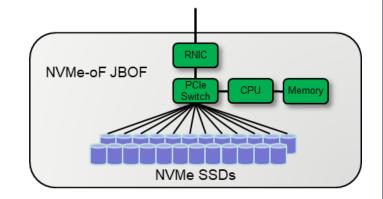
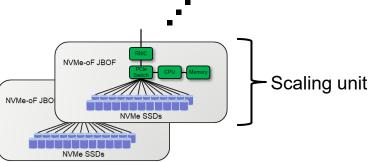


Storage Developer Conference September 22-23, 2020

Track Overview: Solid State Storage Solutions

Mark Carlson Kioxia Co-chair SNIA Technical Council

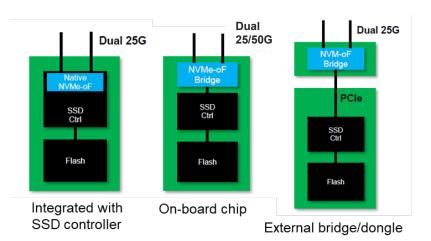

Storage Developer Conference September 22-23, 2020


Enabling Ethernet Drives

Mark Carlson Kioxia

NVMe-oF Storage Targets Today

- Systems terminate the NVMe-oF connection and use PCIe based SSDs internally
 - SSDs behind an array/JBOF controller
- Performance Limits
 - SSD performance increasing faster than CPU NVMe-over-Ethernet-to-drive use cases
 - NIC performance
 - Latency Store and Forward architecture
- Cost CPU, SOC/rNICs, Switches, Memory don't scale well to match increasing SSD performance



eSSDs

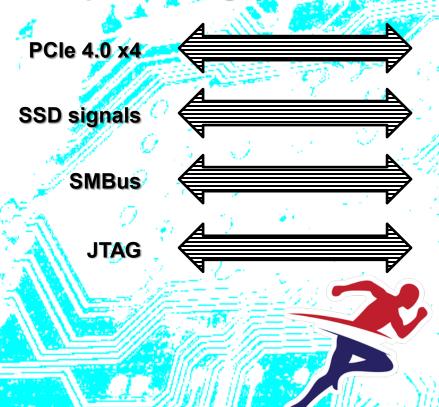
SD@

- Different eSSD designs today
- Some will support multiple interfaces and protocols
 - Ethernet, PCIe, SAS, SATA
 - RoCE, TCP

Name	Pin	1	A		Pin	Name	SAS & Ethernet Signals	PCIe & Etherne Signals
GND	S1	l d	ы		E7	RefClk0+	proposal1	proposal2
		1 1	- 114	ľ	E7	RefClk0+		
S0T+ (A+)	S2	4 4	- 194	ľ	E9	GND		
S0T- (A-)	S3	1 4	-1.5	ľ	E10	PETp0	TX1+	
GND	S4	I١	- 119	IP.	E11	PETPO PETn0	TX1-	
GIVD		1 4	- 10 1	ľ	E12	GND	171-	
S0R- (B-)	S5	1 .	1.3		E13	PERn0		RXO-
		I١	- 113	i P	E14	PERp0		RX0+
S0R+ (B+)	S6	- 1	ь	i P	E15	GND		KAO.
GND	S7	IJ	ш	16	E16	RSVD		
RefClk1+	E1	1 .	ď	II.	S8	GND		
RefClk1-	E2	1 4	г.	Ш	S9	S1T+		
3.3Vaux	E3	14		К	S10	S1T-		
ePERst1#	F4	14		К	S11	GND		
ePERst0#	E5	14		Ш	S12	S1R-	RX1-	
RSVD	E6	14		10	S13	S1R+	RX1+	
KOVD		140		10	S14	GND		
RSVD(Wake#) /SASAct2	P1	17	4, 1	II.	S15	RSVD		
DOL D : /040		11	- 11	16	S16	GND		
sPCIeRst/SAS	P2	- 4	- 12	16	S17	PETp1/S2T+		TX0+
RSVD(DevSLP#	P3	l J		16	S18	PETn1/S2T-		TX0-
		11	-113	16	S19	GND		
IfDet#	P4] [-	Ш	S20	PERn1/S2R-	RXO-	
		1 .	ш	16	S21	PERp1/S2R+	RX0+	
	P5	۱ ۱	- 177	Ь	S22	GND	10.0	
Ground	P6	- 4	-	ь	S23	PETp2/S3T+		TX1+
	P7	IJ	ш	l b	S24	PETn2/S3T-		TX1-
		1 4	- 14	lle.	S25	GND		174-
	P8	1 1	- 64	lle.	S26	PERn2/S3R-		
5 V	P9		ш	ı.	S27	PERp2/S3R+		
		1 9	- 194	ı.	S28	GND		
PRSNT#	P10	4 1	-64	ı.	E17	PETp3	TX0+	
Activity	P11	11	104	ı.	E18	PETp3	TX0-	
Activity	F11	1 9	- P4	ı.	E19	GND	170-	
Ground	P12	1 4	-64	ı.	E20	PERn3		RX1-
		11	114	ľ	E21	PERp3		RX1+
	P13	4 4	P 4	ŀ	E22	GND		1012
	P14	1 4	1, 4	ľ	E23	SMCIk		
		I٦	- 11	P	E24	SMDat		
12 V	P15] 4	- b 4	P	E25	DualPortEn		

Fig1. U.2 pin assignment

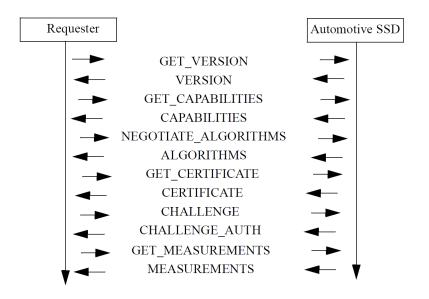
SFF-8639 connector


Storage Developer Conference September 22-23, 2020

An SSD for Automotive Applications

Bill Gervasi
Principal Systems Architect
bilge@nantero.com

64 GT/s peak throughput


Automotive SSD

Security and authentication

DMTF & Oasis

Automotive SSD must be hack proof

Maximize your SDC 2020 Experience

- Participate in our online chat for this track at <TBD>
- Check out the Birds of a Feather (BoF) sessions
- Please be sure you rate each session you watch you'll see a box under the video
- For additional details see the Introduction to Virtual SDC video (https://www.snia.org/SDCintro)
- Enjoy the SDC 2020 virtual event!