fieldName)

Returns TRUE if the readonly attribute of the field is TRUE; returns FALSE otherwise.

• Parameters: fieldName - Name of the field from which to get the readonly info.

• Returns: The Boolean value of the readonly mode of the property.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.
69 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
• Blocking: This method blocks until completion.

5.3.4.27 setFieldAsBinding

public void setFieldAsBinding(
String fieldName)

Sets the field binding attribute to TRUE. This method will only work on fields contained in an XSet.

• Parameters: fieldName - Name of the field to set the binding value.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidOperationException - The XAMLibrary or XSystem FieldContainer do not support
binding fields.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.28 setFieldAsNonbinding

public void setFieldAsNonbinding(
String fieldName)

Sets the field binding attribute to FALSE. This method will only work on fields contained in an XSet.

• Parameters:

— fieldName - Name of the field to set the binding value.

— The XStream containing the data.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 70

Public Java API Reference © SNIA
— InvalidFieldNameException - fieldName is null or malformed.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.4.29 deleteField

public void deleteField(
String fieldName)

Removes the named field from the field container. This method applies only to XSets.

• Parameters: fieldName - The name of the field to remove.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
71 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5.3.4.30 asyncOpenXStream
public org.snia.xam.XAsync asyncOpenXStream(
 String fieldName,
 String mode,
 long xopid,
 XAsyncListener listener)

This method will begin the asynchronous opening of XStream in either readonly, writeonly or appendonly
mode, based on the mode argument. The specified callback will be invoked as part of the asynchronous
opening. To monitor the status of this operation, the application can poll the Async instance that is
generated by this method. A handle to an Async instance is also passed to any provided callback method
when that callback method is invoked.

• Parameters:

— fieldName - The name of the XStream to be opened.

— mode - The mode the XSet should be opened in. One of the following:

• XStream.MODE_READ_ONLY

• XStream.MODE_WRITE_TRUNCATE

• XStream.MODE_WRITE_APPEND

— xopid - The application XOPID of this XAsync operation.

— listener - An optional parameter, which may be null, of the XASyncListener object to be
notified when the operation has completed.

• Returns: XAsync object representing this operation.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - mode is null, or xopid is already in use.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldDoesNotExistException - The specified field does not exist.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe. The XAsyncListener must be coded in a thread-safe
manner.

• Blocking: This method will return immediately.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 72

Public Java API Reference © SNIA
5.3.5 XStream methods

public interface org.snia.xam.XStream

XStreams are the interface to the content portions of a XAM Storage System. XStream implementations
are provided by a storage vendor in the vendor's packages. XStream instances perform the storage
vendor-specific functionality to interact with that storage vendor's XAM Storage System.

5.3.5.1 tell

public long tell()

Returns the position of the position indicator in the XStream.

• Returns: The cursor position.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion. public class org.snia.xam.

5.3.5.2 seek

public void seek(
long offset,
long whence)

Seeks to a specific location within the XStream.

• Parameters:

— offset - The number bytes of offset from the cursor position (whence).

— whence - One of SEEK_CUR, SEEK_SET, SEEK_END.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - whence is invalid.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XStreamException - Attempt to seek outside boundaries of the stream.
73 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion. public class org.snia.xam.

5.3.5.3 write

public long write(
byte[] buffer,
long offset,
long bytesToWrite)

Transfers byte values to the XStream. This method will not block if a partial write occurred. Multiple calls to
this method may be required to completely transfer the buffer.

• Parameters:

— buffer - The array of bytes to be transferred to the XStream.

— offset - The byte offset in the buffer from which to start writing.

— bytesToWrite - The number of bytes to write.

• Returns: The number of bytes written to the stream.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - buffer is null, or size mismatch between arguments.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XStreamException - Maximum stream size has been exceeded.

— XSetUnderHoldException - The XSet is being held and may not be changed.

— XStreamException - The stream in the wrong open mode, or in a corrupt, close, or abandoned
state.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until all data is completely written, but it will indicate the amount of
data that was written in each call. Subsequent calls to this method may be required to write the
buffer.

5.3.5.4 write

public long write(byte[] buffer
 long bytesToWrite)
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 74

Public Java API Reference © SNIA
Transfers byte values to the XStream. This method will not block if a partial write occurred. Multiple calls to
this method may be required to completely transfer the buffer.

• Parameters:

— buffer - The array of bytes to be transferred to the XStream.

— bytesToWrite - The number of bytes, beginning at the start of the buffer, to transfer to the
XStream.

• Returns: The number of bytes written to the stream.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - buffer is null, or size mismatch between arguments.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XStreamException - Maximum stream size has been exceeded.

— XSetUnderHoldException - The XSet is being held and may not be changed.

— XStreamException - The stream in the wrong open mode, or in a corrupt, close, or abandoned
state.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until all data is completely written, but it will indicate the amount of
data that was written in each call. Subsequent calls to this method may be required to write the
buffer.

5.3.5.5 write

public long write(byte[] buffer)

Transfers byte values to the XStream. This method will not block if a partial write occurred. Multiple calls to
this method may be required to completely transfer the buffer.

• Parameters: buffer - The array of bytes to be transferred to the XStream.

• Returns: The number of bytes written to the stream.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - buffer is null, or size mismatch between arguments.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.
75 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— XStreamException - Maximum stream size has been exceeded.

— XSetUnderHoldException - The XSet is being held and may not be changed.

— XStreamException - The stream in the wrong open mode, or in a corrupt, close, or abandoned
state.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method does block until all data is completely written, but it will indicate the amount
of data that was written in each call. Subsequent calls to this method may be required to write the
buffer.

5.3.5.6 read

public long read(
byte[] buffer,
long offset,
long bytesToRead)

Transfers byte values from the XStream to buffer. If there is not enough data left in the stream to fill the
buffer, that data is copied to the buffer, leaving the remaining bytes unchanged. This method does not
block if there are insufficient bytes to fill the buffer. Subsequent calls may be required to read the remaining
data in the XStream.

• Parameters:

— buffer - An array of byte values to read.

— offset - The byte offset in the buffer to start placing bytes read from the stream.

— bytesToRead - The maximum number of bytes to read.

• Returns: The actual number of bytes read. This value will be less than or equal to the
inBufferLength. When there is no more data to be read, a value of -1 will be set.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - buffer is null, or size mismatch between arguments.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until all data is completely read, but it will indicate the amount of data
that was read in each call. Subsequent calls to this method may be required to read the remainder
of the data.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 76

Public Java API Reference © SNIA
5.3.5.7 read

public long read(
byte[] buffer,
long bytesToRead)

Transfers byte values from the XStream to buffer. If there is not enough data left in the stream to fill the
buffer, that data is copied to the buffer, leaving the remaining bytes unchanged. This method does not
block if there are insufficient bytes to fill the buffer. Subsequent calls may be required to read the remaining
data in the XStream.

• Parameters:

— buffer - An array of byte values to read.

— bytesToRead - The maximum number of bytes to read.

• Returns: The actual number of bytes read. This value will be less than or equal to the
inBufferLength. When there is no more data to be read, a value of -1 will be set.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - buffer is null, or size mismatch between arguments.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe

• Blocking: This method does block until all data is completely read, but it will indicate the amount of
data that was read in each call. Subsequent calls to this method may be required to read the
remainder of the data.

5.3.5.8 read

public long read(byte[] buffer)

Transfers byte values from the XStream to buffer. If there is not enough data left in the stream to fill the
buffer, that data is copied to the buffer, leaving the remaining bytes unchanged. This method does not
block if there are insufficient bytes to fill the buffer. Subsequent calls may be required to read the remaining
data in the XStream.

• Parameters: buffer - An array of byte values to read.

• Returns: The actual number of bytes read. This value will be less than or equal to the
inBufferLength. When there is no more data to be read, a value of -1 will be set.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.
77 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
— InvalidArgumentException - buffer is null, or there is a size mismatch between arguments.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method does block until all data is completely read, but it will indicate the amount of
data that was read in each call. Subsequent calls to this method may be required to read the
remainder of the data.

5.3.5.9 close

public void close()

Closes the XStream, making this XStream instance unavailable for further use. The XStream needs to be
reopened to access this stream data.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XSetUnderHoldException - The XSet is being held and may not be changed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XStreamException - The stream was not open.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.5.10 abandon

public void abandon()

Abandons (loses) all pending work on this XStream, allowing it to be closed. This method is to be used
when the XStream is in the corrupt state and the application needs to perform error recovery and clean up.

CAUTION: Calling abandon may result in data loss if used inappropriately.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 78

Public Java API Reference © SNIA
• Blocking: This method blocks until completion.

5.3.5.11 asyncRead
public org.snia.xam.XAsync asyncRead(
 byte[] buffer,
 long bufferLength,
 long xopid,
 XAsyncListener listener)

Begins the asynchronous transfer of data from the storage system into the target buffer, up to the number
of bytes requested. The specified callback will be invoked as part of the asynchronous transfer. To monitor
the status of this operation, the application can poll the Async instance that is generated by this method. A
handle to an Async instance is also passed to any provided callback method, when that callback method is
invoked.

• Parameters:

— buffer - The byte buffer into which the date is read.

— bufferLength - The number of bytes to read. This must be less than or equal to the buffer
length.

— xopid - The application XOPID of this XAsync operation.

— listener - An optional parameter, which may be null, of the XASyncListener object to be
notified when the operation has completed.

• Returns: XAsync object representing this operation.

• Throws, or returns via the XAsync object:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - buffer is null, or xopid is already in use.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XStreamException - The stream is open in the wrong mode (write only).

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe. The XAsyncListener must be coded in a thread-safe
manner.

• Blocking: This method will return immediately.
79 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5.3.5.12 asyncWrite
public org.snia.xam.XAsync asyncWrite(
 byte[] buffer,
 long bufferLength,
 long xopid,
 XAsyncListener listener)

Begins the asynchronous transfer of data from the source buffer to the XAM Storage System, up to the
number of bytes requested. The specified callback will be invoked as part of the asynchronous transfer. To
monitor the status of this operation, the application can poll the Async instance that is generated by this
method. A handle to an Async instance is also passed to any provided callback method, when that
callback method is invoked.

Note: This method may fail with an error if the maximum number of bytes supported in an XStream is
reached. To determine the actual maximum number of bytes allowed in an XStream, an application
should evaluate .xsystem.limits.maxSizeOfXStream on the XSystem instance. For more
information on this topic, please consult [XAM-ARCH].

• Parameters:

— buffer - A byte array containing the data to be written to the stream.

— bufferLength - The number of bytes to be written from the buffer. This value must be less than
or equal to the actual buffer length.

— xopid - The application XOPID of this XAsync operation.

— listener - An optional parameter, which may be null, of the XASyncListener object to be
notified when the operation has completed.

• Returns: XAsync object representing this operation.

• Throws, or returns via the XAsync object:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - buffer is null, or xopid is already in use.

— XStreamAbandonException - The XStream is in the abandoned state and may only be closed.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XStreamException - The stream is open in the wrong mode (read only).

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe. The XAsyncListener must be coded in a thread-safe
manner.

• Blocking: This method will return immediately.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 80

Public Java API Reference © SNIA
5.3.5.13 asyncClose
public XAsync asyncClose(
 long xopid,
 XAsyncListener listener)

Begins the asynchronous closing of a previously opened XStream. Any resources that were allocated can
be released at this point. The specified callback will be invoked as part of the asynchronous close. To
monitor the status of this operation, the application can poll the Async instance that is generated by this
method. A handle to an Async instance is also passed to any provided callback method when that callback
method is invoked.

• Parameters:

— xopid - The application XOPID of this XAsync operation.

— listener - An optional parameter, which may be null, of the XASyncListener object to be
notified when the operation has completed.

• Returns: XAsync object representing this operation.

• Throws, or returns via the XAsync object:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - xopid is already in use.

— XStreamCorruptException - The XStream is in the corrupt state and may only be abandoned.

— XStreamException - The stream is not open.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe. The XAsyncListener must be coded in a thread-safe
manner.

• Blocking: This method will return immediately.

5.3.6 XAsync methods

5.3.6.1 halt

public void halt()

Stops the execution of the operations associated with the XAsync instance. This method may be used at
any time. If this method causes the XAsync instance to halt before it is complete, any get method invoked
on that XAsync will throw an AsyncHaltedException.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
81 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5.3.6.2 isComplete

public boolean isComplete()

Asynchronous XAM methods take, as an optional argument, an object which implements XAsyncListener.
The method XAsyncCallback will be called when the operation is completed (either successfully or
unsuccessfully).

• Returns: TRUE if the operation has completed; otherwise, it will return FALSE.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.6.3 getXOPID

public void getXOPID()

Retrieves the XOPID of the operations associated with the XAsync instance. This method may be used at
any time.

• Returns: The long XOPID value of the XAsync.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— AsyncHaltedException – This operation was programmatically halted and results are not
available.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.6.4 getStatus

public void getStatus()

Retrieves the XAM status of the operation associated with the XAsync instance. This method may be used
after the operation has transitioned to the completed state.

• Returns: Nothing. If an error occurred due to the XAsync operation, that exception will be thrown;
otherwise, the method simply returns.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 82

Public Java API Reference © SNIA
• Throws:

— Always throws the exception generated by the asynchronous operation. If no exception was
generated by the operation, this method simply returns.

— AsyncHaltedException – This operation was programmatically halted and results are not
available.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.6.5 getXSet

public XSet getXSet()

Retrieves the XSet reference associated with this XAsync instance. This is only valid if the operation was
not an “asyncOpenXSet” or “asyncCopyXSet”.

• Returns: The XSet reference from the XAsync.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— AsyncHaltedException – This operation was programmatically halted and results are not
available.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.6.6 getXStream

public XStream getXStream()

Retrieves the XStream reference associated with this XAsync instance. This is only valid if the operation
was not an “asyncOpenXStream”.

• Returns: The XStream reference from the XAsync.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— AsyncHaltedException – This operation was programmatically halted and results are not
available.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
83 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5.3.6.7 getXUID

public XUID getXUID()

Retrieves the XUID reference (if any) of the XSet associated with this XAsync instance. This method may
be used at any time.

• Returns: The XUID reference.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— AsyncHaltedException – This operation was programmatically halted and results are not
available.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.6.8 getBytesWritten

public long getBytesWritten()

Retrieves the number of bytes written by the operation associated with this XAsync instance. Not all
operations write bytes, and for those operations, it will always be set to zero. This method may be used at
any time.

• Returns: The number of bytes written.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— AsyncHaltedException – This operation was programmatically halted and results are not
available.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.6.9 getBytesRead

public long getBytesWritten()

Retrieves the number of bytes read by the operation associated with the XAsync instance. Not all
operations read bytes, and for those operations, it will always be set to zero. This method may be used at
any time.

• Returns: The number of bytes read.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 84

Public Java API Reference © SNIA
• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— AsyncHaltedException – This operation was programmatically halted and results are not
available.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.6.10 close

public void close()

Releases the resources of the operation associated with the XAsync instance and the resources of
XAsync operation itself. This method may be used after the operation has transitioned to the completed
state.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.7 XAsyncListener methods

5.3.7.1 XAsyncCallback

public void XAsyncCallback(XAsync asyncState)

Asynchronous XAM methods take, as an optional argument, an object which implements XAsyncListener.
The method XAsyncCallback will be called when the operation is completed (either successfully or
unsuccessfully).

• Throws: This method shall not throw any exceptions.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.8 XUID methods

public interface org.snia.xam.XUID

These methods represent the methods performed on a XAM XUID.
85 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5.3.8.1 toBytes

public byte[] toBytes()

Gets the raw array of bytes representing this XUID.

• Returns: The byte array.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.8.2 toString

public java.lang.String toString()

Converts this XUID to a base64-encoded String.

• Returns: The base64 version of this XUID.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.8.3 equals

public boolean equals(
Object x)

Compares two XUID values.

• Returns: TRUE if the two values are the same.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.9 XIterator methods

public interface org.snia.xam.XIterator

These methods represent the methods performed on a XAM XIterator.

5.3.9.1 next

public String next()

Retrieves the next field name (a string) from the XIterator.

• Returns: The name of the field selected by the XIterator.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 86

Public Java API Reference © SNIA
5.3.9.2 hasNext

public boolean hasNext()

Indicates if the XIterator has more elements to retrieve.

• Returns: TRUE if more elements remain in the XIterator.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.9.3 remove

public void remove()

This method is required by the java.util.Iterator interface. XAM does not support the removal of items in the
XIterator.

• Returns: Never. This method will always throw an exception.

• Throws: java.lang.UnsupportedOperationException, always.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.9.4 close

public void close()

Closes the XIterator and releases any resource associated with the XIterator.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.10 XAM exceptions

All XAMExceptions shall subclass from org.snia.xam.XAMException. Exceptions are thrown when any
erroneous condition occurs during execution of a XAM method. Applications may catch or pass exceptions
according to the normal Java exception processing. Applications are encouraged to handle exceptions
rather than passing them, as some exceptions may result in unusable XAM object instances (e.g.,
XSystems or XSets in a corrupt state).

Constructors

XAM Exceptions follow all of the standard rules for Java exceptions. The exception to this rule is to
integrate the XAM status code into the exception (see the exception method getStatusCode). To facilitate
integration with C-based VIMs, all XAM exceptions shall provide a status code and shall provide a
constructor to set the XAM Status codes. Generic constructors may be used in non-specific
circumstances, but the error code is not detailed enough to provide useful information to programmers.
XAM implementations and VIMs are encouraged to supply all exceptions with specific and unique error
codes.

The following examples show the recommended constructors.
87 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
public <ExceptionName>(String message, long status)

public <ExceptionName>(String message, Throwable cause, long status)

Methods

5.3.10.1 XAMException - Constructor
public XAMException()

This basic constructor is provided for compatibility with the Exception superclass. The XAMException
generated with this constructor shall be a nonspecific error and shall supply a generic status code.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.10.2 XAMException - Constructor
public XAMException(String arg0)

Provides the ability to specify the message (XAM error token). The XAMException generated with this
constructor shall provide a generic error code and the specific error token.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.10.3 XAMException - Constructor
public XAMException(String arg0)

Provides the ability to specify the message (XAM error token). The XAMException generated with this
constructor shall provide a generic error code and the specific error token.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.10.4 XAMException - Constructor
public XAMException(String arg0, long status)

Provides the ability to specify the message (XAM error token). The XAMException generated with this
constructor shall provide a the specific error token and the specified status code.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.10.5 XAMException - Constructor
public XAMException(Throwable arg0)

Provides compatibility with the Java Exception superclass. The resulting XAMException represents a non-
specific XAM error which wraps another Java Throwable. The exception shall contain a nonspecific error
code.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 88

Public Java API Reference © SNIA
5.3.10.6 XAMException - Constructor
public XAMException(String arg0, Throwable arg1, long status)

Provides compatibility with the Java Exception superclass. The resulting XAMException represents a
XAMException with a specific error token and specific error code.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.10.7 getStatusCode
public long getStatusCode();

Allows an application to retrieve the status code of the XAMException.

• Returns: The status code of the exception.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.10.8 getMessage
public String getMessage()

Allows an application to retrieve the error token for the XAMException.

• Returns: The error token message of the exception.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

5.3.11 XAM Specific Exception Classes

All of the exceptions described in Table 3 extend org.snia.xam.XAMException. Each exception subclass
shall provide two constructors that allow VIMs to create these exceptions with and without underlying
Throwable causes. Java XAM implementations are encouraged to coordinate error token and status code
values with other implementations.

All XAMExceptions and subclasses shall be in the org.snia.xam package. This section specifies all of the
standard exceptions supported by Java XAM implementations. Vendor-specific exceptions, thrown from
the VIM, shall extend XAMException or extend one of the standard XAM exceptions. VIM vendors are
encouraged to follow the exception object model specified in this section.

Table 3 lists all of the defined XAMException subclasses. Exceptions that subclass from XAMException
may be superclasses for other exception collections or generalized exception conditions that may occur in
a wide variety of situations.

Table 3 – Exceptions that extend XAMException

This exception... Is thrown when...

AsyncHaltedException an asynchronous operation has been programmatically halted. All XAsync get
methods shall throw this exception when an XAsync has been halted.

AsyncPendingException an asynchronous operation is pending on this object.

AuthenticationException an error occurred during the authentication process with the XSystem.
89 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
Table 4 lists all of the exceptions associated with FieldContainer-specific methods. All of the exceptions
listed in Table 4 shall extend the class org.snia.xam.FieldContainerException. Exception conditions not
listed in this table may be encoded as a generic FieldContainerException. Applications must check the
exceptions status code and message for more details.

Table 5 lists all exceptions associated with job-specific methods. All of the exceptions listed in Table 5
shall extend the class org.snia.xam.JobException. Exception conditions not listed in this table may be

AuthenticationExpiredException the current authentication has expired and the application needs to
reauthenticate in order to continue using the XSystem.

AuthorizationException the application is not authorized for an operation.

FieldContainerException an unspecified error occurred for the FieldContainer operation. It is the
superclass of all FieldContainer exceptions.

InsufficientResourcesException the XSystem does not have enough resources to complete the operation.

InvalidArgumentException arguments to a method are null or violate a constraint of the executed method.

InvalidOperationException when an application attempts to create a bound field on a XAMLibrary or
XSystem instance.

InvalidXUIDException an improperly formed XUID or an XUID failing the CRC check is used.

JobException an unspecified error occurred for the submitted job. It is the superclass of all
Job exceptions.

ObjectInUseException the operation failed because the object is in use elsewhere.

XSetException an unspecified error occurred for the XSet operation. It is the superclass of all
XSet exceptions.

XStreamException an unspecified error occurred for the XStream operation. It is the superclass of
all XStream exceptions.

XSystemException an unspecified error occurred for the XSystem operation. It is the superclass of
all XSystem exceptions.

Table 4 – Exceptions that extend FieldContainerException

This exception... Is thrown when...

FieldDoesNotExistException attempting to access a field which does not exist in a field container.

FieldExistsException trying to create a field which already exists in the field container. To create a
new field in the container, delete the field and then create the new field.

FieldInUseException trying to modify a field that is currently in use elsewhere.

FieldReadOnlyException attempting to modify a readonly field.

InvalidFieldNameException a field name being used is not valid.

InvalidFieldTypeException an improperly formed or illegal MIME type is specified.

MaximumFieldException attempting to create more fields than are currently supported by the XSystem.

Table 3 – Exceptions that extend XAMException

This exception... Is thrown when...
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 90

Public Java API Reference © SNIA
encoded as a generic JobException. Applications must check the exceptions status code and message for
more details.

Table 6 lists all exceptions associated with XSet-specific methods. All of the exceptions listed in Table 6
shall extend the class org.snia.xam.XSetException. Exception conditions not listed in this table may be
encoded as a generic XSetException. Applications must check the exceptions status code and message
for more details.

Table 7 lists all exceptions associated with XStream-specific methods. All of the exceptions listed in
Table 7 shall extend the class org.snia.xam.XStreamException. Exception conditions not listed in this table

Table 5 – Exceptions that extend JobException

This exception... Is thrown when...

JobCommandException some of the required job fields are not created before executing XSet.submit.

JobPermissionsException the authorized application does not have sufficient permission to submit a job.

JobResourceException the XSystem does not have sufficient resources to execute the job.

JobRunningException the job specified by the submitted XSet is already running.

JobUnsupportedException the submitted XSet specifies a job not supported on the XSystem.

QueryException an error occurred while preparing a query job.

Table 6 – Exceptions that extend XSetException

This exception... Is thrown when...

HoldIdException a malformed hold id is used, or a hold id has previously been used on the XSet.

InvalidXSetModeException the mode specified in the operation is not recognized by the XSystem.

PolicyMismatchException an imported XSet's policy does not match the policy present in the XSystem.

PolicyNameException the policy name used in the operation is either not allowed or is invalid in this
context.

RetentionValueException applying an illegal retention duration to an XSet. This is typically thrown when
the effective retention duration would be shortened using the specified value.

XSetInaccessibleException the XSet specified in the operation does not exist, or the authenticated
application is not allowed to access the XSet.

XSetUnderHoldException attempting to modify an XSet which has one or more holds applied.

XSetUnderRetentionException attempting to delete an XSet which is still being protected by retention.

XSetAbandonException the XSet is in the abandoned state and can only be closed.

XSetCorruptException the XSet is in the corrupt state and cannot be used.
91 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
may be encoded as a generic XStreamException. Applications must check the exceptions status code and
message for more details.

Table 8 lists all exceptions associated with XSystem-specific methods. All of the exceptions listed in
Table 8 shall extend the class org.snia.xam.XSystemException. Exception conditions not listed in this
table may be encoded as a generic XSystemException. Applications must check the exceptions status
code and message for more details.

5.4 Interface constant fields
The following constants are defined as fields in the specified interfaces. These constants should be used
by application programmers whenever possible to increase application portability.

5.4.1 org.snia.xam.XAMLibrary Fields

Table 9 describes the programming constants defined in the XAMLibrary interface.

Table 7 – Exceptions that extend XStreamException

This exception... Is thrown when...

InvalidXStreamModeException the mode specified to open an XStream is invalid.

XStreamAbandonException the XStream is in the abandoned state and may only be closed.

XStreamCorruptException the XStream is in a corrupt state and cannot be used.

Table 8 – Exceptions that extend XSystemException

This exception... Is thrown when...

ConnectException an error occurred during an attempt to connect to an XSystem.

InvalidXRIException the XRI used to connect is improperly formed.

VIMLoadException an error occurs when loading a VIM. This exception may be thrown during
connect but could also be thrown at other times.

XSystemCorruptException the XSystem is in a corrupt state and cannot be used. The application should
abandon the XSystem and then close it.

XSystemAbandonException the XSystem is in the abandoned state and may only be closed.

Table 9 – XAMLibrary Constants

Field Name Description

public static final TEXT_PLAIN_MIME_TYPE This is the ‘text/plain’ MIME for general .TXT XStreams.
Applications may need to add a character set to the
MIME type before stream creation.

public static final XUID_LIST_MIME_TYPE The MIME type of the query result stream.

public static final STYPE_BOOLEAN_MIME_TYPE The MIME type of XAM_BOOLEAN stypes.

public static final STYPE_INT_MIME_TYPE The MIME type of XAM_INT stypes.

public static final STYPE_DOUBLE_MIME_TYPE The MIME type of xam_DOUBLE stypes.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 92

Public Java API Reference © SNIA
public static final STYPE_STRING_MIME_TYPE The MIME type of XAM_STRING stypes.

public static final STYPE_DATETIME_MIME_TYPE The MIME type of XAM_DATETIME stypes.

public static final STYPE_XUID_MIME_TYPE The MIME type of XAM_XUID stypes

public static final XAM_PROTOCOL XAM XRI strings must begin with this protocol
designator.

public static final XAM_VIM_LIBRARY_TOKEN This character separates the VIM name from the XAM
Storage System name.

public static final DEFAULT_MIME_TYPE Applications may use this MIME type for data not
defined by any other appropriate MIME type.

public static final MIME_XUID_LIST_TYPE The MIME type of a list of fixed 80-byte records
containing XUID values.

public static final XAM_IDENTITY This XAM_STRING property indicates the origin of the
XAM Library. It is intended for debugging, and
applications should not code specific behavior with
respect to this value.

public static final XAM_LOG_LEVEL This XAM_STRING property is used to indicate the
current level of normal library logging. The higher the
value, the more detail is logged. Applications may set
this value to control the log.

public static final XAM_LOG_PATH This XAM_STRING property is used to indicate the path
used by the XAMLibrary for logging.

public static final XAM_LOG_VERBOSITY This XAM_STRING property is used to indicate the
current level of debug library logging. The higher the
value, the more detail is logged. Applications may set
this value to control the log.

public static int XAM_LOG_ALL This integer value is used in setting XAM_LOG_LEVEL
to indicate that ALL messages are to be logged.

public static int XAM_LOG_INFO This integer value is used in setting XAM_LOG_LEVEL
to indicate that INFO or more severe messages are to
be logged.

public static int XAM_LOG_WARN This integer value is used in setting XAM_LOG_LEVEL
to indicate that WARN or more severe messages are to
be logged.

public static int XAM_LOG_ERROR This integer value is used in setting XAM_LOG_LEVEL
to indicate that ERROR or more severe messages are
to be logged.

public static int XAM_LOG_FATAL This integer value is used in setting XAM_LOG_LEVEL
to indicate that FATAL or more severe messages are to
be logged.

public static int XAM_LOG_NONE This integer value is used in setting XAM_LOG_LEVEL
to indicate that NO messages are to be logged.

public static final XAM_API_LEVEL This XAM_STRING property is used to indicate which
version of the XAM API is implemented.

Table 9 – XAMLibrary Constants

Field Name Description
93 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5.4.2 org.snia.xam.XSystem Fields

Table 10 describes the programming constants defined in the XSystem interface.

public static final XAM_VIM_LIST This prefix is for the properties, in a XAM Library, listing
the names of the available VIMs.

public static final XAM_MAX_STRING The maximum number of characters allowed in a
XAM_STRING field.

Table 10 – XSystem constants

Field Name Description

public static final ACCESS_READ_OK Read access is OK. Used in accessXSet.

public static final ACCESS_WRITE_APPLICATION_OK Write access to application content is OK. Used in
accessXSet.

public static final ACCESS_WRITE_SYSTEM_OK Write access to system content is OK. Used in
accessXSet.

public static final ACCESS_CREATE_OK New XSets may be created. Used in accessXSet.

public static final ACCESS_DELETE_OK XSets may be deleted. Used in accessXSet.

public static final ACCESS_HOLD_OK Hold and release methods may be used. Used in
accessXSet.

public static final ACCESS_RETENTION_EVENT_OK Setting of retention start times and creating new
retention identifiers is allowed. Used in accessXSet.

public static final ACCESS_JOB_OK Running of jobs, including query, is allowed. Used in
accessXSet.

public static final ACCESS_JOB_COMMIT_OK Commit of jobs and results is allowed. Used in
accessXSet.

public static final XAM_XSYSTEM_INITIALIZING The XSystem instance is in the process of initializing.

public static final XAM_XSYSTEM_IDENTITY This XAM string property has the vendor identity of the
connected XSystem instance.

public static final XAM_XSYSTEM_TIME This XAM date property has the current time of the
connected XSystem instance. This value is advisory for
application.

public static final
XAM_XSYSTEM_LIMITS_MAX_FIELDS

This XAM int property (Java long) indicates the
maximum number of fields that may be created in an
XSet.

public static final
XAM_XSYSTEM_MAX_STREAM_SIZE

This XAM int property (Java long) indicates the
maximum size of an XStream.

public static final XAM_XSYSTEM_AUTH_SASL_LIST This property name prefix may be used to get the list of
SASL supported authentication mechanisms that are
supported by the connected XSystem.

Table 9 – XAMLibrary Constants

Field Name Description
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 94

Public Java API Reference © SNIA
public static final
XAM_XSYSTEM_AUTH_SASL_DEFAULT

This XAM string property has the name of default SASL
mechanism for the connected XSystem.

public static final
XAM_XSYSTEM_AUTH_GRANULE_LIST

This prefix of the auth granule list is to be used in an
XIterator pattern.

public static final
XAM_XSYSTEM_AUTH_IDENTITY_AUTHENTICATION

This XAM string property contains the value of the SASL
authentication within the scope of the current XAM
session. See the Security chapter of [XAM-ARCH].

public static final
XAM_XSYSTEM_AUTH_IDENTITY_AUTHORIZATION

This XAM string property contains the value of the SASL
authorization within the scope of the current XAM
session. See the Security chapter of [XAM-ARCH].

public static final
XAM_XSYSTEM_AUTH_EXPIRATION

This XAM int property indicates the number of seconds
remaining before the XSystem will require a
reauthentication. This value is estimated and should be
treated as a hint. A value of -1 (negative one) shall
mean that the expiration estimate is infinite, or that no
re-authentication is required.

public static final XAM_XSYSTEM_ACCESS This XAM Boolean property indicates if the XSystem will
support the XSet access control policy.

public static final
XAM_XSYSTEM_ACCESS_POLICY_LIST

Prefix of the access policy list, to be used in an XIterator
pattern.

public static final
XAM_XSYSTEM_JOB_COMMIT_SUPPORTED

This XAM Boolean property indicates if the XAM
Storage System is able to commit running XAM jobs.

public static final XAM_XSYSTEM_JOB_LIST This prefix of the job list is to be used in an XIterator
pattern.

public static final XAM_XSYSTEM_JOB_LIST_QUERY This XAM string property contains the job code for the
XAM query job, ‘xam.job.query’.

public static final
XAM_XSYSTEM_JOB_QUERY_CONTINUANCE_SUP
PORTED

This XAM Boolean property indicates if the XAM
Storage System will continue to run committed running
jobs.

public static final
XAM_XSYSTEM_JOB_QUERY_LEVEL1_SUPPORTED

This XAM Boolean property indicates if the XAM
Storage System supports XAM Query Level 1 syntax
and functionality. This value is TRUE on all XAM-
compliant systems.

public static final
XAM_XSYSTEM_JOB_QUERY_LEVEL2_SUPPORTED

This XAM Boolean property indicates if the XAM
Storage System supports XAM Query Level 2 syntax
and functionality. This functionality is optional for XAM
Storage Systems.

public static final
XAM_RETENTION_DURATION_POLICY_LIST

This prefix of the retention policy list is to be used in an
XIterator pattern.

public static final
XAM_RETENTION_ENABLED_POLICY_LIST

This prefix of the retention enabled policy list is to be
used in an XIterator pattern.

public static final XAM_DELETION_AUTODELETE This XAM Boolean property indicates if the XAM
Storage System supports setting the XSet expiration
autodelete functionality.

Table 10 – XSystem constants

Field Name Description
95 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
5.4.3 org.snia.xam.XSet Fields

Table 11 describes the programming constants defined in the XSet interface.

public static final
XAM_DELETION_AUTODELETE_POLICY_LIST

This prefix of a list of autodelete policy names is to be
used in an XIterator pattern.

public static final XAM_DELETION_SHRED This XAM Boolean property indicates if the XAM
Storage System supports setting the XSet shred
functionality.

public static final
XAM_DELETION_SHRED_POLICY_LIST

This prefix of a list of shred policy names is to be used
in an XIterator pattern.

public static final XAM_STORAGE_POLICY_LIST This prefix of the storage policy list is to be used in an
XIterator pattern.

public static final XAM_MANAGEMENT_POLICY_LIST This prefix of the management policy list is to be used in
an XIterator pattern.

public static final
XAM_MANAGEMENT_POLICY_DEFAULT

This XAM string policy contains the default XSet
management policy name.

Table 11 – XSet Constants

Field Name Description

public static final MODE_READ_ONLY Opens an XSet in READONLY mode. Only reading of
field operations is permitted on an XSet opened in this
mode. All attempts to commit will fail. Modification
attempts should fail as early as possible.

public static final MODE_RESTRICTED Opens an XSet in RESTRICTED mode. Reading of all
fields is allowed and modifications of UNBOUND fields
is permitted. Commiting an XSet with a BINDING
modification will fail, and attempts to modify a BOUND
field or change the BINDING attribute of a field should
fail as soon as possible.

public static final MODE_UNRESTRICTED Opens an XSet in UNRESTRICTED mode. This mode
allows reading and modification of all fields. Changing
the BINDING attribute or changing the value of a
BOUND field will result in a the creation of a new XSet
with a new XUID value on commit.

public static final XAM_TIME_CREATION The xam_datetime property indicating when the XSet
was created. This time is earlier than the commit time.

public static final XAM_TIME_COMMIT The xam_datetime property indicating when the XSet
was persistently stored in the XSystem.

public static final XAM_TIME_XUID The xam_datetime property indicating when the XUID
was assigned to the XSet.

public static final XAM_TIME_ACCESS The xam_datetime property indicating when the XSet
was last accessed.

Table 10 – XSystem constants

Field Name Description
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 96

Public Java API Reference © SNIA
public static final XAM_TIME_RESIDENCY The xam_datetime property indicating when the XSet
was first stored in this XAM Storage System.

public static final XAM_XUID The xam_xuid property containing the XUID for the
specified XSet.

public static final XAM_DIRTY The xam_boolean property indicating if the specified
XSet has been modified and not committed.

public static final XAM_MANAGEMENT_POLICY The policy property indicating which policy is to be used
for retention, deletion, and storage behavior in the
absence of both value and policy management
properties.

public final static XAM_RETENTION_LIST Prefix of the retention list. Used by XIterators to obtain
the list of retention IDs applied to this XSet.

public final static XAM_RETENTION_LIST_BASE

Prefix of the retention properties for the base retention
ID. Used by XIterators to obtain a list of the retention
settings.

public final static XAM_RETENTION_LIST_EVENT Prefix of the retention properties for the event retention
ID. Used by XIterators to obtain a list of the retention
settings.

public final static
XAM_RETENTION_BASE_STARTTIME

The xam_datetime property containing the start time of
the base retention ID.

public final static
XAM_RETENTION_BASE_DURATION

The xam_int property containing the duration, in
milliseconds, of the base retention ID.

public final static
XAM_RETENTION_BASE_DURATION_POLICY

The xam_string property containing the name of the
duration policy, if applied, for the base retention ID.

public final static
XAM_RETENTION_EVENT_STARTTIME

The xam_datetime property containing the start time of
the event retention ID.

public final static
XAM_RETENTION_EVENT_DURATION

The xam_int property containing the duration, in
milliseconds, of the event retention ID.

public final static
XAM_RETENTION_EVENT_DURATION_POLICY

The xam_string property containing the name of the
duration policy, if applied, for the event retention ID.

public final static
XAM_RETENTION_EVENT_ENABLED

The xam_boolean property containing the enabled
status of the event retention ID.

public final static
XAM_RETENTION_EVENT_ENABLED_POLICY

The xam_string property containing the name of the
event policy, if applied, for the event retention ID.

public final static XAM_HOLD The xam_boolean property indicating if this XSet is
currently under hold.

public static final XAM_AUTODELETE_POLICY The policy property indicating if autodelete is to be
enabled for this XSet in the absence of the autodelete
property.

public static final XAM_DELETION_AUTODELETE The xam_boolean property indicating if the XSet is to be
deleted automatically when the document expires.

public static final XAM_DELETION_SHRED_POLICY The policy property indicating if shred is to be enabled
for this XSet in the absence of the shred property.

Table 11 – XSet Constants

Field Name Description
97 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Public Java API Reference
public static final XAM_DELETION_SHRED The xam_boolean property indicating if the XSet is to be
shredded once it is deleted.

public static final XAM_STORAGE_POLICY The policy property indicating how the XSet is to
managed with respect to storage management
capabilities.

public static final XAM_JOB_STATUS The xam_string property indicating the runtime status of
a job.

public static final XAM_JOB_STATUS_NEW The string value for the property XAM_JOB_STATUS
indicating that the job is submitted but not yet started by
the system.

public static final XAM_JOB_STATUS_STARTING The string value for the property XAM_JOB_STATUS
indicating that the job is being initialized and is not yet
running.

public static final XAM_JOB_STATUS_RUNNING The string value for the property XAM_JOB_STATUS
indicating that the job is running.

public static final
XAM_JOB_STATUS_SHUTTING_DOWN

The string value for the property XAM_JOB_STATUS
indicating that the job is in the process of stopping for
some reason.

public static final XAM_JOB_STATUS_COMPLETE The string value for the property XAM_JOB_STATUS
indicating that the job is no longer running and has run
to the end.

public static final XAM_JOB_STATUS_SUSPENDED The string value for the property XAM_JOB_STATUS
indicating that the job has temporarily ceased
processing, but it will resume.

public static final XAM_JOB_STATUS_HALTED The string value for the property XAM_JOB_STATUS
indicating that the job has been stopped by an
application action.

public static final XAM_JOB_STATUS_KILLED The string value for the property XAM_JOB_STATUS
indicating that the job has been stopped by a system
action.

public static final
XAM_JOB_ERROR_LEVEL_NOT_SUPPORTED

The string value for the property XAM_JOB_STATUS
indicating that the query level specified was not
supported by this XSystem.

public static final
XAM_JOB_ERROR_INVALID_COMMAND_SYNTAX

The string value for the property XAM_JOB_STATUS
indicating that the job command has a syntax error
which prevents it from executing.

public static final
XAM_JOB_ERROR_INSUFFICIENT_PERMISSIONS

The string value for the property XAM_JOB_STATUS
indicating that the authenticated application is not
authorized to execute the job.

public static final
XAM_JOB_ERROR_INSUFFICIENT_RESOURCES

The string value for the property XAM_JOB_STATUS
indicating that the XSystem does not have enough
resources to complete the job.

public static final XAM_JOB_ERRORHEALTH The xam_string property which indicates if the job has
encountered an error.

Table 11 – XSet Constants

Field Name Description
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 98

Public Java API Reference © SNIA
5.4.4 org.snia.xam.XStream Constants

Table 12 lists the programming constants defined in the XStream interface.

public static final XAM_JOB_ERRORHEALTH_OK The string value for the property XAM_ERRORHEALTH
which indicates that the job is “OK”.

public static final XAM_JOB_ERRORHEALTH_ERROR The string value for the property XAM_ERRORHEALTH
which indicates that the job has encountered an error.

public static final XAM_JOB_ERROR The xam_string property that indicates which error the
job has encountered.

public static final XAM_JOB_QUERY The string constant to be placed in the
XAM_JOB_COMMAND property to create and run a
XAM query job.

public static final XAM_JOB_COMMAND The xam_string property indicating what type of job is to
be executed.

public static final XAM_JOB_QUERY_COMMAND The XStream field containing the actual query string for
a XAM query job.

public static final XAM_JOB_QUERY_RESULTS The XStream field containing the XUID results from a
query job.

public static final
XAM_JOB_QUERY_RESULTS_COUNT

The xam_int property containing the number of XUIDs
contained in the XAM_JOB_QUERY_RESULTS stream.

public static final XAM_JOB_QUERY_LEVEL The xam_string property indicating the level of the
query, as determined by the XAM Storage System.

public static final XAM_ACCESS_POLICY The xam_string property containing the name of the
access control policy, if applied, for this XSet.

Table 12 – XStream Constants

Field Name Description

public static final SEEK_SET Seek to offset from the beginning of the stream. Used in
seek.

public static final SEEK_CUR Seek to offset from the current cursor. Used in seek.

public static final SEEK_END Seek to the offset from the end of the stream. Used in
seek.

public static final MODE_READ_ONLY Open mode readonly. No changes to the stream
contents are allowed. Used in openXStream.

public static final MODE_WRITE_TRUNCATE Open mode writeonly, truncate contents. This mode will
erase all stream contents on openXStream. Used in
openXStream.

public static final MODE_WRITE_APPEND Open mode writeonly, append to contents. This mode
preserves contents of the stream and the current write
position is placed at the end of the stream. Used in
openXStream.

Table 11 – XSet Constants

Field Name Description
99 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA Private (VIM) Java API Reference

XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 100

6 Private (VIM) Java API Reference

6.1 VIM methods
public interface org.snia.xam.vim.VIM

This interface provides a series of methods allowing the XAM Library to communicate to VIMs. These
methods aren't available to application programs, as VIM objects are not available. A VIM object
implements the vendor-specific logic to connect to a particular XAM Storage System. The createXSystem
method is used by the XAM Library to cause the VIM to perform vendor-specific initialization logic and
provide the XSystem. The provided XSystem instance is implemented in the vendor's package space but
implements the org.snia.xam.XSystem interface.

VIM authors should note that the VIM interface for the Java libraries is very different than the VIM
interfaces required by the C implementation of a XAM Library. The reason for this is because of basic
differences between polymorphism implemented in C and Java. The Java implementation of the XAM
Library strongly leverages the use of polymorphism. When the application connects to a XAM Storage
System, the VIM object returns an object that implements the XSystem interface. This object is not part of
the XAM Library; it is completely storage vendor defined. This vendor object contains the code appropriate
to interact with the storage vendor’s system. Likewise, XSet instances are not part of the XAM Library. For
more information, see Section 4.4, “VIM implementation models”.

6.1.1 XSystem createXSystem

public org.snia.xam.XSystem createXSystem()

This factory method is used by the XAM Library to obtain a new, unconnected and unauthenticated
XSystem. This XSystem instance will be initialized according to the XSystem initialization sequence
detailed in the XAM Architecture Specification. For more information, see [XAM-ARCH].

• Throws: XAMException, if the VIM is unable to provide an XSystem instance.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until complete.

© SNIA
Annex A
(normative)

Public Interfaces

The following interfaces contain the Java code for implementing the methods described in Chapter 5,
“Public Java API Reference”. Comments and Javadoc comments have been removed for brevity.

A.1 XAMLibrary.java
package org.snia.xam;

/**
 * A XAM System represents the XAM Library running locally. An application
 * wanting to use the XAM Library must create an instance of the XAM Library.
 * This library object will manage and create instances of VIMs in order to
 * connect to XAM Storage Systems. The XAM Library object may also contain
 * toolkit functions for convenience.
 */
public interface XAMLibrary extends FieldContainer
{
 public final static String STYPE_BOOLEAN_MIME_TYPE =

"application/vnd.snia.xam.boolean";

 public final static String STYPE_INT_MIME_TYPE =
"application/vnd.snia.xam.int";

 public final static String STYPE_DOUBLE_MIME_TYPE =
"application/vnd.snia.xam.double";

 public final static String STYPE_STRING_MIME_TYPE =
"application/vnd.snia.xam.string";

 public final static String STYPE_DATETIME_MIME_TYPE =
"application/vnd.snia.xam.datetime";

 public final static String STYPE_XUID_MIME_TYPE =
"application/vnd.snia.xam.xuid";

 public final static String TEXT_PLAIN_MIME_TYPE = "text/plain";

 public final static String XUID_LIST_MIME_TYPE =

"application/vnd.snia.query.xuid_list";

 public final static String XAM_PROTOCOL = "snia-xam://";

 public final static String XAM_VIM_LIBRARY_TOKEN = "!";

 public static final String DEFAULT_MIME_TYPE = "application/octet-stream";

 // == XAM Library Properties ==
 public final static String XAM_IDENTITY = ".xam.identity";

 public final static String XAM_LOG_LEVEL = ".xam.log.level";
101 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 public final static String XAM_LOG_VERBOSITY = ".xam.log.verbosity";

 public final static String XAM_LOG_PATH = ".xam.log.path";

 public static final String XAM_LOG_MAX_ROLLOVERS =
".xam.log.max.rollovers";

 public static final String XAM_LOG_MAX_SIZE = ".xam.log.max.size";

 public static final String XAM_LOG_APPEND = ".xam.log.append";

 public final static String XAM_API_LEVEL = ".xam.apiLevel";

 public final static String XAM_VIM_LIST = ".xam.vim.list.";

 // Useful constants.
 public final static int XAM_MAX_STRING = 512;

 public final static long XAM_LOG_ALL = 5;
 public final static long XAM_LOG_INFO = 4;
 public final static long XAM_LOG_WARN = 3;
 public final static long XAM_LOG_ERROR = 2;
 public final static long XAM_LOG_FATAL = 1;
 public final static long XAM_LOG_OFF = 0;

 public XSystem connect(String XRI)
throws InvalidXRIException, ConnectException,
 VIMLoadException, XAMException;

}

A.2 XSystem.java
package org.snia.xam;

import java.util.Calendar;

/**
 * Represents a connection to a XAM Storage System. An XSystem instance
 * has been implemented in the storage vendor’s packages. Storage
 * vendor-specific XSystem instances will perform their specified
 * interactions with XAM Storage Systems and act as factory sources for
 * XSet and XStream objects (via create/open XSet or XStream).
 */
 public interface XSystem extends FieldContainer
 {
 // The following bit fields are defined for accessXSet().
 public final static long ACCESS_READ_OK = 0x80000000L;
 public final static long ACCESS_WRITE_APPLICATION_OK = 0x40000000L;
 public final static long ACCESS_WRITE_SYSTEM_OK = 0x20000000L;
 public final static long ACCESS_CREATE_OK = 0x10000000L;
 public final static long ACCESS_DELETE_OK = 0x08000000L;
 public final static long ACCESS_HOLD_OK = 0x04000000L;
 public final static long ACCESS_RETENTION_EVENT_OK = 0x02000000L;
 public final static long ACCESS_JOB_OK = 0x01000000L;
 public final static long ACCESS_JOB_COMMIT_OK = 0x00800000L
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 102

© SNIA
 final int XAM_SASL_COMPLETE = 0;
 final int XAM_SASL_IN_PROCESS = 1;

 // == XSystem Properties ==
 public final static String XAM_XSYSTEM_INITIALIZING =

 ".xsystem.initializing";

 public final String XAM_XSYSTEM_IDENTITY = ".xsystem.identity";

 public final String XAM_XSYSTEM_TIME = ".xsystem.time";

 public final String XAM_XSYSTEM_LIMITS_MAX_FIELDS =
 ".xsystem.limits.maxFieldsPerXSet";

 public final String XAM_XSYSTEM_LIMITS_MAX_STREAM_SIZE =
 ".xsystem.limits.maxSizeOfXStream";

 public final String XAM_XSYSTEM_AUTH_SASL_LIST =
 ".xsystem.auth.SASLmechanism.list.";

 public final String XAM_XSYSTEM_AUTH_SASL_DEFAULT =
 ".xsystem.auth.SASLmechanism.default";

 public final String XAM_XSYSTEM_AUTH_GRANULE_LIST =
 ".xsystem.auth.granule.list.";

 public final String XAM_XSYSTEM_AUTH_IDENTITY_AUTHENTICATION =
 ".xsystem.auth.identity.authentication";

 public final String XAM_XSYSTEM_AUTH_IDENTITY_AUTHORIZATION =
 ".xsystem.auth.identity.authorization";

 public final String XAM_XSYSTEM_AUTH_EXPIRATION =
".xsystem.auth.expiration";

 public final String XAM_SYSTEM_ACCESS = ".xsystem.access";

 public final String XAM_SYSTEM_ACCESS_POLICY_LIST =
 ".xsystem.access.policy.list.";

 public final String XAM_XSYSTEM_JOB_COMMIT_SUPPORTED =
 ".xsystem.job.commit.supported";

 public final String XAM_XSYSTEM_JOB_LIST = ".xsystem.job.list.";

 public final String XAM_XSYSTEM_JOB_LIST_QUERY =
".xsystem.job.list.xam.job.query";

 public final String XAM_XSYSTEM_JOB_QUERY_CONTINUANCE_SUPPORTED =
 ".xsystem.job.xam.job.query.continuance.supported";

 public final String XAM_XSYSTEM_JOB_QUERY_LEVEL2_SUPPORTED =
 ".xsystem.job.xam.job.query.level1.supported";

 public final String XAM_XSYSTEM_JOB_QUERY_LEVEL1_SUPPORTED =
103 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 ".xsystem.job.xam.job.query.level2.supported";

 public final String XAM_RETENTION_DURATION_POLICY_LIST =
 ".xsystem.retention.duration.policy.list.";

 public final String XAM_RETENTION_ENABLED_POLICY_LIST =
 ".xsystem.retention.enabled.policy.list.";

 public final String XAM_DELETION_AUTODELETE =
".xsystem.deletion.autodelete";

 public final String XAM_AUTODELETE_POLICY_LIST =
 ".xsystem.deletion.autodelete.policy.list.";

 public final String XAM_DELETION_SHRED = ".xsystem.deletion.shred";

 public final String XAM_DELETION_SHRED_POLICY_LIST =
 ".xsystem.deletion.shred.policy.list.";

 public final String XAM_STORAGE_POLICY_LIST =
 ".xsystem.storage.policy.list.";

 public final String XAM_MANAGEMENT_POLICY_LIST =
 ".xsystem.management.policy.list.";

 public final String XAM_MANAGEMENT_POLICY_DEFAULT =
 ".xsystem.management.policy.default";

 // == XAM Storage System Management
 public void connect(String xri)

throws XAMException;

 public byte[] authenticate(byte[] buffer)
throws AuthenticationException, InvalidArgumentException,
 XAMException;

 public void close()
throws AuthenticationExpiredException, ObjectInUseException,
 XAMException;

 public void abandon()
throws AuthenticationExpiredException, XAMException;

 public XUID createXUID(String inBase64XUID)
 throws AuthenticationExpiredException, InvalidXUIDException,

XAMException;

 public XUID createXUID(byte inBinaryXUID[])
 throws AuXAMException;

 // == XSet management ==
 public void deleteXSet(XUID xsetid)

throws AuthorizationException, AuthenticationExpiredException,
 XSetUnderRetentionException, XSetUnderHoldException,
 InvalidArgumentException, XSetInaccessibleException,
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 104

© SNIA
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public boolean isXSetRetained(XUID xsetid)
throws AuthenticationExpiredException, InvalidArgumentException,

 XSetInaccessibleException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 public void holdXSet(XUID xsetid, String holdID)
throws AuthenticationExpiredException, AuthorizationException,
 InvalidFieldNameException, HoldIdException,
 InvalidArgumentException, XSetInaccessibleException,
 XSystemAbandonException, XSystemCorruptException,

 XAMException;

 public void releaseXSet(XUID xsetid, String holdID)
throws AuthenticationExpiredException,
 AuthorizationException, HoldIdException,
 InvalidArgumentException, XSetInaccessibleException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public boolean accessXSet(XUID xsetid, long mode)
throws AuthenticationExpiredException, InvalidArgumentException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public Calendar getXSetAccessTime(XUID xsetid)
throws AuthenticationExpiredException, InvalidArgumentException,
 XSetInaccessibleException, XSystemAbandonException,
 XSetCorruptException, XAMException;

 public XSet createXSet(String createMode)
throws AuthenticationExpiredException, AuthorizationException,
 InvalidArgumentException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 public XSet openXSet(XUID xsetid, String openMode)
throws XAMException;

 public XSet copyXSet(XUID xsetid, String copyMode)
throws AuthenticationExpiredException, AuthorizationException,
 InvalidArgumentException, XSetInaccessibleException,
 XSystemAbandonException, XSystemCorruptException
 XAMException;

 // == Asynchronous Operations
 public XAsync asyncCopyXSet(XUID inXuid,
 String mode,
 long xopid,
 XAsyncListener listener)

throws AuthorizationException, AuthenticationExpirationException,
 InvalidArgumentException, XSetInaccessibleException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;
105 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 public XAsync asyncOpenXSet(XUID inXuid,
 String mode,
 long xopid,
 XAsyncListener listener)

throws AuthenticationExpiredException, AuthorizationException,
 InvalidArgumentException, XSetInaccessibleException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

}

A.3 XSet.java
package org.snia.xam;

/**
 * An XSet is the basic unit of storage for the XAM System. XSet instances are
 * implemented by storage vendors in the storage vendor’s packages. These XSet
 * instances will perform storage vendor-specific interactions with the XAM
 * Storage System, as well as acting as a factory source for XStream objects
 * (via create/open methods).
 * NOTE: Changing the BINDING information on any persistently stored XSet field
 * will result in a new XSet being created on commit. This is only TRUE when
 * the XSet has been opened in UNRESTRICTED mode. Changes may be altering the
 * value of a BOUND field, or changing the BINDING attribute of a field.
 */
public interface XSet extends FieldContainer
{
 public final static String MODE_READ_ONLY = "readonly";

 public final static String MODE_RESTRICTED = "restricted";

 public final static String MODE_UNRESTRICTED = "unrestricted";

 // == Basic Built-in Fields ==
 public final static String XAM_TIME_CREATION = ".xset.time.creation";

 public final static String XAM_TIME_XUID = ".xset.time.xuid";

 public final static String XAM_TIME_COMMIT = ".xset.time.commit";

 public final static String XAM_TIME_ACCESS = ".xset.time.access";

 public final static String XAM_TIME_RESIDENCY = ".xset.time.residency";

 public final static String XAM_XUID = ".xset.xuid";

 public final static String XAM_DIRTY = ".xset.dirty";

 // == Management Fields ==/
 public final static String XAM_RETENTION_LIST = ".xset.retention.list.";

 public final static String XAM_RETENTION_LIST_BASE =
".xset.retention.list.base";
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 106

© SNIA
 public final static String XAM_RETENTION_LIST_EVENT =
".xset.retention.list.event";

 public final static String XAM_RETENTION_BASE_STARTTIME =
".xset.retention.base.starttime";

 public final static String XAM_RETENTION_BASE_ENABLED =
".xset.retention.base.enabled";

 public final static String XAM_RETENTION_BASE_DURATION =
".xset.retention.base.duration";

 public final static Strign XAM_RETENTION_BASE_ENABLED_POLICY =
".xset.retention.base.enabled.policy";

 public final static String XAM_RETENTION_BASE_DURATION_POLICY =
 ".xset.retention.base.duration.policy";

 public final static String XAM_RETENTION_EVENT_STARTTIME =
".xset.retention.event.starttime";

 public final static String XAM_RETENTION_EVENT_DURATION =
".xset.retention.event.duration";

 public final static String XAM_RETENTION_EVENT_ENABLED =
".xset.retention.event.enabled";

 public final static String XAM_RETENTION_EVENT_DURATION_POLICY =
".xset.retention.event.duration.policy";

 public final static String XAM_RETENTION_EVENT_ENABLED_POLICY =
".xset.retention.event.enabled.policy";

 public final static String XSET_HOLD = ".xset.hold";

 public final static String XSET_HOLD_LIST = ".xset.hold.list.";

 public final static String XAM_DELETION_AUTODELETE =
".xset.deletion.autodelete";

 public final static String XAM_DELETION_AUTODELETE_POLICY =
 ".xset.deletion.autodelete.policy";

 public final static String XAM_DELETION_SHRED_POLICY =
".xset.deletion.shred.policy";

 public final static String XAM_DELETION_SHRED =
".xset.deletion.shred";

 public final static String XAM_STORAGE_POLICY = ".xset.storage.policy";

 public final static String XAM_MANAGEMENT_POLICY =
".xset.management.policy";
107 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 public final static String XAM_ACCESS_POLICY = ".xset.access.policy";

 // == Job Properties/Values
 public final static String XAM_JOB_STATUS = ".xam.job.status";

 public final static String XAM_JOB_STATUS_NEW = "NEW";

 public final static String XAM_JOB_STATUS_STARTING = "STARTING";

 public final static String XAM_JOB_STATUS_RUNNING = "RUNNING";

 public final static String XAM_JOB_STATUS_SHUTTING_DOWN = "SHUTTING DOWN";

 public final static String XAM_JOB_STATUS_COMPLETE = "COMPLETE";

 public final static String XAM_JOB_STATUS_SUSPENDED = "SUSPENDED";

 public final static String XAM_JOB_STATUS_HALTED = "HALTED";

 public final static String XAM_JOB_STATUS_KILLED = "KILLED";

 public final static String XAM_JOB_ERRORHEALTH = ".xam.job.errorhealth";

 public final static String XAM_JOB_ERRORHEALTH_OK = "OK";

 public final static String XAM_JOB_ERRORHEALTH_ERROR = "ERROR";

 public final static String XAM_JOB_ERROR = ".xam.job.error";

 // == Query Job Fields ==
 public final static String XAM_JOB_QUERY = "xam.job.query";

 public final static String XAM_JOB_COMMAND = "org.snia.xam.job.command";

 public final static String XAM_JOB_QUERY_COMMAND = "xam.job.query.command";

 public final static String XAM_JOB_QUERY_RESULTS = "xam.job.query.results";

 public final static String XAM_JOB_QUERY_RESULTS_COUNT =
 "xam.job.query.results.count";

 public final static String XAM_JOB_QUERY_LEVEL = "xam.job.query.level";

 public final static String XAM_JOB_ERROR_LEVEL_NOT_SUPPORTED =
 "xam.job.query::level_not_supported";

 public static final String XAM_JOB_ERROR_INVALID_COMMAND_SYNTAX =
 "xam.job.query::invalid_command_syntax";

 public static final String XAM_JOB_ERROR_INSUFFICIENT_PERMISSIONS =
 "xam.job.query::insufficient_permission";

 public static final String XAM_JOB_ERROR_INSUFFICIENT_RESOURCES =
 "xam.job.query::insufficient_resources";
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 108

© SNIA
 // == Data Management ==
 public void applyAccessPolicy(boolean binding,
 String policyName)
 throws AuthenticationExpiredException, MaximumFieldException,

 PolicyNameException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public void resetAccessFields()
throws AuthenticationExpiredException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public void applyManagementPolicy(boolean binding, String policyName)
 throws MaximumFieldException, PolicyNameException,

 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void resetManagementFields()
throws AuthenticationExpiredException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public void createRetention(boolean binding,
 String retentionID)
 throws AuthenticationExpiredException, InvalidArgumentException,

 InvalidFieldNameException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public void setRetentionEnabledFlag(String retentionID,
 boolean binding,
 boolean enabled)
 throws AuthenticationExpiredException, InvalidArgumentException,

 InvalidFieldNameException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public void applyRetentionEnabledPolicy(String retentionID,
 boolean binding,
 String policyName)
 throws AuthenticationExpiredException, InvalidArgumentException,

 InvalidFieldNameException, PolicyNameException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void setRetentionDuration(String retentionID,
 boolean binding,
 long duration)
 throws AuthenticationExpiredException, InvalidArgumentException,

 InvalidFieldNameException, RetentionValueException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void applyRetentionDurationPolicy(String retentionID,
 boolean binding,
 String policyName)
 throws AuthenticationExpiredException, InvalidArgumentException,

 InvalidFieldNameException, PolicyNameException,
109 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void setRetentionStarttime(String retentionID,
 boolean binding)
 throws AuthenticationExpiredException, FieldExistsException,

 InvalidArgumentException, InvalidFieldNameException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void setBaseRetention(boolean binding,
 long duration)
 throws AuthenticationExpiredException, RetentionValueException,

 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void applyBaseRetentionPolicy(boolean binding,
 String policyName)
 throws AuthenticationExpiredException, InvalidArgumentException,
 InvalidFieldNameException, PolicyNameException,
 ObjectInUseException, XSetABandonException,

 XSetCorruptException, XAMException;

 public void setAutoDelete(boolean binding, boolean autoDelete)
throws AuthenticationExpiredException, MaximumFieldException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void applyAutoDeletePolicy(boolean binding, String policyName)
throws AuthenticationExpiredException, PolicyNameException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void setShred(boolean binding, boolean shred)
throws AuthenticationExpiredException, MaximumFieldException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void applyShredPolicy(boolean binding, String policyName0
throws AuthenticationExpiredException, MaximumFieldException,
 PolicyNameException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public boolean getActualShred()
throws AuthenticationExpiredException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public void applyStoragePolicy(boolean binding, String policyName)
throws AuthenticationExpiredException, MaximumFieldException,
 PolicyNameException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public long getActualRetentionDuration(String retentionID)
throws AuthenticationExpiredException, InvalidArgumentException,
 ObjectInUseException, XSetAbandonException,
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 110

© SNIA
 XAMCorruptException, XAMException;

 public boolean getActualRetentionEnabled(String retentionID)
throws AuthenticationExpiredException, InvalidArgumentException,
 ObjectInUseException, XSetAbandonException,
 XAMCorruptException, XAMException;

 public boolean getActualAutoDelete()
throws AuthenticationExpiredException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 // == XSet Operations ==
 public XUID commit()

throws AuthorizationExpiredException, AuthorizationException,
 JobIsRunningException, XSetUnderHoldException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void close()
throws AuthenticationExpiredException, ObjectInUseException,
 XSetCorruptException, XAMException;

 public void abandon()
throws AuthenticationExpiredException, XAMException;

 // == Job Methods ==
 public void submitJob()
 throws AuthenticationExpiredException, AuthorizationException,

 JobCommandException, JobUnsupportedException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 public void haltJob()
throws AuthorizationException, AuthenticationException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

 // == Import/Export ==
 public XStream openExportXStream()

throws AuthenticationExpirationException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 public XStream openImportXStream()
throws AuthenticationExpiredException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException, XAMException;

 // == Asynchronous Operations

 public XAsync asyncCommit(long xopid,
 XAsyncListener listener)

throws AuthenticationExpiredException, InvalidArgumentException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XAMException;

}

111 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
A.4 FieldContainer.java
package org.snia.xam;

import java.util.Calendar;
import java.util.Iterator;

/**
 * Details methods common to all first class XAM Objects which have Property
 * Field associated with them.
 */
public interface FieldContainer
{
 // == XIterator ==

 XIterator openFieldIterator(String prefix)
throws AuthenticationExpiredException,

 InvalidFieldNameException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 // == Field Interrogation ==
 public boolean containsField(String fieldName)

throws AuthenticationExpiredException,
 InvalidFieldNameException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 // == Property creation ==
 public void createProperty(String fieldName, boolean binding, boolean value)

throws AuthenticationExpiredException, InvalidFieldNameException,
 FieldExistsException,
 MaximumFieldException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

public void createProperty(String fieldName, boolean binding, long value)
throws AuthenticationExpiredException, InvalidFieldNameException,

 FieldExistsException,
 MaximumFieldException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

public void createProperty(String fieldName, boolean binding, double value)
throws AuthenticationExpiredException, InvalidFieldNameException,

 FieldExistsException,
 MaximumFieldException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,

 XAMException;
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 112

© SNIA
 public void createProperty(String fieldName, boolean binding, XUID
 value)

throws AuthenticationExpiredException,
 InvalidFieldNameException,FieldDoesNotExistException,
 FieldExistsException, InvalidArgumentException,
 MaximumFieldException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public void createProperty(String fieldName, boolean binding, String
 value)

throws AuthenticationExpiredException,
 InvalidFieldNameException,FieldDoesNotExistException,
 FieldExistsException, InvalidArgumentException,
 MaximumFieldException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public void createProperty(String fieldName, boolean binding, Calendar
 value)

throws AuthenticationExpiredException,
 InvalidFieldNameException,FieldDoesNotExistException,

 FieldExistsException, InvalidArgumentException,
 MaximumFieldException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 // == Property value mutators (setters) ==
 public void setProperty(String fieldName, boolean value)

throws AuthenticationExpiredException,
 FieldDoesNotExistException,InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public void setProperty(String fieldName, Calendar value)
throws AuthenticationExpiredException, InvalidArgumentException,
 FieldDoesNotExistException,InvalidFieldNameException,
 InvalidFieldTypeException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 public void setProperty(String fieldName, double value)
throws AuthenticationExpiredException,
 FieldDoesNotExistException,InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;
113 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 public void setProperty(String fieldName, long value)
throws AuthenticationExpiredException,
 FieldDoesNotExistException,InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public void setProperty(String fieldName, String value)
throws AuthenticationExpiredException,
 FieldDoesNotExistException,InvalidArgumentException,
 InvalidFieldNameException, InvalidFieldTypeException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 public void setProperty(String fieldName, XUID value)
throws AuthenticationExpiredException,
 FieldDoesNotExistException,InvalidArgumentException,
 InvalidFieldNameException, InvalidFieldTypeException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 // == Property value accessors (getters) ==
 public boolean getBoolean(String fieldName)

throws AuthenticationExpiredException,
 FieldDoesNotExistException, InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSetCorruptException,
 XAMException;

 public Calendar getDateTime(String fieldName)
throws AuthenticationExpiredException,
 FieldDoesNotExistException, InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSetCorruptException,
 XAMException;

 public double getDouble(String fieldName)
throws AuthenticationExpiredException,
 FieldDoesNotExistException, InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSetCorruptException,
 XAMException;

 public long getLong(String fieldName)
throws AuthenticationExpiredException,
 FieldDoesNotExistException, InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSetCorruptException,
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 114

© SNIA
 XAMException;

 public String getString(String fieldName)
throws AuthenticationExpiredException,
 FieldDoesNotExistException,InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSetCorruptException,
 XAMException;

 public XUID getXUID(String fieldName)
throws AuthenticationExpiredException,
 FieldDoesNotExistException, InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSetCorruptException,
 XAMException;

 // == XStream Creation ==
 public XStream createXStream(String fieldName,
 boolean binding,
 String mimeType)

throws AuthenticationExpiredException, InvalidArgumentException,
 InvalidFieldNameException, InvalidOperationException,
 FieldExistsException, MaximumFieldException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 // == XStream Mutator/Accessor (setter/getter) ==
 public XStream openXStream(String fieldName, String mode)

throws AuthenticationExpiredException, InvalidFieldNameException,
 FieldDoesNotExistException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 // == Field Operations (XStreams or Properties) ==
 public String getFieldType(String fieldName)

throws AuthenticationExpiredException, InvalidFieldNameException,
 FieldDoesNotExistException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public long getFieldLength(String fieldName)
throws AuthenticationExpiredException, InvalidFieldNameException,
 FieldDoesNotExistException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public boolean getFieldBinding(String fieldName)
throws AuthenticationExpiredException, InvalidFieldNameException,
 FieldDoesNotExistException, ObjectInUseException,
115 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public boolean getFieldReadOnly(String fieldName)
throws AuthenticationExpiredException, InvalidFieldNameException,
 FieldDoesNotExistException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 public void deleteField(String fieldName)
throws AuthenticationExpiredException, InvalidFieldNameException,
 FieldDoesNotExistException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 // == Binding Attribute for Fields ==
 public void setFieldAsBinding(String fieldName)

throws AuthenticationExpiredException, InvalidFieldNameException,
 InvalidOperationException, FieldDoesNotExistException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

 public void setFieldAsNonbinding(String fieldName)
throws AuthenticationExpiredException, InvalidFieldNameException,
 FieldDoesNotExistException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

 // == Open XStream ==
 public XAsync asyncOpenXStream(String name,
 String mode,
 long xopid,
 XAsyncListener listener)

throws AuthenticationExpiredException, InvalidArgumentException,
 InvalidFieldNameException, FieldDoesNotExistException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

}

A.5 XStream.java
package org.snia.xam;

/**
 * XStreams are the interface to the content portions of a XAM Storage System.
 * XStream implementations are provided by a storage vendor in the vendor’s
 * packages. XStream instances perform the storage vendor-specific

functionality
 * to interact with that storage vendor’s XAM Storage System.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 116

© SNIA
 */
public interface XStream
{
 public static final int SEEK_SET = 0;

 public static final int SEEK_CUR = 1;

 public static final int SEEK_END = 2;

 public final static String MODE_READ_ONLY = "readonly";

 public final static String MODE_WRITE_TRUNCATE = "writeonly";

 public final static String MODE_WRITE_APPEND = "appendonly";

 /** End of File value returned from a read() method when the end of
XStream has been reached. */

 public final static long EOF = -1;

 public long tell()
throws AuthenticationExpiredException, XStreamAbandonException,
 XStreamCorruptException, XAMException;

 public void seek(long offset, long whence)
throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamAbandonException, XStreamCorruptException,
 XStreamException, XAMException;

 public long write(byte buffer[])
throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamAbandonException, XStreamCorruptException,
 XStreamException, XSetUnderHoldException, XAMException;

 public long write(byte buffer[], long bytesToWrite)

throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamAbandonException, XStreamCorruptException,
 XStreamException, XSetUnderHoldException, XAMException;

 public long write(byte buffer[], long offset, long bytesToWrite)

throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamAbandonException, XStreamCorruptException,
 XStreamException, XSetUnderHoldException, XAMException;

 public int read(byte buffer[])
throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamAbandonException, XStreamCorruptException,
 XStreamException, XAMException;

 public int read(byte buffer[] long bytesToWrite)
throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamAbandonException, XStreamCorruptException,
 XAMException;

 public int read(byte buffer[], long offset, long bytesToRead)
throws AuthenticationExpiredException, InvalidArgumentException,
117 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 XStreamAbandonException, XStreamCorruptException,
 XAMException;

 public void close()
throws AuthenticationExpiredException, XSetUnderHoldException,
 XStreamCorruptException, XStreamException, XAMException;

 public void abandon()
throws AuthenticationExpiredException, XAMException;

 public XAsync asyncRead(byte buffer[],
 long bufferLength,
 long xopid,
 XAsyncListener listener)

throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamAbandonException, XStreamCorruptException,
 XStreamException, XAMException;

 public XAsync asyncWrite(byte buffer[],
 long bufferLength,
 long xopid,
 XAsyncListener listener)

throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamAbandonException, XStreamCorruptException,
 XStreamException, XAMException;

 public XAsync asyncClose(long xopid,
 XAsyncListener listener)

throws AuthenticationExpiredException, InvalidArgumentException,
 XStreamCorruptException, XStreamException, XAMException;

}

A.6 XAsync.java
package org.snia.xam;

/** The XAsync object represents an asynchronous XAM operations. The XAsync
object

 * contains the state information regarding the asynchronous operation.
 * Asynchronous operations are in one of two states: pending and completed.
 * When the operation is first initiated, it is in the pending state.
 * Because the operation has not completed, it is only possible to query
 * whether the operation has completed, retrieve the XOPID that was specified
 * when the operation was initiated, and to halt the operation.
 */
public interface XAsync
{
 public void halt()

throws AuthenticationExpiredException, XAMException;

 public boolean isComplete()

throws AuthenticationExpiredException, XAMException;

 public long getXOPID()
throws AuthenticationExpiredException, AsyncHaltedException,
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 118

© SNIA
XAMException;

 public long getStatus()

throws AuthenticationExpiredException, AsyncHaltedException,
XAMException;

 public XSet getXSet()

throws AuthenticationExpiredException, AsyncHaltedException,
XAMException;

 public XStream getXStream()
throws AuthenticationExpiredException, AsyncHaltedException,
XAMException;

 public XUID getXUID()

throws AuthenticationExpiredException, AsyncHaltedException,
XAMException;

 public long getBytesRead()
 throws AuthenticationExpiredException, AsyncHaltedException,

XAMException;

 public long getBytesWritten();
 throws AuthenticationExpiredException, AsyncHaltedException,

XAMException;

 public void close()
throws AuthenticationExpiredException, XAMException;

}

A.7 XASyncListener.java

package org.snia.xam;

/**
 * Asynchronous XAM methods take, as an optional argument, an object which
 * implements XAsyncListener. The method XASyncCallback will be called
 * when the operation is completed (either successfully or unsuccessfully).
 */
public interface XAsyncListener
{
 public void XAsyncCallback(XAsync asyncState);
}

A.8 XUID.java
package org.snia.xam;

/**
 * This represents a XAM XUID.
 */

 /** A XUID may be at most 80 bytes long. */
119 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 final public int MAX_LENGTH = 80;

 /** A XUID must be at least 9 bytes long. */
 final public int MIN_LENGTH = 9;

public interface XUID
{
 public byte[] toBytes();
 public String toString();
 public boolean equals(Object x);
}

A.9 XIterator.java
package org.snia.xam;

import java.util.Iterator;

/**
 * An XIterator is used to enumerate the field names of the fields on an XSet,
 * XSystem, or XAM object. It does not have fields itself; therefore, it is
 * not a primary XAM object.
 * The XIterator can be created with a prefix (in which case only those fields
 * that match the prefix are enumerated) or without one (in which case all

fields
 * are listed). Methods also exist to retrieve the next field name (and advance
 * the cursor) and to release the resources associated with the handle. The

specific
 * methods associated with an XIterator are listed with other methods.
 * An XIterator must be closed before the object FieldContainer from which it

was
 * opened may be closed.
 */
public interface XIterator extends Iterator<String>
{
 public void close() throws AuthenticationExpiredException, XAMException;
};
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 120

© SNIA

121 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

Annex B
(normative)

VIM Interface

package org.snia.xam.vim;

import org.snia.xam.FieldContainer;
import org.snia.xam.Logger;
import org.snia.xam.XAMException;
import org.snia.xam.XSystem;

/**
 * This interface provides a series of methods allowing the XAM Library to
 * communicate to VIMs. These methods aren’t available to application programs,
 * as VIM objects are not available.
 *
 * A VIM object implements the vendor-specific logic to connect to a particular
 * XAM Storage System. The connect factory method is used by the XAM Library to
 * cause the VIM to perform vendor-specific connection logic, and provide the
 * XSystem. The provided XSystem instance is implemented in the vendor’s package
 * space, but implements the org.snia.xam.XSystem interface.
 */
public interface VIM
{
 public XSystem createXSystem() throws XAMException;
}

© SNIA
Annex C
(normative)

Java-Specific Toolkit

This annex defines toolkit functions that will extend the XAM Java API to make it easier to use with Java
run-time systems. While the XAM Java API does not require these methods, a XAM Library
implementation may find it useful to include these utility classes. These toolkit functions shall be
implemented in a way that makes no assumptions about any particular implementation of a XAM Library.

For all of the examples below, the bodies of implementations are missing, to keep the examples short.

C.1 Extended FieldContainer
Many Java packages deal with “boxed values”, which are object versions of the built-in primitives. The
base XAM Java API does not deal with the boxed values from Java, namely, Long or Double. The class
ExtendedFieldContainer supplies the methods to do the simple object manipulations of the primitives for
create, set, and get of properties. To keep this example short, FieldContainer methods are not shown, and
only the additional methods for the ExtendedFieldContainer are shown.

public class ExtendedFieldContainer implements FieldContainer
{

/** Create a property by being passed an object, which is one of
 * Long, Double, String, Calendar, XUID, Boolean. All other

will
 * throw an exception.
 */
public void createProperty(String fieldName,

boolean binding,
Object value)

throws AuthenticationExpiredException,
 InvalidFieldNameException,
 FieldExistsException, InvalidArgumentException,
 MaximumFieldException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

/** Set the value of property by being passed an object,
 * which is one of Long, Double, String, Calendar, XUID,
 * Boolean. All other will throw an exception.
 */
public void setProperty(String fieldName,

Object value)
throws AuthenticationExpiredException,
 InvalidArgumentException,
 InvalidFieldNameException, InvalidFieldTypeException,
 ObjectInUseException, XSetAbandonException,
 XSetCorruptException, XSystemAbandonException,
 XSystemCorruptException, XAMException;

/** Get the value of property returning an object,
 * which is one of Long, Double, String, Calendar, XUID,
 * Boolean. Applications must perform conversions if they wish
 * wish to use Integer, Float, or Date classes.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 122

© SNIA
 */
public java.lang.Object getProperty(String fieldName)

throws AuthenticationExpiredException,
 InvalidFieldNameException,
 InvalidFieldTypeException, ObjectInUseException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSetCorruptException,
 XAMException;

/** Convenience functions to determine if a field is a property.
*/

public boolean fieldIsProperty(String fieldName)
throws AuthenticationExpiredException,
 FieldDoesNotExistException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

/** Convenience function to determine if a field is an XStream.
*/

public boolean fieldIsStream(Sting fieldName)
throws AuthenticationExpiredException,
 FieldDoesNotExistException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

}

C.1.1 createProperty

public void createProperty(
String fieldName,
boolean binding,
Object value)

Creates a property value based on the Object version of an SType value. This method shall only accept
the following values: Boolean, Calendar, Double, Long, String, or XUID.

• Parameters:

— fieldName - The name for the new property being created.

— binding - TRUE if this property is to be BOUND.

— value - The Object value for this property.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - value is null or an non-allowed object was passed as a value.

— InvalidFieldNameException - fieldName is null or malformed.

— FieldExistsException - The specified field already exists.
123 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
— MaximumFieldException - Too many fields in the XSet

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.1.2 setProperty

public void createProperty(
String fieldName,
boolean binding,
Object value)

Sets a property value based on the Object version of an SType value. This method shall only accept the
following values: Boolean, Calendar, Double, Long, String, or XUID.

• Parameters:

— fieldName - The name of the property being modified.

— binding - TRUE if this property is to be BOUND.

— value - The Object value for this property.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidArgumentException - value is null or an non-allowed object was passed as a value.

— InvalidFieldTypeException - There is a type mismatch between the existing field and value
argument for this method.

— ObjectInUseException - The XSet has open import/export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 124

© SNIA
• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.1.3 getProperty

public Object getProperty(String fieldName)

Gets the value of a property as a Java Object. This method shall only return the following values: Boolean,
Calendar, Double, Long, String, or XUID.

• Parameters: fieldName - The name for the new property being created.

• Returns: An object value of the appropriate type.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— InvalidFieldNameException - fieldName is null or malformed.

— InvalidFieldTypeException - The specified field is not one of the XAM Stypes.

— FieldDoesNotExistException - The named field does not exist in this FieldContainer.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.1.4 fieldIsProperty

public boolean fieldIsProperty(
String fieldName)

Provides a quick check to determine if a named field is a property.

• Parameters: fieldName - The name for the new property being checked.

• Returns: TRUE if field’s type is one of the define XAM stypes, FALSE otherwise.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— FieldDoesNotExistException - The specified field already exists.
125 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.1.5 fieldIsXStream

public boolean fieldIsXStream(
String fieldName)

Provides a quick check to determine if a named field is an XStream.

• Parameters: fieldName - The name for the new property being checked.

• Returns: TRUE if field’s type is not one of the define XAM stypes, FALSE otherwise.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— FieldDoesNotExistException - The specified field already exists.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Another error exists with the underlying XAM Storage System.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.2 XUID
Toolboxes should supply a public implementation of an object implementing the XUID interface. This tool is
used to allow applications the ability to create XUIDs without interacting with the XAM Library. An example
class is shown here.

public class XUID implements org.snia.xam.XUID
{

public XUID(String base64String);
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 126

© SNIA
public XUID(byte binary[]);

public byte[] toBytes();

public String toString()};

public boolean equals(Object xuid);
}

The critical piece for this toolbox class is to have the two constructors public, so that the application may
use these instances. All other methods specified as part of the org.snia.xam.XUID interface must be
implemented as specified in Section C.4, “Java Output Stream”.

C.2.1 XUID Constructor

public XUID(
String base64String)

Creates a XUID from a base64-encoded value.

• Parameters: base64String - The base64-encoded value of the XUID.

• Throws: InvalidXUIDException - The base64String is not encoded correctly, or the XUID value is
illegal.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.2.2 XUID Constructor

public XUID(
byte binary[])

Creates a XUID from a binary array of byte values.

• Parameters: binary - The binary bytes of the XUID.

• Throws: InvalidXUIDException - The binary array is the wrong length is not encoded correctly, or
the XUID value is illegal.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.2.3 toBytes

public byte[] toBytes()

• Returns: An array of bytes representing the binary value of the XUID.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.2.4 toString

public toString()
127 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
• Returns: A base64-encoded representation of the XUID.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.2.5 equals

public equals(
Object xuid)

Compares this XUID value with another XUID for equality.

• Parameters: xuid - The other XUID to compare.

• Throws: InvalidArgumentException - The object passed in is not a XUID.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.3 Java Input Stream
The XAM XStream objects do not implement Java read or write streams, which limits their usefulness with
the Java IO packages. Adaptor classes shall be supplied to provide Java IO stream interfaces to XAM
XStreams. These classes shall provide the required methods to satisfy the Java InputStream and
OutputStream interfaces.

package org.snia.xam.util;

import java.io.IOException;
import java.io.InputStream;

import org.snia.xam.FieldContainer;
import org.snia.xam.XAMException;
import org.snia.xam.XStream;

/**
 * An InputStream wrapper class for XStream objects.
 */
public class XStreamInputStream extends InputStream

/**
 * Opens an existing XStream in read only mode and
 * wraps it in a InputStream interface.
 *
 * @param fc The FieldContainer that contains the XStream
 * @param name The name of the XStream
 * @throws XAMException If the XStream does not exist,
 * or an error occurs trying to open it.
 */
public XStreamInputStream(FieldContainer fc,
 String name)

throws AuthenticationExpiredException,
 InvalidFieldNameException,

FieldDoesNotExistException,
 ObjectInUseException,
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 128

© SNIA
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

/**
 * Wraps an open XStream in an InputStream interface.
 * The XStream must have been opened in read only mode.
 *
 * @param stream An open read only XStream
 */
public XStreamInputStream(XStream stream)

throws AuthenticationExpiredException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

/**
 * Closes the underlying XStream
 */
public void close() throws IOException;

public boolean markSupported();

public int available() throws IOException;

public int read() throws IOException;

public int read(byte[] b) throws IOException;

public int read(byte[] b, int offset, int length)
throws IOException;

}

C.3.1 XStreamInputStream

public XStreamInputStream(
FieldContainer fc,
String name)

Creates an XStreamInputStream from a named field in the specified FieldContainer.

• Parameters:

— fc - A FieldContainer object containing the XStream.

— name - The name of the XStream field.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— FieldDoesNotExistException - The named XStream does not exist in the FieldContainer.

— ObjectInUseException - The XSet has open import or export streams.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.
129 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Some other exception occurred opening the XStream.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.3.2 XStreamInputStream

public XStreamInputStream(
XStream stream)

Creates an XStreamInputStream from a named field in the specified FieldContainer.

• Parameters: stream - XStream providing data to the XStreamInputStream.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Some other exception occurred opening the XStream.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.3.3 close

public void close()

Closes this input stream and the underlying XStream, and releases any resource associated with this input
stream.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.3.4 markSupported

public boolean markSupported()
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 130

© SNIA
Tests if this input stream supports the mark and reset methods. This functionality is optional.

• Returns: TRUE if this stream implements mark and reset functionality, FALSE otherwise.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.3.5 available

public int available()

Returns an estimate of the number of bytes that can be read (or skipped over) from this input stream
without blocking by the next invocation of a method for this input stream. The next invocation might be the
same thread or another thread. A single read or skip of this many bytes will not block, but may read or skip
fewer bytes.

Note that while some implementations of InputStream will return the total number of bytes in the stream,
many will not. It is never correct to use the return value of this method to allocate a buffer intended to hold
all data in this stream.

• Returns: The approximate number of bytes which can be read without blocking.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.3.6 read

public int read()

Reads the next byte from the input stream. The value byte is returned as an int in the range 0 to 255. If no
byte is available because the end of the stream has been reached, the value -1 is returned. This method
blocks until input data is available, the end of the stream is detected, or an exception is thrown. If an
application wishes to avoid blocking behavior, it should be written using the XAsync mechanisms.

• Returns: Byte value read from the input stream, or -1 if end the stream is reached.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.3.7 read

public int read(byte[] b)

Reads some number of bytes from the input stream and stores them into the buffer array b. The number of
bytes actually read is returned as an integer. This method blocks until input data is available, end of file is
detected, or an exception is thrown.
131 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
If the length of b is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to read at
least one byte. If no byte is available because the stream is at the end of the file, the value -1 is returned;
otherwise, at least one byte is read and stored into b.

The first byte read is stored into element b[0], the next one into b[1], and so on. The number of bytes read
is, at most, equal to the length of b. Let k be the number of bytes actually read; these bytes will be stored in
elements b[0] through b[k-1], leaving elements b[k] through b[b.length-1] unaffected.

 The read(b) method for class InputStream has the same effect as:

 read(b, 0, b.length)

• Parameters: b - The buffer into which the data is read.

• Returns: The total number of bytes read into the buffer, or -1 if there is no more data because the
end of the stream was reached.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.3.8 read

public int read(
 byte[] b
 int off
 int len)

Reads up to len bytes of data from the input stream into an array of bytes. An attempt is made to read as
many as len bytes, but a smaller number may be read. The number of bytes actually read is returned as an
integer.

This method blocks until input data is available, end of file is detected, or an exception is thrown.

If len is zero, then no bytes are read and 0 is returned; otherwise, there is an attempt to read at least one
byte. If no byte is available because the stream is at end of file, the value -1 is returned; otherwise, at least
one byte is read and stored into b.

The first byte read is stored into element b[off], the next one into b[off+1], and so on. The number of bytes
read is, at most, equal to len. Let k be the number of bytes actually read; these bytes will be stored in
elements b[off] through b[off+k-1], leaving elements b[off+k] through b[off+len-1] unaffected.

In every case, elements b[0] through b[off] and elements b[off+len] through b[b.length-1] are unaffected.

The read(b, off, len) method for class InputStream simply calls the method read repeatedly. If the first such
call results in an IOException, that exception is returned from the call to the read(b, off, len) method. If any
subsequent call to read results in a IOException, the exception is caught and treated as if it were end of
file; the bytes read up to that point are stored into b and the number of bytes read before the exception
occurred is returned. The default implementation of this method blocks until the requested amount of input
data len has been read, end of file is detected, or an exception is thrown. Subclasses are encouraged to
provide a more efficient implementation of this method.

• Parameters:

— b - The buffer into which the data is read.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 132

© SNIA
— off - The start offset in the array b at which the data is written.

— len - The maximum number of bytes to read.

• Returns: The total number of bytes read into the buffer or -1 if end the stream is reached.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.4 Java Output Stream
package org.snia.xam.util;

import java.io.IOException;
import java.io.OutputStream;

import org.snia.xam.FieldContainer;
import org.snia.xam.XAMException;
import org.snia.xam.XStream;

/**
 * An OutputStream wrapper class for XStream objects.
 */
public class XStreamOutputStream extends OutputStream
{

/**
 * Opens an existing XStream and either truncates it or appends

to
 * it based on the value of the append parameter. The opened

XStream
 * is wrapped in an InputStream interface.
 *
 * @param ct The FieldContainer containing the XStream
 * @param name The name of the XStream
 * @param append True to append new data, false to overwrite
 * existing data
 * @throws XAMException If an error occurs trying to open
 * the XStream
 */
public XStreamOutputStream(FieldContainer ct,
 String name,
 boolean append)

throws AuthenticationExpiredException,
 InvalidFieldNameException, FieldReadOnlyException,
 ObjectInUseException, XSetUnderHoldException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

/**
 * Creates a new XStream and wraps it in an InputStream

interface.
133 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
 *
 * @param ct The FieldContainer to create the XStream in
 * @param name The name of the XStream
 * @param binding True if the XStream is binding
 * @param mimeType The mime type of the XStream
 * @throws XAMException If an error occurs while trying to
 * create the XStream
 */
public XStreamOutputStream(FieldContainer ct,
 String name,
 boolean binding,
 String mimeType)

throws AuthenticationExpiredException,
 XSetAbandonException, XSetCorruptException,
 XSystemAbandonException, XSystemCorruptException,
 XAMException;

/**
 * Wraps an open XStream in an InputStream interface. The

XStream
 * must have been opened in either write append or write

truncate
 * mode.
 *
 * @param stream An open XStream
 */
public XStreamOutputStream(XStream stream);

/**
 * Flushes all write operations and closes the underlying

XStream.
 */
public void close() throws IOException;

public void flush() throws IOException;

public void write(int b) throws IOException;

public void write(byte[] b) throws IOException;

public void write(byte[] b, int offset, int length)
 throws IOException;

}

C.4.1 XStreamOutputStream

public XStreamInputStream(
FieldContainer fc,
String name)

Creates an XStreamOutputStream to a named field in the specified FieldContainer.

• Parameters:

— fc - A FieldContainer object containing the XStream.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 134

© SNIA
— name - The name of the XStream field.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— FieldReadOnlyException - The named XStream exists in the FieldContainer and is Read Only.

— InvalidFieldNameException - The field name is null or malformed.

— ObjectInUseException - The XSet has open import or export streams.

— XSetUnderHoldException - The XSet is under hold and may not be modified.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Some other exception occurred opening the XStream.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.4.2 XStreamInputStream

public XStreamOutputStream(
XStream stream)

Creates an XStreamOutputStream to a named field in the specified FieldContainer.

• Parameters: stream - XStream providing data to the XStreamInputStream.

• Throws:

— AuthenticationExpiredException - The latest authentication has expired and the application
must reauthenticate.

— XSetAbandonException - The XSet is in the abandoned state and may only be closed.

— XSetCorruptException - The XSet is in the corrupt state and may only be abandoned.

— XSystemAbandonException - The XSystem is in the abandoned state and may only be
closed.

— XSystemCorruptException - The XSystem is in the corrupt state and may only be abandoned.

— XAMException - Some other exception occurred opening the XStream.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
135 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
C.4.3 close

public void close()

Closes this input stream and the underlying XStream, and releases any resource associated with this input
stream.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.4.4 flush

public void flush()

Flushes this output stream and forces any buffered output bytes to be written out.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.4.5 write

public void read(int b)

Writes the specified byte to this output stream. The general contract for write is that one byte is written to
the output stream. The byte to be written is the eight low-order bits of the argument b. The 24 high-order
bits of b are ignored.

• Parameters: b - The byte value to write.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.

C.4.6 write

public void write(byte[] b)

Writes b length bytes from the specified byte array to this output stream. The general contract for write(b)
is that it should have exactly the same effect as the call write(b, 0, b.length).

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 136

© SNIA
C.4.7 write

public void write(
 byte[] b
 int off
 int len)

Writes len bytes from the specified byte array starting at offset off to this output stream. The general
contract for write(b, off, len) is that some of the bytes in the array b are written to the output stream in
order; element b[off] is the first byte written and b[off+len-1] is the last byte written by this operation.

The write method of OutputStream calls the write method of one argument on each of the bytes to be
written out. Subclasses are encouraged to override this method and provide a more efficient
implementation.

If off is negative, or len is negative, or off+len is greater than the length of the array b, then an
IndexOutOfBoundsException is thrown.

• Parameters:

— b - The buffer into which the data is read.

— off - The start offset in the array b at which the data is written.

— len - The maximum number of bytes to read.

• Throws: IOException - This base java exception is thrown when any error occurs and shall wrap
lower level exceptions generated by the XStream or XSystem.

• Thread Safety: This method is thread safe.

• Blocking: This method blocks until completion.
137 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
Annex D
(informative)

Java API Method Mapping

Table D.1, “Java Method Name Mapping to XAM Architecture Specification” lists the methods in
[XAM-ARCH] and the corresponding method name for the Java binding.

Table D.1 – Java Method Name Mapping to XAM Architecture Specification

Type Methods in Arch Spec Methods in Java API Spec

XAM Library XAMLibrary.connect connect

XSystem N/A1 XSystem connect

XSystem.authenticate authenticate

XSystem.close close

XSystem.abandon abandon

XSystem.deleteXSet deleteXSet

XSystem.isXSetRetained isXSetRetained

XSystem.holdXSet holdXSet

XSystem.releaseXSet releaseXSet

XSystem.accessXSet accessXSet

XSystem.getXSetAccessTime getXSetAccessTime

XSystem.createXSet createXSet

XSystem.openXSet openXSet

XSystem.copyXSet copyxset

XSystem.asyncOpenXSet asyncOpenXSet

XSystem.asyncCopyXSet asyncCopyXSet

XSet XSet.applyAccessPolicy applyAccessPolicy

XSet.resetAccessFields resetAccessFields

XSet.applyManagementPolicy applyManagementPolicy

XSet.resetManagementFields resetManagementFields

XSet.createRetention createRetention

XSet.setRetentionEnabledFlag setRetentionEnabledFlag

XSet.applyRetentionEnabledPolicy applyRetentionEnabledPolicy

XSet.setRetentionDuration setRetentionDuration

XSet.applyRetentionDurationPolicy applyRetentionDurationPolicy

XSet.setRetentionStarttime setRetentionStarttime

XSet.setBaseRetention setBaseRetention
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 138

© SNIA
XSet (cont.) XSet.applyBaseRetentionPolicy applyBaseRetentionPolicy

XSet.setAutoDelete setAutoDelete

XSet.applyAutoDeletePolicy applyAutoDeletePolicy

XSet.setShred setShred

XSet.applyShredPolicy applyShredPolicy

XSet.getActualRetentionDuration getActualRetentionDuration

XSet.getActualRetentionEnabled getActualRetentionEnabled

XSet.getActualAutoDelete getActualAutoDelete

XSet.getActualShred getActualShred

XSet.commit commit

XSet.close close

XSet.abandon abandon

XSet.submitJob submitJob

XSet.haltJob haltJob

XSet.openExportXStream openExportXStream

XSet.openImportXStream openImportXStream

XSet.asyncCommit asyncCommit

XSet.applyStoragePolicy applyStoragePolicy

Field
Container

<XAMHandle>.openFieldIterator openFieldIterator

<XAMHandle>.containsField containsField

<XAMHandle>.createBoolean createProperty - xam_boolean

<XAMHandle>.createInt createProperty - xam_int

<XAMHandle>.createDouble createProperty - xam_double

<XAMHandle>.createXUID createProperty - xam_xuid

<XAMHandle>.createString createProperty - xam_string

<XAMHandle>.createDatetime createProperty - xam_datetime

<XAMHandle>.setBoolean setProperty - xam_boolean

<XAMHandle>.setDatetime setProperty - xam_datetime

<XAMHandle>.setDouble setProperty - xam_double

<XAMHandle>.setInt setProperty - xam_int

<XAMHandle>.setString setProperty - xam_string

<XAMHandle>.setXUID setProperty - xam_xuid

<XAMHandle>.getBoolean getBoolean - xam_boolean

Table D.1 – Java Method Name Mapping to XAM Architecture Specification

Type Methods in Arch Spec Methods in Java API Spec
139 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

© SNIA
Field
Container
(cont.)

<XAMHandle>.getDatetime getDatetime - xam_datetime

<XAMHandle>.getDouble getDouble - xam_double

<XAMHandle>.getInt getLong - xam_int

<XAMHandle>.getString getString - xam_string

<XAMHandle>.getXUID getXUID - xam_xuid

<XAMHandle>.createXStream createXStream

<XAMHandle>.openXStream openXStream

<XAMHandle>.getFieldType getFieldType

<XAMHandle>.getFieldLength getFieldLength

<XAMHandle>.getFieldBinding getFieldBinding

<XAMHandle>.getFieldReadOnly getFieldReadOnly

<XAMHandle>.setFieldAsBinding setFieldAsBinding

<XAMHandle>.setFieldAsNonBinding setFieldAsNonBinding

<XAMHandle>.deleteField deleteField

<XAMHandle>.asyncOpenXStream asyncOpenXStream

XStream XStream.tell tell

XStream.seek seek

XStream.write write (3 methods)

XStream.read read (3 methods)

XStream.close close

XStream.abandon abandon

XStream.asyncRead asyncRead

XStream.asyncWrite asyncWrite

XStream.asyncClose asyncClose

XAsync XAsync.halt halt

XAsync.isComplete isComplete

XAsync.getXOPID getXOPID

XAsync.getStatus getStatus

XAsync.getXSet getXSet

XAsync.getXStream getXStream

XAsync.getXUID getXUID

XAsync.getBytesRead getBytesRead

XAsync.getBytesWritten getBytesWritten

Table D.1 – Java Method Name Mapping to XAM Architecture Specification

Type Methods in Arch Spec Methods in Java API Spec
XAM Java API 1.01 (June 19, 2009) TECHNICAL POSITION 140

© SNIA
XAsync (cont.) XAsync.close close

N/A2 XAsyncCallback

XUID N/A3 toBytes

XUIDToString toString

N/A4 equals

XIterator XIterator.next next

Xiterator.hasNext hasNext

XIterator.close close

N/A5 remove

1. Java-specific.

2. Java-specific.

3. Java-specific.

4. Java-specific.

5. XAM XIterator implementations shall provide the remove method to satisfy the interface but throws the exception
java.lang.UnsupportedOperationException.

Table D.1 – Java Method Name Mapping to XAM Architecture Specification

Type Methods in Arch Spec Methods in Java API Spec
141 TECHNICAL POSITION XAM Java API 1.01 (June 19, 2009)

	Information Management - Extensible Access Method (XAM) - Part 3: Java API
	Contents
	Figures
	Tables

	Introduction
	1 Scope
	Foreword
	2 Normative References
	3 Terms and Conventions
	3.1 Terms
	3.2 Conventions

	4 Java API Overview
	4.1 Basic XAM concepts
	Figure 1 - XAM architecture

	4.2 The XAM programming model
	4.2.1 The XAM Library object
	4.2.2 An XSystem
	4.2.2.1 Authentication of XSystem instances

	4.2.3 An XSet
	4.2.4 Fields (properties and XStreams)
	4.2.4.1 Type and length attributes - properties vs. XStreams

	Table 1 - Field stypes (a.k.a. simple types)
	4.2.4.2 Binding attribute vs. readonly attribute

	4.2.5 The XAsync
	4.2.6 The XIterator
	4.2.7 XAM status
	4.2.8 The method hierarchy
	Figure 2 - XAM API method hierarchy
	Figure 3 - XAM API field methods (includes properties and XStreams)

	4.3 The XAM object interfaces
	Table 2 - Java XAM interfaces
	Figure 4 - UML description of XAM interfaces
	4.3.1 org.snia.xam.XAMLibrary
	4.3.2 org.snia.xam.XSystem
	4.3.3 org.snia.xam.XSet
	4.3.4 org.snia.xam.FieldContainer
	4.3.5 org.snia.xam.XStream
	4.3.6 org.snia.xam.XAsync
	4.3.7 org.snia.xam.XASyncListener
	4.3.8 org.snia.xam.XIterator
	4.3.9 org.snia.xam.XAMException
	4.3.10 org.snia.xam.vim.VIM

	4.4 VIM implementation models
	4.4.1 Java VIMs
	Figure 5 - Application interaction with pure Java VIM
	4.4.2 Non-Java VIMs
	4.4.3 VIM Initialization
	Figure 6 - VIM Initialization

	4.5 Using the XAM API - abstract samples
	4.5.1 Write an XSet
	4.5.2 Read an XSet
	4.5.3 Query for data with the string literal

	5 Public Java API Reference
	5.1 Design goals
	5.2 Supporting data types
	5.2.1 stypes
	5.2.2 XAM status type
	Figure 7 - XAM status type diagram
	5.2.3 XOPID
	5.2.4 Callbacks

	5.3 Methods
	5.3.1 XAM Library methods
	5.3.1.1 connect

	5.3.2 XSystem methods
	5.3.2.1 XSystem connect
	5.3.2.2 authenticate
	5.3.2.3 authenticate
	5.3.2.4 close
	5.3.2.5 abandon
	5.3.2.6 deleteXSet
	5.3.2.7 isXSetRetained
	5.3.2.8 holdXSet
	5.3.2.9 releaseXSet
	5.3.2.10 accessXSet
	5.3.2.11 getXSetAccessTime
	5.3.2.12 createXSet
	5.3.2.13 openXSet
	5.3.2.14 copyXSet
	5.3.2.15 asyncOpenXSet
	5.3.2.16 asyncCopyXSet
	5.3.2.17 createXUID
	5.3.2.18 createXUID

	5.3.3 XSet methods
	5.3.3.1 applyAccessPolicy
	5.3.3.2 resetAccessFields
	5.3.3.3 applyManagementPolicy
	5.3.3.4 resetManagementFields
	5.3.3.5 createRetention
	5.3.3.6 setRetentionEnabledFlag
	5.3.3.7 applyRetentionEnabledPolicy
	5.3.3.8 setRetentionDuration
	5.3.3.9 applyRetentionDurationPolicy
	5.3.3.10 setRetentionStarttime
	5.3.3.11 setBaseRetention
	5.3.3.12 applyBaseRetentionPolicy
	5.3.3.13 setAutoDelete
	5.3.3.14 applyAutoDeletePolicy
	5.3.3.15 setShred
	5.3.3.16 applyShredPolicy
	5.3.3.17 applyStoragePolicy
	5.3.3.18 getActualRetentionDuration
	5.3.3.19 getActualRetentionEnabled
	5.3.3.20 getActualAutoDelete
	5.3.3.21 getActualShred
	5.3.3.22 commit
	5.3.3.23 close
	5.3.3.24 abandon
	5.3.3.25 submitJob
	5.3.3.26 haltJob
	5.3.3.27 openExportXStream
	5.3.3.28 openImportXStream
	5.3.3.29 asyncCommit

	5.3.4 Field container methods
	5.3.4.1 openFieldIterator
	5.3.4.2 containsField
	5.3.4.3 createProperty - xam_boolean
	5.3.4.4 createProperty - xam_int
	5.3.4.5 createProperty - xam_double
	5.3.4.6 createProperty - xam_xuid
	5.3.4.7 createProperty - xam_string
	5.3.4.8 createProperty - xam_datetime
	5.3.4.9 setProperty - xam_boolean
	5.3.4.10 setProperty - xam_datetime
	5.3.4.11 setProperty - xam_double
	5.3.4.12 setProperty - xam_int
	5.3.4.13 setProperty - xam_string
	5.3.4.14 setProperty - xam_xuid
	5.3.4.15 getBoolean - xam_boolean
	5.3.4.16 getDatetime - xam_datetime
	5.3.4.17 getDouble - xam_double
	5.3.4.18 getLong - xam_int
	5.3.4.19 getString - xam_string
	5.3.4.20 getXUID - xam_xuid
	5.3.4.21 createXStream
	5.3.4.22 openXStream
	5.3.4.23 getFieldType
	5.3.4.24 getFieldLength
	5.3.4.25 getFieldBinding
	5.3.4.26 getFieldReadOnly
	5.3.4.27 setFieldAsBinding
	5.3.4.28 setFieldAsNonbinding
	5.3.4.29 deleteField
	5.3.4.30 asyncOpenXStream

	5.3.5 XStream methods
	5.3.5.1 tell
	5.3.5.2 seek
	5.3.5.3 write
	5.3.5.4 write
	5.3.5.5 write
	5.3.5.6 read
	5.3.5.7 read
	5.3.5.8 read
	5.3.5.9 close
	5.3.5.10 abandon
	5.3.5.11 asyncRead
	5.3.5.12 asyncWrite
	5.3.5.13 asyncClose

	5.3.6 XAsync methods
	5.3.6.1 halt
	5.3.6.2 isComplete
	5.3.6.3 getXOPID
	5.3.6.4 getStatus
	5.3.6.5 getXSet
	5.3.6.6 getXStream
	5.3.6.7 getXUID
	5.3.6.8 getBytesWritten
	5.3.6.9 getBytesRead
	5.3.6.10 close
	5.3.7.1 XAsyncCallback

	5.3.8 XUID methods
	5.3.8.1 toBytes
	5.3.8.2 toString
	5.3.8.3 equals

	5.3.9 XIterator methods
	5.3.9.1 next
	5.3.9.2 hasNext
	5.3.9.3 remove
	5.3.9.4 close

	5.3.10 XAM exceptions
	5.3.10.1 XAMException - Constructor
	5.3.10.2 XAMException - Constructor
	5.3.10.3 XAMException - Constructor
	5.3.10.4 XAMException - Constructor
	5.3.10.5 XAMException - Constructor
	5.3.10.6 XAMException - Constructor
	5.3.10.7 getStatusCode
	5.3.10.8 getMessage

	5.3.11 XAM Specific Exception Classes
	Table 3 - Exceptions that extend XAMException
	Table 4 - Exceptions that extend FieldContainerException
	Table 5 - Exceptions that extend JobException
	Table 6 - Exceptions that extend XSetException
	Table 7 - Exceptions that extend XStreamException
	Table 8 - Exceptions that extend XSystemException

	5.4 Interface constant fields
	5.4.1 org.snia.xam.XAMLibrary Fields
	Table 9 - XAMLibrary Constants
	5.4.2 org.snia.xam.XSystem Fields
	Table 10 - XSystem constants
	5.4.3 org.snia.xam.XSet Fields
	Table 11 - XSet Constants
	5.4.4 org.snia.xam.XStream Constants
	Table 12 - XStream Constants

	6 Private (VIM) Java API Reference
	6.1 VIM methods
	6.1.1 XSystem createXSystem

	Annex A (normative) Public Interfaces
	A.1 XAMLibrary.java
	A.2 XSystem.java
	A.3 XSet.java
	A.4 FieldContainer.java
	A.5 XStream.java
	A.6 XAsync.java
	A.7 XASyncListener.java
	A.8 XUID.java
	A.9 XIterator.java

	Annex B (normative) VIM Interface
	Annex C (normative) Java-Specific Toolkit
	C.1 Extended FieldContainer
	C.1.1 createProperty
	C.1.2 setProperty
	C.1.3 getProperty
	C.1.4 fieldIsProperty
	C.1.5 fieldIsXStream

	C.2 XUID
	C.2.1 XUID Constructor
	C.2.2 XUID Constructor
	C.2.3 toBytes
	C.2.4 toString
	C.2.5 equals

	C.3 Java Input Stream
	C.3.1 XStreamInputStream
	C.3.2 XStreamInputStream
	C.3.3 close
	C.3.4 markSupported
	C.3.5 available
	C.3.6 read
	C.3.7 read
	C.3.8 read

	C.4 Java Output Stream
	C.4.1 XStreamOutputStream
	C.4.2 XStreamInputStream
	C.4.3 close
	C.4.4 flush
	C.4.5 write
	C.4.6 write
	C.4.7 write

	Annex D (informative) Java API Method Mapping

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

