NVMe® 2.0 Specification Preview

Jonmichael Hands, Intel
Bill Martin, Samsung
NVMe® Technology Specification Roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NVMe® Spec
- **NVMe 1.2.1 May’16**
 - Transport and protocol
 - RDMA binding

NVMe-oF™ Spec
- **NVMe-oF 1.0 May’16**
 - Transport and protocol
 - RDMA binding

NVMe-MI™ Spec
- **NVMe-MI 1.0 Nov’15**
 - Out-of-band management
 - Device discovery
 - Health & temp monitoring
 - Firmware Update

- **NVMe-MI 1.1 May’19**
 - Enclosure Management
 - In-band Mechanism
 - Storage Device Extension

- **NVMe 1.3 May’17**
 - Sanitize
 - Streams
 - Virtualization

- **NVMe 1.4 June’19**
 - IO Determinism (NVM Sets)
 - Persistent Event Log, Rebuild Assist
 - Persistent Memory Region (PMR)
 - Asymmetric Namespace Access (ANA)

- **NVM-oF 1.1 July’19**
 - Enhanced Discovery
 - TCP Transport Binding

Rest of the diagram details are not transcribed.

Released NVMe specification Planned release

2020 Storage Developer Conference. © NVM Express. All Rights Reserved.
NVMe® Specification - Cleaning Up and Bug Fixes

- NVMe® 1.4 Specification
 - TP 4042a Further Events for the Persistent Event Log
 - TP 4004b ANA Based protocol
 - TP 4005c Namespace Write Protect

- NVMe Next
 - TP 4052a Endurance Group Management
 - TP 4059a CMB Write Elasticity Status
 - TP 4065a Simply Copy Command

Ratified TP
TP that completed member review
NVMe® Specification - Enhancements

- NVMe® 1.4 Specification
 - TP 4054 CMB/PMR DMA Enhancements
- NVMe Next
 - TP 4059 CMB Write Elasticity Status
 - TP 4063 Telemetry Enhancements
 - TP 4078 Namespace Attachment Limit
 - TP 4040 Non-Data-Transfer (non-MDTS) Command Size Limits
 - TP 4047 Security Commands During Format NVM Commands
 - TP 4064 SGL Optimization
 - TP 4071 Commands and Effect Log Enhancements
 - TP 4079 Telemetry Log Size Change
NVMe® Specification - Innovations

- NVMe® Next
 - TP 4009 ANA Domains and Partitioning
 - TP 4052 Endurance Group Management
 - TP 4065 Simple Copy Command
 - TP 4046 Command Group Control
 - TP 4055 Key per I/O
 - TP 4056 Namespace Types
 - TP 4053 Zoned Namespaces
 - TP 4015 NVMe Key Value
Simple Copy Command (TP 4065)

- New NVM I/O command that copies logical blocks from one or more logical block ranges to a single contiguous destination logical block range
 - Source logical block ranges described by Source Range Entries transferred from host
 - Supports protection information
Command Group Control (TP 4046)

- Defines new Lockdown admin command
 - May be used to prohibit execution of a command or modification of a feature in an NVM subsystem
 - Admin command
 - Set Feature for a specified Feature Identifier
 - Management Interface Command Set command
 - PCIe Command Set command
 - Provides interface level granularity
 - Ability to lockdown in-band, out-of-band, or both
- Once a command or feature is locked down, then it remains locked down until re-enabled by the Lockdown command or NVM subsystem power cycle
Refactoring NVMe® Specification

Key Aspects Driving the Refactor

- Back to the core values… Fast, Simple, Scalable
- Foster areas of innovation while minimizing impact to broadly deployed solutions
- Creating an extensible spec infrastructure that will take the industry through the next phase of growth for NVMe® technology!
New Specifications

Command Sets & Transports

<table>
<thead>
<tr>
<th>NVMe® I/O Command Set Specs</th>
<th>Transport Command Set Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• NVM Command Set</td>
<td>• PCIe Transport</td>
</tr>
<tr>
<td>• Source: NVMe 1.4 Base Specification</td>
<td>• Source: NVMe 1.4 Base Specification</td>
</tr>
<tr>
<td>• Zoned Namespace Command Set</td>
<td>• RDMA Transport</td>
</tr>
<tr>
<td>• Source: TP4053</td>
<td>• Source: NVMe-oF™ 1.1 Specification</td>
</tr>
<tr>
<td>• Key Value Command Set</td>
<td>• TCP Transport</td>
</tr>
<tr>
<td>• Source: TP4015</td>
<td>• Source: NVMe-oF 1.1 Specification</td>
</tr>
</tbody>
</table>
Key Changes within the Base Specification

- Fabrics Specification integrated into the Base Spec
- Theory of Operation section enhanced with two main concepts
 - Include content for Domains, Endurance Groups, NVM Sets & Namespaces
 - Memory Based Theory (PCIe) & Message Based Theory (Fabrics)
- Created an NVM Express® Architecture section
- PCIe Registers and concepts moved to Transports Spec
- Improved organization of Controller
 - Architecture, Data Structures & Features
- Data Structures section re-organized
 - to only cover data and not concepts
NVM Express® Architecture Section

Early in the document to set context for the reader...

• NVM Controller Architecture
 • Includes Controller Model, Controller Types & Controller Properties sections

• NVM Subsystem Entities
 • Includes Namespaces, NVM Sets & Endurance Groups

• NVM Queue Models
 Status of Overall Execution Plan
 • Includes sections on Memory- & Message-based Queue Models & Queueing Data Structures

• Command Architecture
 • Includes Command Ordering Req’s, Fused Operations, Atomic Operations & Command Arbitration

• Controller Initialization & Shutdown
 • Includes Memory- & Message-based Shutdown & Initialization

• Sections for Reset Types, Keep Alive, Privileged Actions & Firmware Updates
Status of Overall Execution Plan

- Preparation – Create a new Outline
- Integrate the Fabrics Spec into the Base Spec
- Reorganize the Merged Spec for better readability & flow
- Add coverage of missing topics in the Theory of Operations section
- Create separate Fabrics Transport Template & Specs (PCIe, RDMA, & TCP)
 - Generate the Command Set Specifications
 - Create a separated Command Set Specification Template
 - Create the NVM Command Set Specification
 - Create the initial ZNS & KV Command Set Specs based on TPs and Command Set Template
- Integrate TP4056 - Namespace Types
 - Generate a “Final” set of NVMe® Specifications including:
 - Base Spec: NVMe 1.4 Base Spec, NVMe-oF™ 1.1, TP4056 & updated Theory of Operations
 - Final Transport Specs (PCIe, RDMA, TCP)
 - Final Command Set Specs (NVM, ZNS & KV)
 - Integration of all Ratified TPs into appropriate specifications
 - Aligned release of the NVMe-MI™ 1.2 Specification

2020 Storage Developer Conference. © NVM Express. All Rights Reserved.
Enabling Multiple Command Sets

NVM Subsystem

- NVMe Controller 0
 - NSID 1, NSID 2
 - NS A, NS B
- NVMe Controller 1
 - NSID 1, NSID 2
 - NS C, NS D
- NVMe Controller 2
 - NSID 1, NSID 2
 - NS E, NS F
- NVMe Controller 3
 - NSID 1, NSID 2, NSID 3
 - NS G, NS H, NS I

PCIe Port

Feature

Identify I/O Command Set Data Structure

- I/O Command Set Combination 0
- I/O Command Set Combination 1
- I/O Command Set Combination 3
- I/O Command Set Combination 4
- I/O Command Set Combination N
- I/O Command Set Combination 511

64-bits

I/O Command Set Profile

I/O Command Set Combination #1

I/O Command Set Combination #2

I/O Command Set Combination #3
I/O Command Interpretation

Common Command Format

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>CDW</th>
<th>CDW1</th>
<th>CDW2</th>
<th>CDW3</th>
<th>CDW4</th>
<th>CDW5</th>
<th>CDW6</th>
<th>CDW7</th>
<th>CDW8</th>
<th>CDW9</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Command Identifier (CID)</td>
<td></td>
</tr>
<tr>
<td>24-23</td>
<td>Reserved</td>
<td>PSDT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-15</td>
<td>Opcode (OPC)</td>
<td>FUSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-7</td>
<td>Namespace Identifier (NSID)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Metadata Pointer (MPTR)</td>
<td></td>
</tr>
<tr>
<td>6-5</td>
<td>Data Pointer (DPTR)</td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>CDW10</td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>CDW11</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>CDW12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CDW13</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CDW14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CDW15</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **Namespace**
 - I/O Command Set Associated with Namespace
- **I/O Command Set**
- **Command Interpretation**
Zoned Namespaces Command Set

- Logical blocks are grouped into zones
 - Logical blocks are written sequentially within a zone
- State machine associated with each zone
 - Controls operational characteristics of each zone
 - State transitions may be explicitly controlled by the host or implicitly by host actions
- Benefits
 - Reduced write amplification
 - Reduced overprovisioning
 - Reduced memory on Storage Device (DRAM)
Key Value Command Set

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>Delete Key and Value associated with a specified Key</td>
</tr>
<tr>
<td>List</td>
<td>Lists Keys that exist in a Key Value Namespace starting at a specified Key</td>
</tr>
<tr>
<td>Retrieve</td>
<td>Retrieve Value associated with a specified Key</td>
</tr>
<tr>
<td>Exist</td>
<td>Returns status indicating whether a Key Value exists for a specified Key</td>
</tr>
<tr>
<td>Store</td>
<td>Stores a Key Value to a Key Value Namespace</td>
</tr>
</tbody>
</table>
An NVM subsystem may represent a warehouse-scale storage system

- A warehouse-scale storage system may be constructed from multiple Domains
 - Capacity, controllers, and ports, may be partitioned among Domains
 - Domains may be added, removed, reconfigured, partitioned, or fail
- NVMe® technology now defines Domains as an architectural element
Key Per I/O (TP 4055)

- Allows a unique key to be used on a per I/O basis to encryption/decrypt logical blocks stored in a Namespace
 - Key Tag in command specifies encryption key to use
 - NVM Subsystem supports up to 64K keys
 - Configuring keys and management of Key Tags will be defined in the TCG
Endurance Groups (TP 4052)

- Defines new Capacity Management admin command
 - Creation/deletion of NVM Sets
 - Creation/deletion of Endurance Groups
 - Allocation of Media Units to Endurance Groups
 - Allocation of Media Units to NVM Sets
Please take a moment to rate this session.

Your feedback matters to us.