
1 |

Standardizing memory to memory 

data movement with SDXI v1.0
Shyam Iyer

Chair, SNIA SDXI TWG 

Elected Member, SNIA Technical Council

Distinguished Engineer, Dell 



2 |

Legacy Compute, IO, Memory Bubbles

Compute Memory

I/O

Coherency 
Domain

Latency 
and/or 
Bandwidth 
Optimized

Typically, 
Non-
Coherent

Application

Data in use

Data Storage
Data Transport

Instructs 
DMA



3 |

Emerging Bubbles

Hot 
Memory

GPUCPU ASSP(Includes 
Drives, NICs)

FPGA

Non-Volatile 
Memory

Volatile 
Memory

Capacity 
Memory

Cold 
Memory

Memory Links/Fabrics
(e.g., CXL)

Shared Design constraints
• Latency
• Bandwidth
• Coherency
• Control

Application



4 |

SDXI

▪ Introduction to SNIA SDXI v1.0

▪Use Cases

▪ Application Patterns and benefits of Data Movement & Acceleration

▪SDXI: The path ahead

▪ SDXI v1.1

▪ SDXI Ecosystem



5 |

SDXI(Smart Data Accelerator Interface)

▪ Software memcpy is the current data movement standard

▪ Stable ISA

▪ However,

▪ Takes away from application performance

▪ Incurs software overhead to provide context isolation. 

▪ Offload DMA engines and their interfaces are vendor-specific

▪ Not standardized for user-level software.

▪ Smart Data Accelerator Interface (SDXI) is a SNIA standard for a memory to memory data 
movement and acceleration interface that is -

▪ Extensible

▪ Forward-compatible

▪ Independent of I/O interconnect technology

▪ SNIA SDXI TWG was formed in June 2020 and tasked to work on this proposed standard
▪ 23 member companies, 89 individual members

▪ v1.0 released!
▪ https://www.snia.org/sdxi

https://www.snia.org/sdxi


6 |

SDXI Memory-to-Memory Data Movement

▪ Data movement between different address spaces.

▪ Data movement without mediation by privileged 
software.

▪ Allows abstraction or virtualization by privileged 
software.

▪ Capability to quiesce, suspend, and resume the 
architectural state of a per-address-space data 
mover.

▪ Forward and backward compatibility across future 
specification revisions. 

▪ Additional offloads leveraging the architectural 
interface.

▪ Concurrent DMA model.



7 |

Memory Structures(1) – Simplified view

SDXI 
Functi

on

Function 
MMIO

Context 
Tables

Context Ctrl 
and State

Akey
Table

Rkey
Table

Read 
Index

Write 
Index

Descriptor 
Ring

Doorbell

Completion 
Status

Buffer 
1

Buffer 
0

Error 
Log

▪ All states in memory

▪ One standard descriptor 

format

▪ Scope for future expansion

▪ Easy to virtualize

▪ Architected function setup 

and control

▪ *layered model for interconnect 

specific function management

▪ SDXI class code registered for 

PCIe implementations



8 |

DMA Read
DMA Write

Multi-Address Space Data Movement within an SDXI function group (2)

SDXI DMA Engine 

IOMMU 

Target SDXI Func C

(Data Destination)

SDXI Func B

Requesting Function

Address Space A

IOMMU 

Target SDXI Func A

(Data Source)

DMA ReadDMA Read 
Completion

Akey(A)

Akey(C)

Producer 

Address Space BAkey Table Entries 

encode the valid/allowed 

address spaces for 

requesting fn B

Descriptor
Ring

Src
Buffer

IOMMU 

Rkey(B’)

Address Space C

Dest
Buf fer

Rkey(B’)

Controls local resource 
access (Receiver Access Key 
Table Entries)



9 |

SDXI

▪ Introduction to SNIA SDXI v1.0

▪Use Cases

▪ Application Patterns and benefits of Data Movement & Acceleration

▪SDXI: The path ahead

▪ SDXI v1.1

▪ Software Ecosystem



10 |

Application Pattern 1 (Buffer Copies)

Memory 
Buffer 

(source)

Application(User)

Memory 
Buffer(source)

Memory 
Buffer(dest)

Application(User)

Accelerator

Completion SignalDoorbell

DMAcopy()

memcpy()

Memory 
Buffer 
(dest)

• Takes away from 
application performance

• HW based memory copies can be 
offloaded without affecting 
application performance



11 |

Application Pattern 2

Memory 
Buffer

Persistent 
Memory 

Buffer

Application(User)

Accelerator

Completion 
Signal

Doorbell

DMA 
Memory 

Buffer(Sourc
e)

Application(User)

memcpy()

memcpy()

Storage

DMA 
Memory 

Buffer(Dest)

DMA Read

Db Db
DMAWrite

Cmpl Cmpl

Memory Buffer 
(source/dest)

Application(User)

memcpy()

Persistent 
Memory Buffer 
(source/dest)

Kernel 
Memory 

Buffer

Kernel 
Memory 

Buffer
Kernel 
mode 
Driver

Kernel

memcpy()
Memcpy()

• Multiple data buffer copies before hardware-based 
data movement can occur

• Reduced buffer copies but still takes away from 
application performance

• Reduced buffer copies
• HW based offloaded memory copies



12 |

Application Pattern 3

DMA 
Write

memcpy()

Application
User Software

Kernel

memcpy()

I/O

Application
User Software

Kernel

I/O

DMA 
Read

VM1 VM2

DMA Write

Application
User Software

Kernel

Accelerator

Application
User Software

Kernel

VM1 VM2

DMA Read

• Context isolation layers introduce multiple buffer copies

• Best of both: Context isolation layers and optimized HW 
based memory buffer copies

Network



13 |

Emerging use cases: SDXI Assisted Data Movement in a CXL 
Architecture

CPU Attached 
Memory

SDXI 
(CXL Device)

Device 
Attached 
Memory

CXL.io
CXL.Cache
CXL.memory

Application(User)

Doorbell Completion 
Signal

Application(User)

SDXI (PCIe 
Device) CXL.io

CXL.memory

CXL Memory 
Expander

CPU 
Attached 
Memory

PCIe

Shared 
Memory

Pooled 
Memory

Doorbell Completion Signal

CPU 
Attached 
Memory

SDXI protocol

CXL fabric/ device

CPU

CPU



14 |

SDXI

▪ Introduction to SNIA SDXI v1.0

▪Use Cases

▪ Application Patterns and benefits of Data Movement & Acceleration

▪SDXI: The path ahead

▪ SDXI v1.1

▪ Software Ecosystem



15 |

SDXI v1.1 investigations

▪ Management architecture for data movers(includes connection manager)

▪ New data mover operations for smart acceleration

▪ SDXI Host to Host investigations

▪ Scalability & Latency improvements

▪ Cache coherency models for data movers

▪ Security Features involving data movers

▪ Data mover operations involving persistent memory targets

▪ QoS

▪ CXL-related use cases

▪ Heterogenous environments

Draft: Subject to 
Change



16 |

Additional SDXI Ecosystem activities

▪SDXI Software group 

▪ Libsdxi project

▪ OS agnostic user space library development

▪ Linux Upstream driver efforts

▪ SDXI TWG members are supporting this effort outside SNIA as a community 

▪ SDXI emulation project investigation for ecosystem development

▪ Investigations to enable SDXI compliance for SW and HW interoperability

▪SNIA’s CS+SDXI Subgroup: 

▪ Envision SDXI in a Computational Storage Architecture

▪ Implement features in SDXI to support Computational Storage use cases



17 |

Active Contributors and growing…



18 |

Call to Action

▪ Join the TWG to influence the next version of the specification

▪ Join the software development activities

▪ v1.0 is available for implementation

▪ Feedback via SNIA feedback portal

▪ https://www.snia.org/feedback

▪Participate in the SDXI Ecosystem

https://www.snia.org/feedback


19 |

Q&A


