

Amazon Elastic File SystemBuilding Blocks for a Cloud-Native File System

Jacob Strauss, Principal Engineer Storage Developer Conference September 2020

Cloud-Native File System

Cloud-native file system

Elastic

- Grow & shrink on demand
- No need to provision and manage infrastructure & capacity
- Pay as you go, pay only for what you use
- Simple to use, create a file system in seconds

Scalable

- Grow up to petabytes
- Performance modes for low latencies and maximum I/O
- Throughput that scales with storage
- Provisioned throughput available

Integrated

- Shared access from onpremises, inter region, and cloud-native applications
- Integrated with various AWS computing models
- Access concurrently from Amazon EC2, AWS Lambda, and Amazon ECS and EKS containers

Deep Dive: Block Layer

Block responsibilities

Block responsibilities: security & durability

Block responsibilities: availability

Block responsibilities: naming, locating, interface

- Single address space
- Location independence
- Read, write, allocate, delete
- Ordering

Block responsibilities: elastic scaling

Logical data structure: Extent

Logical data structure: Extent

What is an extent?

Paxos Replicated State Machine

What is an extent on disk?

Extent replicas across availability zones

Cellular architecture

Operation ordering: conditional writes

Block Interface

```
(data, version) ← read(block)
    version ← write(block, data, version)
```


Operation ordering: conditional writes

Block Interface

```
(data, version) ← read(block)
    version ← write(block, data, version)

version[] ← multiWrite(block[], data[], version[])
```


Operation ordering: conditional writes

Block Interface

```
(data, version) ← read(block)
    version ← write(block, data, version)
```

version[] ← multiWrite(block[], data[], version[])

File Operations

Begin transaction

Read blocks

Modify blocks

Commit or start over

Multi-block conditional write is a 2-phase commit

Multi-block conditional write is a 2-phase commit

Reduce transaction latency

Cloud-native file system building blocks

Properties

- Durable and secure
- Available
- Elastic scaling
- Simple interface
- Resilient

Techniques

- Replicated state machine
- Multi-AZ consensus
- Cellular architecture
- Optimistic transactions
- Scale-out and lower latency

Thank You!

Jacob Strauss jsstraus@amazon.com

