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Databases and PMEM

▪ Databases are considered as one of the top use 
cases of PMEM - scaling capacity and performance

Multiple ways of using PMEM:
▪ Storing DB Logs including redo log, Write Ahead Log 

(WAL), etc - the most common use case (Eg:Redis AOF, 
Oracle)

▪ DB cache store (instead of storing in DRAM or as a 
cache tier)

▪ Relational data store (large "in-memory" store) 
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Databases and PMEM (contd..)

Conflicting modes of PMEM usage:
▪ Memory mode (transparent, but inefficient) cache
▪ AppDirect (complex but highly efficient) 
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PostgreSQL 
storage architecture
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Traditional PostgreSQL

▪ PostgreSQL storage 
architecture
▪ Cache on shared 

DRAM memory via 
mmap(2)

▪ WAL and relation data  
laid out as directories 
and files (index, table) 
on a disk-based file 
system. Disk based storage

PostgreSQL server 

Cache  
(buffer pool 

+ buffer 
manager)

DRAM

Client 1 Client 2 ….. Client N

DB 
files ..

WAL 
files
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PostgreSQL cache layer

▪ Cache a.k.a shared buffer cache 
layer.

▪ Three layer buffer manager:
▪ Buffer table (map buffer tag to buf ID)
▪ Buffer descriptors (metadata)
▪ Buffer blocks (data buffers) – 8KB

▪ Each 8KB buffer directly holds 
the page data of the on-disk 
table file it points to at the offset.

Buffer table (hash)
BufferTag<->buffer_id

……..

PostgreSQL Backend

Tag

BufferDescriptors[ ]

tag buffer_id

…..

On-disk

DB files

BufferBlocks

page page

mmap() to
DRAM

Tag
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Scaling PostgreSQL
with PMEM
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Design considerations with PMEM

▪ AppDirect fsdax choices PostgreSQL:
▪ libpmemobj
▪ libpmem

▪ libpmemobj challenges with PostgreSQL: 
▪ No pluggable storage engine like MySQL or MariaDB.  
▪ Introducing TX_xxx() API required re-designing core 

storage paths.
▪ libpmem :

▪ Inline changes to existing storage paths, no design 
changes.
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Additional design considerations

▪ libpmem provides no redundancy to protect 
against local DIMM failure, à la libpmemobj 
poolsets. fsdax has no LVM mirror support.
▪ Critical for both WAL and DB relation files.

▪ NUMA effects: more pronounced with PMEM.
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Memhive PostgreSQL

▪ PMEM based 
persistent cache

▪ WAL files on PMEM

▪ DB relation files on 
PMEM

▪ Manager

ibpmem)
Memhive 
manager

Disk 
storage

Memhive PostgreSQL
server 

AppDirect    (libpmem)

Client 1 Client 2 ….. Client N

PMEM

DB files WAL 
files 

Persistent cache 
(buffers+ desc)

DB 
files
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Persistent Cache

▪ PMEM based non-volatile 
cache.

▪ Buffer descriptors and buffers 
mapped to an fsdax
namespace on PMEM.

▪ CPU cache flushes and 
batched drains at critical 
points of the cache manager. 
Uses both variants 
pmem_memcpy_nodrain() and 
pmem_flush().

Buffer table (hash)
BufferTag<->buffer_id

……..

PostgreSQL Backend

Tag

BufferDescriptors[ ]

tag buffer
_id

…..

On-disk

DB files

BufferBlocks pmem_map_file() 
on PMEM

Tag

pagepage
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▪ Minimal freelist updates during PostgreSQL server startup.
▪ Dual mode: 

▪ Always persistent: CPU cache flush/drain for buffer contents and 
selected descriptor fields. Persistence for both planned and 
unplanned server restarts.

▪ Selective persistence: No flush/drain after buffer/meta updates to 
avoid penalty (albeit minimal). Persistence for planned server 
restarts only. 

▪ Optimized for persisting meaningful buffers only:
▪ Avoid flushes/drains on short lived cache buffers (eg: VACUUM, 

COPY IN)

Persistent Cache (contd..)
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WAL and relational data on PMEM

▪ WAL on PMEM:
▪ Performance mode: fsdax type namespace, writes in the 

Xlog flush path replaced by pmem_memcpy_xxx() calls
▪ Local (DIMM) redundancy mode: LVM mirror on sector 

type namespaces.
▪ Relational data files (indexes, tables) on sector type 

PMEM when DB size <= PMEM size, cache on 
DRAM.

▪ PostgreSQL replication for redundancy with both 
sector and fsdax types.
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Possible configurations

▪ Persistent cache + WAL on PMEM:
▪ Local redundancy: LVM mirror on sector (WAL)+ fsdax 

(cache) namespaces, non-interleaved DIMMs.
▪ performance: fsdax (WAL + cache), interleaved DIMMs
▪ Relational data files on existing DAS/SAN storage.

▪ Relational data files + WAL on PMEM:
▪ Local redundancy: LVM mirror on sector namespace (WAL 

+ relational data), non-interleaved DIMMs.
▪ performance: LVM on sector (relational data) + fsdax 

(WAL).
▪ Cache on DRAM
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PostgreSQL file layout

Standard Memhive with PMEM
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The story in numbers
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Strategic partnership with 
Intel® Optane™

▪ PMEM options: NVDIMM, 
Intel® Optane™.

▪ Optane™ PMEM is ideal 
for vertically scaling 
PostgreSQL due to the 
price/capacity advantage.

▪ All benchmarking tests 
performed on Intel’s SDP 
cloud server with Optane.
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Test environment
Hardware
CPU Intel Cascade Lake Xeon processor 24 cores 

x 2 (2 threads per core)

DRAM 16 GB x 12

PMEM 128 GB Optane x 12

SSD 800 GB SATA SSD, 480GB SATA SSD x 2

Software
OS Fedora Core-31 Linux 5.5.8-200

PMDK 1.7

Standard Postgres PostgreSQL v12

Memhive v1.0

File system ext4
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Test environment (contd..)

▪ All tests bound to one socket with numactl(8)
▪ 128 GB Optane PMEM x 6 (interleaved)
▪ Intel Xeon processor 24 cores x 1
▪ 16 GB RAM x 6

Benchmarks 
DBT-3 (TPC-H) Test parameters:

Database sizes: 32, 64, 128 and 230 GB 
Streams: 1, 5, 10 and 15

pgbench  (TPC-B like) Test parameters:
Scaling factor: 24000, 350 GB database
Clients: 5, 10, 20 and 40
Jobs: 5
Time: 20 minutes
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PostgreSQL config comparison
Standard PostgreSQL v12 Memhive PostgreSQL

Optane Persistent Cache N/A 400 GB

DRAM 90 GB 90 GB

WAL On SSD On Optane PMEM

Relation Data On SSD On SSD

Shared Buffers On DRAM On Optane PMEM
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Benchmark results: OLAP - TPC-H DBT-3
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Benchmark results: OLAP - TPC-H DBT-3
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Benchmark results: OLTP - TPC-B like -
Pgbench
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Benchmark results: OLTP - TPC-B like -
Pgbench
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Benchmark results: Reduced RAM to 32G
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Performance summary
• Upto 10x throughput in OLAP DBT-3 TPC-H workload
• Upto 5x query processing power in OLAP 

DBT-3 TPC-H workload
• Upto 15x Read transactions per second in OLTP 

TPC-B like PgBench
• Upto 3.5x Mixed Read/Write transactions per second 

in OLTP TPC-B like PgBench
• Negligible (2%-3%) impact of flush/drains.
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Conclusions: 
PostgreSQL storage on PMEM



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 29

Conclusions

▪ PMEM as a persistent PostgreSQL cache
▪ PostgreSQL cache scales almost linearly with memory, making 

it ideal to reside on PMEM due to $/GB advantage. 
▪ Access to a large cache turns PostgreSQL into in-memory DB 

when DB size <= PMEM, ideal for OLAP.
▪ Flushes/drains have minimal impact.
▪ Instant startup, constantly warm cache.
▪ Dramatic reduction in DRAM requirements for PostgreSQL.
▪ No strict need for redundancy. Upon PMEM DIMM failures/bad 

blocks/unsafe shutdowns, cache is rebuilt from on-disk DB data 
files.



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 30

Conclusions

▪ PMEM for PostgreSQL data
▪ Ideal for storing relational objects such as WAL, table and 

index files.
▪ Combination of cache and WAL on PMEM leads to significant 

OLTP and OLAP performance gains.
▪ libpmem: Device redundancy versus performance

Pure performance/no redundancy: fsdax for cache and WAL.
Performance/recoverable from H/W errors: fsdax for cache.
Local redundancy for critical data: LVM mirror over sector for WAL 
and relational files.

….else, use libpmemobj.
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Thank you!
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