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About me

= Technologist and Sr. Distinguished Engineer
= 20 years at Dell Technologies

= Current focus:
= Accelerator Strategy
= Al Solution Strategy

= Ultra-runner
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Compute for Al

CPU - SISD GPU - SIMD FPGA - MIMD Domain Specific

Accelerators

= Complex control logic

_ N Excels at vectored floating point Data-flow, pipeline oriented Optimized for Matrix
= High programmability High compute density and/or vectored operation multiplications.
= High-90s % of workloads and Hurt by branches or exceptions — Very nimble at the bit-level Distributed high speed memory
algorithms i’ statements. Excellent streaming with 10 Targeting specific workloads
= Low compute density Floating point data type devices
, Remains focused on a subset of Optimized for specific use Fully optimized for specific
Remains the core center of high-performance problems cases. workloads.
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Processing Landscape

Accelerators

Purposely build

Processor = Better solution cost (CAPEX + OPEX)

T~ vs. general purpose processors.

£ ::....,:Accelemfors " Several specialized accelerators are emerging,
3| aiming to provide
. o . . .
@ o Adapted = Faster Fine-tuning and inference
g» g Accelerators General ] o
g (ex: GPU) Purpose = Better processing efficiency and
S
o
o

Building Al System requires tradeoft: flexibility, app range vs processing efficiency

5| ©2024 SNIA. All Rights Reserved. RE G | o NAL : S D @



Silicon Trends for Al Compute

OCP UBB2.0 Wafer scale Custom
s - -
o| LEEs
S -l
= e
o : —
|_
6KW -8KW 20KW >50KW
Embedded Low Power PCle CEM Med Power PCle CEM High Power PCle CEM
(@))
= . :
O
C
)
o
()
Y
R

6 | ©2024 SNIA.&ITﬂiQM\Aeservedj oW — 40W 75W 150W REG | OPSDQ\\I\_/ 'm/s D @



LLM Models in Text & Vision Space
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Large Language Model Compute Demand
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Figure 1

*image credit: Wayne Xin Zhao, et.al, “A Survey of Large Language Models”
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Figure 2

*image credit: Amin Vahdat at Al Hardware and Edge Al Summit 2023
LLM size has been increasing exponentially over last 5
years and will continue, which enforces both performance
and cost for the hardware to run those models.
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Machine Learning Accelerators

Legend
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Peak performance vs. power scatter plot of publicly announced Al accelerators and processors.

Source:

Survey of Machine Learning Accelerators

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner
MIT Lincoln Laboratory Supercomputing Center

Lexington, MA, USA

freuther,pmichaleas,michael jones,vijayg,sid,kepnerg@ll.mit.edu
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Al Compute Power Trends

Rising GPU power trends impact solution design

Performance drives up consumption and cooling
PROJECTED GPU Power Trends
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GPU Cooling
Form factor requirements

SXM/Proprietary
> 500W

SXM
300-500W

PCle
60W-350W
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Machine Learning Benchmarks: MLCommon Org Chart
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Presenter Notes
Presentation Notes
UIO for addressing .mem memory via .io 

BI for coherency of peer read/write

BI allows for up to 4 cache line snoops per snoopInvalid


Models

Model

resnet50-v1.5

retinanet
800x800

bert

dirm-v2

3d-unet

rnnt

gpt-j
stable-
diffusion-xl|

Ilama2-70b

Reference code
vision/classification and d

etection

vision/classification and d

etection

language/bert

recommendation/dirm v2

vision/medical imaging/3d
-unet-kits19

speech recognition/rnnt

language/gpt-j

text to image

lanquage/llama2-70b

Framework

tensorflow, onnx,
tvm, ncnn

pytorch, onnx

tensorflow, pytorch,
onnx

pytorch

pytorch, tensorflow,
onnx

pytorch

pytorch
pytorch

pytorch

Dataset

imagenet2012

openimages resized to
800x800

squad-1.1

Multihot Criteo Terabyte

KiTS19

OpenSLR LibriSpeech
Corpus

CNN-Daily Mail
COCO 2014

OpenOrca

Task

Image classification

Object detection

Question answering

Recommendation

Medical Image
segmentation

Speech to text

Text Summarization

Text to Image

Q&A Chatbot
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https://github.com/mlcommons/inference/tree/master/vision/classification_and_detection
https://github.com/mlcommons/inference/tree/master/vision/classification_and_detection
https://github.com/mlcommons/inference/tree/master/vision/classification_and_detection
https://github.com/mlcommons/inference/tree/master/vision/classification_and_detection
https://github.com/mlcommons/inference/tree/master/language/bert
https://github.com/mlcommons/inference/tree/master/recommendation/dlrm_v2/pytorch
https://github.com/mlcommons/inference/tree/master/vision/medical_imaging/3d-unet-kits19
https://github.com/mlcommons/inference/tree/master/vision/medical_imaging/3d-unet-kits19
https://github.com/mlcommons/inference/tree/master/speech_recognition/rnnt
https://github.com/mlcommons/inference/tree/master/language/gpt-j
https://github.com/mlcommons/inference/tree/master/text_to_image
https://github.com/mlcommons/inference/tree/master/language/llama2-70b

Inference Categories

Data Center

Query Generation Samples/query Latency Constraint -II_-:;Iency Performance Metric

LoadGen sends new queries to the SUT R ey

e o) %
Server according to a Poisson distribution 600 seconds 1 Benchmark specific 99% throughput parameter
supported
Offline LoadG(-?n ser?ds all samples toithe SUT 1'query and At least 24,576 None N/A Measured throughput
at start in a single query 600 seconds
Edge

Tail

Samples/query Latency Constraint Performance Metric

Query Generation Latency

Single LoadGen sends next query as soon 90%-ile early-stopping

0/ *
stream as SUT completes the previous query S EEEeeE L hele A latency estimate
. LoadGen sends all samples to the 1 query and
Offline SUT at start in a single query 600 seconds At least 24,576 None N/A Measured throughput
T i .
Multistream Loadgen sends next query, as soon 600 seconds 8 None 99%* 99%-ile eal_'ly stopping
as SUT completes the previous query latency estimate
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Training Categories

The closed division models and quality targets are:

Area Problem Model Target

Vision Image classification ResNet-50 v1.5 75.90% classification
Image segmentation (medical) U-Net3D 0.908 Mean DICE score
Object detection (light weight) SSD (RetinaNet) 34.0% mAP
Object detection (heavy weight)  Mask R-CNN 0.377 Box min AP and 0.339 Mask min AP
Text to image Stable Diffusion v2.0 ~ FID&90 and and CLIP>=0.15

Language Speech recognition RNN-T 0.058 Word Error Rate
NLP BERT 0.720 Mask-LM accuracy
Large Language Model GPT3 2.69 log perplexity

Commerce = Recommendation DLRMvZ2 (DCNv2) 0.80275 AUC



Rack Power Density Trends

100+ /
75
Rack
Density
Kw/Rack HPC, Al/ML — Lead
50 Adopter of Liquid Cooling -

Gregpfréla |
25 / /”’-’:: ————————
1995 2000 2005 2010 2015 2020 2025
Enterprise, Telco Al & HPC

Hyperscale -
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Datacenter Trends

+ Component, system, rack power « Data center optimization techniques begin * Maximize work/watt
density increases * Increase in heat capture and outside air use +  Minimize CO, /work
» |T efficiency optimization begins « Eco mode UPSs, high voltage distribution, * Renewable energy certificates/PPAs
* Data centers begin to have air/water side economization * ITUE —IT power utilization effectiveness
challenges with power and cooling * |IT expanded operational ranges * Hybrid Liquid/Air Cooling
» Cloud emerges _ * Distributed Power
» Central Office redesigned as a data center - Unified telemetry based optimization
3+ -e~_° Edge emerges
7 Higher Tdp
. PUE e Minimize C02 Lower Tca
introduced Difficult
ITTICU
PUE Accelerators y
to Cool
2 Blades
/Multi-core \
1U/2Us
Towers
1
1995 2000 2005 2010 2015 2020 2025
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Factors Impacting Infrastructure Decisions

Accelerator

Form
Factors
Accelerator
Datacenter cooli
Requirements L)
Trends
Al
Infrastructure
_— ————__ Accelerator
Rack Power
Density Power
Trends
M | Si
Node Power Odz S
Density ..
Application
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Where is Al Infrastructure Trending?

= Moving from deployments using ‘individual’ compute nodes housing 2x — 8x
accelerators to more ‘pod’ based deployment.

= For deploying GenAl applications and doing large language model
training/fine-tuning or inferencing, the minimum pod size ranges from 64 —
1000x GPUs.

= This is impacting how we approach deployment of Al platforms i.e. the design
essentially starts at the datacenter i.e. a Top down approach.

= The power per rack is increasing to meet Al compute demands & any
prediction might be off by 20-30%.

= Fabric is becoming the core when designing Al Infrastructure because it has
a direct impact on performance and scaling.
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THANK YOU

Please take a moment to rate this session.

REGIONAL
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