
2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 1

Caching on PMEM:
An Iterative Approach

Yao Yue† & Juncheng Yang†,‡

† Twitter Inc.
‡ Carnegie Mellon University



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 2

Caching on PMEM at Twitter

 Basic Considerations
 Iterations

 Testing and modification in lab
 Testing in prod
 In-house development for PMEM

 Lessons Learned



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 3

Incentives,
Hypotheses,

& Constraints



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 4

Caching @ Twitter

Clusters
>300 in prod

Hosts
many thousands

Instances
tens of thousands

Job size
2-6 core, 4-48 GiB

QPS
max 50M (single cluster)

SLO
p999 < 5ms* 

Mission critical ⇒ availability

Large resource footprint ⇒ cost

Lots of instances ⇒ fast restart

A large scale analysis of hundreds of in-memory cache clusters at Twitter [OSDI’20]

https://www.usenix.org/conference/osdi20/presentation/yang


2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 5

Why Put Cache on PMEM

 Cache more data per instance
 Reduce TCO if memory bound
 Improve hit rate

 Take advantage of data durability
 Graceful shutdown and faster rebuild
 Improve data availability during maintenance



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 6

Constraints

 Maintainable
 Same codebase
 Retain high-level APIs

 Operable
 Flexible invocation and configuration
 Predictable performance



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 7

An Iterative Approach



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 8

Principles

 Show Progress
 Be Flexible

 Identify issues
 Modify future plan

 Be Confident
 Verify hypotheses
 Meet constraints



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 9

The Plan
1. Use a modular caching framework
2. PMEM with unaltered cache code (lab, prod)
3. PMEM with minimally altered cache (lab, prod)
4. Design for/with PMEM

Pelikan: A Modular Cache



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 10

Test Design

Instance density
18-30 instances / host

Object size
Between 64 and 2048 bytes

Dataset size
Between 4GiB and 32 GiB / instance

# of Connection per server instance
100 / 1000

R/W ratio
Read-only, read heavy, write heavy

Focuses
 Throughput with latency constraints
 PMEM vs. DRAM
 Memory mode vs. AppDirect

 Scalability with dataset size
 Bottleneck analysis



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 11

Test Config
· 30 jobs/host
· key size 32B
· 100 conn/job
· 90R:10W

Hardware Config (Intel lab)
· 2 X Intel Xeon 8160 (24)
· 12 X 32GB DIMM
· 12 X 128GB AEP
· 2-2-2 config
· 1 X 25Gb NIC

Memory mode



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 12

Datapool Abstraction with PMDK



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 13

Test Config
· 24 jobs/host
· key size 32B
· 100 conn/job
· 90R:10W

Hardware Config (Intel lab)
· 2 X Intel Xeon 8160 (24)
· 12 X 32GB DIMM
· 12 X 128GB AEP
· 2-2-2 config
· 1 X 25Gb NIC

AppDirect mode



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 14

Rebuild Performance

 Single instance
 100 GiB of slab data
 complete rebuild: 4 minutes

 Concurrent
 18 instances per host
 complete rebuild: 5 minutes

 Potential impact
 Speed up maintenance by 1-2 orders of magnitude
 But needs other changes for real adoption



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 15

Test Config
· 20 jobs/host
· key size 64B
· 1000 conn/job
· read-only

Hardware Config (Twitter prod)
· 2 X Intel Xeon 8160 (20)
· 12 X 16GB DIMM
· 4 X 512GB AEP
· 2-1-1 config
· 1 X 25Gb NIC

p999 max = 16ms
p9999 max = 148ms

Memory mode: throughput 1.08M QPS



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 16

Test Config
· 20 jobs/host
· key size 64B
· 1000 conn/job
· read-only

Hardware Config (Twitter prod)
· 2 X Intel Xeon 8160 (20)
· 12 X 16GB DIMM
· 4 X 512GB AEP
· 2-1-1 config
· 1 X 25Gb NIC

p999 max = 1.4ms
p9999 max = 2.5ms

AppDirect mode: throughput 1.08M QPS



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 17

A “mid-term” Retrospective
 What’s cache’s bottleneck?

 Network stack
 PMEM bandwidth, if channel number is small

 Memory vs AppDirect perf
 AppDirect far more predictable
 Code change is modest

 How can we improve our story on recovery?
 Need to rethink metadata layout
 Need to rethink direct use of pointers
 Need to rethink cache operations (future work)



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 18

Pelikan Storage Module Redesign 

 What is PMEM good/bad at? 
 Sequential and large accesses 

 What is a cache’s memory access pattern? 
 Random reads and random writes 

Does this remind you of anything? 



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 19

Pelikan Storage Module Redesign 

 Log-structured file system/key-value store 
 Can we use the same design here? 

 Not really 
 Multiple sources of random memory accesses

 Where are the random memory accesses? 
 Hash table 
 Object storage 



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 20

Source of Random Memory Access

 Object chained hash table 
 Random read and random write

 Slab memory allocation 
 Object write, expiration, deletion, and eviction*



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 21

How Pelikan Slab Module Optimizes for PMEM

 Slab eviction 
 Batched evictions without updating metadata for every object
 Object writes are sequential 

 Not enough 
 Object expiration 
 Object delete



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 22

Segcache: a Redesign of Storage Module

 Segcache: segment-structured cache 



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 23

Segcache Overview

 Transform all random PMEM writes into sequential writes
 Move small random metadata reads and writes into DRAM
 Use PMEM only as object store 

 get request: read only once and no write
 set request: write once sequentially 
 all bookkeeping: sequentially in batch

 Moreover… 

*Some of these have already been partially achieved by Pelikan slab module

the secret source why Pelikan is 
better than Memcached on PMEM



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 24

Segcache Overview

 Better memory efficiency 
 Efficient removal of all expired objects
 Small object metadata (38 bytes -> 5 bytes) 
 Merge-based segment eviction algorithm 
 => 60% memory footprint reduction on Twitter’s largest 

cache cluster



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 25

Transform all random writes into 
sequential writes

 Hash table 



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 26

Transform all random writes into 
sequential writes

 Segment: small log, append only
 Segment headers: shared object metadata 



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 27

Transform all random writes into 
sequential writes

 Delete: remove hash table entry
 Expire: one segment at a time



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 28

Move small random metadata operations into DRAM

 Move shared segment header into DRAM



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 29

Segcache Microbenchmarks (AppDirect Mode)
Hardware Config (Twitter prod)
· 12 X 16GB DIMM
· 1 X 512GB AEP
· 2-1-1 config 
· 64-byte object 



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 30

What’s Next?

 Segcache
 Performance on real workloads 
 Recovery performance

 Memory hierarchy 
 How to use PMEM 
 => How to use PMEM + DRAM



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 31

Lessons Learned



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 32

Takeaway for Caching on PMEM

 Avoid turning PMEM into new bottleneck
 AppDirect is a clear winner

 But Memory Mode served its purpose along the way
 Due diligence pays off
 Innovate as needed
 Cache as a more durable service is an exciting but 

major undertaking



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 33

Takeaway for PMEM Adoption

 What’s the bottleneck for system at runtime?
 What are the business goals?
 What are the (dev, ops) constraints?
 Is there a path with incremental value gain?
 What are the possible exits?
 Transforming software takes time, too.



2020 Storage Developer Conference. © Twitter Inc.  All Rights Reserved. 34

Q&A, and References

 [1] Pelikan: http://pelikan.io
 [2] A large scale analysis of hundreds of in-memory cache 

clusters at Twitter [OSDI’20]

http://pelikan.io/
https://www.usenix.org/conference/osdi20/presentation/yang

	Caching on PMEM:�An Iterative Approach
	Caching on PMEM at Twitter
	Incentives,�Hypotheses,�& Constraints
	Caching @ Twitter
	Why Put Cache on PMEM
	Constraints
	An Iterative Approach
	Principles
	The Plan
	Test Design
	Slide Number 11
	Datapool Abstraction with PMDK
	Slide Number 13
	Rebuild Performance
	Slide Number 15
	Slide Number 16
	A “mid-term” Retrospective
	Pelikan Storage Module Redesign 
	Pelikan Storage Module Redesign 
	Source of Random Memory Access
	How Pelikan Slab Module Optimizes for PMEM
	Segcache: a Redesign of Storage Module
	Segcache Overview
	Segcache Overview
	Transform all random writes into sequential writes
	Transform all random writes into sequential writes
	Transform all random writes into sequential writes
	Move small random metadata operations into DRAM
	Segcache Microbenchmarks (AppDirect Mode)
	What’s Next?
	Lessons Learned
	Takeaway for Caching on PMEM
	Takeaway for PMEM Adoption
	Q&A, and References

