

Storage Developer Conference September 22-23, 2020

Scaling PostgreSQL with Persistent Memory

Naresh Kumar Inna and Keshav Prasad

Memhive

Agenda

20

- Databases and PMEM
- PostgreSQL storage architecture
- Scaling PostgreSQL with Memhive and PMEM
- Benchmarks
- Conclusions

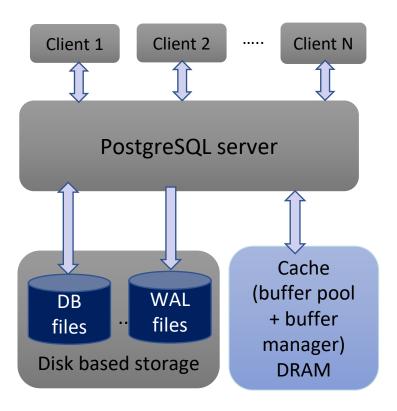
SI

Databases and PMEM

- Databases are considered as one of the top use cases of PMEM - scaling capacity and performance
 Multiple ways of using PMEM:
 - Storing DB Logs including redo log, Write Ahead Log (WAL), etc - the most common use case (Eg:Redis AOF, Oracle)
- DB cache store (instead of storing in DRAM or as a cache tier)
- Relational data store (large "in-memory" store)

Databases and PMEM (contd..)

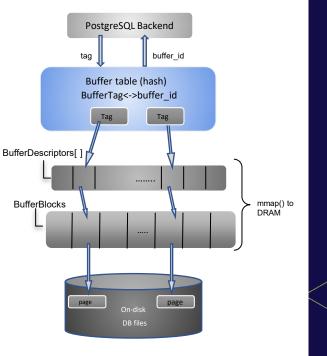
20


Conflicting modes of PMEM usage:

- Memory mode (transparent, but inefficient) cache
- AppDirect (complex but highly efficient)

PostgreSQL storage architecture

Traditional PostgreSQL


- PostgreSQL storage architecture
 - Cache on shared DRAM memory via mmap(2)
 - WAL and relation data laid out as directories and files (index, table) on a disk-based file system.

SD₂₀

PostgreSQL cache layer

- Cache a.k.a shared buffer cache layer.
- Three layer buffer manager:
 - Buffer table (map buffer tag to buf ID)
 - Buffer descriptors (metadata)
 - Buffer blocks (data buffers) 8KB
- Each 8KB buffer directly holds the page data of the on-disk table file it points to at the offset.

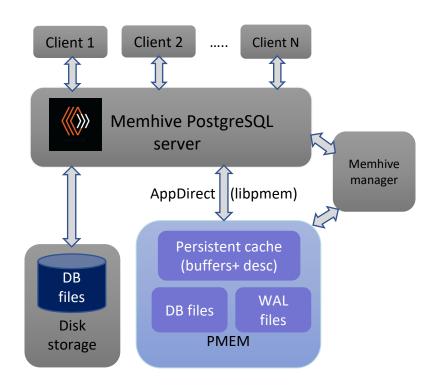
SD 20

Scaling PostgreSQL with PMEM

Design considerations with PMEM

20

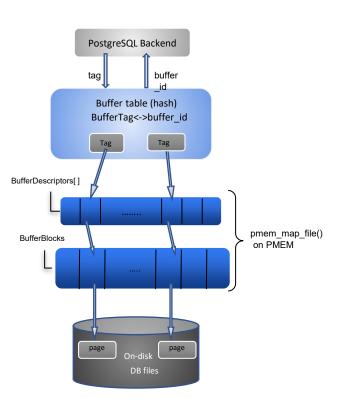
- AppDirect *fsdax* choices PostgreSQL:
 - libpmemobj
 - libpmem
- libpmemobj challenges with PostgreSQL:
 - No pluggable storage engine like MySQL or MariaDB.
 - Introducing TX_xxx() API required re-designing core storage paths.
- libpmem :
 - Inline changes to existing storage paths, no design changes.


Additional design considerations

20

- libpmem provides no redundancy to protect against local DIMM failure, à la libpmemobj poolsets. fsdax has no LVM mirror support.
 - Critical for both WAL and DB relation files.
- NUMA effects: more pronounced with PMEM.

Memhive PostgreSQL


- PMEM based persistent cache
- WAL files on PMEM
- DB relation files on PMEM
- Manager

SD₂₀

Persistent Cache

- PMEM based non-volatile cache.
- Buffer descriptors and buffers mapped to an *fsdax* namespace on PMEM.
- CPU cache flushes and batched drains at critical points of the cache manager. Uses both variants pmem_memcpy_nodrain() and pmem_flush().

SD@

Persistent Cache (contd..)

20

- Minimal freelist updates during PostgreSQL server startup.
- Dual mode:
 - Always persistent: CPU cache flush/drain for buffer contents and selected descriptor fields. Persistence for both planned and unplanned server restarts.
 - Selective persistence: No flush/drain after buffer/meta updates to avoid penalty (albeit minimal). Persistence for planned server restarts only.
- Optimized for persisting meaningful buffers only:
 - Avoid flushes/drains on short lived cache buffers (eg: VACUUM, COPY IN)

WAL and relational data on PMEM

20

• WAL on PMEM:

- Performance mode: *fsdax* type namespace, writes in the Xlog flush path replaced by pmem_memcpy_xxx() calls
- Local (DIMM) redundancy mode: LVM mirror on sector type namespaces.
- Relational data files (indexes, tables) on sector type PMEM when DB size <= PMEM size, cache on DRAM.
- PostgreSQL replication for redundancy with both sector and fsdax types.

Possible configurations

20

- Persistent cache + WAL on PMEM:
 - Local redundancy: LVM mirror on sector (WAL)+ fsdax (cache) namespaces, non-interleaved DIMMs.
 - performance: *fsdax* (WAL + cache), interleaved DIMMs
 - Relational data files on existing DAS/SAN storage.
- Relational data files + WAL on PMEM:
 - Local redundancy: LVM mirror on sector namespace (WAL + relational data), non-interleaved DIMMs.
 - performance: LVM on sector (relational data) + fsdax (WAL).
 - Cache on DRAM

PostgreSQL file layout

Standard

Memhive with PMEM

[postgres@localhost ~]\$ ls -l /usr/local/pgsql/data/	[postgres@sdp data]\$ mount grep region0
total 124	/dev/pmem0 on /opt/pmem/ region0 type ext4 (rw,relatime,seclabel,dax)
drwx 7 postgres postgres 4096 Jul 2 15:14 <mark>base</mark>	[postgres@sdp data]\$ ls -1
drwx 2 postgres postgres 4096 Sep 4 15:46 global	total 128
	drwx 7 postgres postgres 4096 Sep 3 05:25 base
drwx 2 postgres postgres 4096 Jul 2 14:48 pg_commit_ts	-rw 1 postgres postgres 30 Sep 4 00:00 current_logfiles
drwx 2 postgres postgres 4096 Jul 2 14:48 pg_dynshmem	drwx 2 postgres postgres 4096 Sep 3 04:47 global
-rw 1 postgres postgres 4513 Jul 2 14:48 pg_hba.conf	drwx 2 postgres postgres 4096 Sep 4 02:52 log
-rw 1 postgres postgres 1636 Jul 2 14:48 pg_ident.conf	-rw 1 postgres postgres 0 Sep 3 04:46 pcache drwx 2 postgres postgres 4096 Sep 3 04:46 pg commit ts
drwx 4 postgres postgres 4096 Sep 4 15:46 pg_logical	drwx 2 postgres postgres 4096 Sep 3 04:46 pg dynshmem
drwx 4 postgres postgres 4096 Jul 2 14:48 <mark>pg multixact</mark>	-rw 1 postgres postgres 4269 Sep 3 04:46 pg hba.conf
drwx 2 postgres postgres 4096 Sep 4 15:46 pg notify	-rw 1 postgres postgres 1636 Sep 3 04:46 pg ident.conf
drwx 2 postgres postgres 4096 Jul 2 14:48 pg replslot	drwx 4 postgres postgres 4096 Sep 3 09:15 pg logical
drwx 2 postgres postgres 4096 Jul 2 14:48 pg serial	drwx 4 postgres postgres 4096 Sep 3 04:46 pg_multixact
drwx 2 postgres postgres 4096 Jul 2 14:48 pg snapshots	drwx 2 postgres postgres 4096 Sep 3 04:46 pg_notify
	lrwxrwxrwx. 1 postgres postgres 27 Sep 3 04:46 pg_pcache -> /opt/pmem/region0/pcachedir
drwx 2 postgres postgres 4096 Sep 4 15:46 pg_stat	drwx 2 postgres postgres 4096 Sep 3 04:46 pg_replslot
drwx 2 postgres postgres 4096 Sep 4 15:46 pg_stat_tmp	drwx 2 postgres postgres 4096 Sep 3 04:46 pg_serial
drwx 2 postgres postgres 4096 Jul 2 14:48 <mark>pg_subtrans</mark>	drwx 2 postgres postgres 4096 Sep 3 04:46 pg_snapshots
drwx 2 postgres postgres 4096 Jul 2 14:48 <mark>pg_tblspc</mark>	drwx 2 postgres postgres 4096 Sep 3 04:46 pg_stat
drwx 2 postgres postgres 4096 Jul 2 14:48 pg_twophase	drwx 2 postgres postgres 4096 Sep 4 03:17 pg_stat_tmp
-rw 1 postgres postgres 3 Jul 10 18:13 PG VERSION	drwx 2 postgres postgres 4096 Sep 3 09:13 pg_subtrans drwx 2 postgres postgres 4096 Sep 3 04:46 pg_tblspc
drwx 3 postgres postgres 4096 Jul 16 23:14 pg wal	drwx 2 postgres postgres 4096 Sep 3 04:46 pg_tblspc drwx 2 postgres postgres 4096 Sep 3 04:46 pg_twophase
drwx 2 postgres postgres 4096 Jul 2 14:48 pg xact	-rw 1 postgres postgres 3 Sep 3 04:46 PG VERSION
-rw 1 postgres postgres 88 Jul 2 14:48 postgresql.auto.conf	lrwxrwxrwx. 1 postgres postgres 21 Sep 3 04:46 pg wal -> /opt/pmem/region0/wal
-rw 1 postgres postgres 26804 Sep 4 15:45 postgresql.conf	drwx 2 postgres postgres 4096 Sep 3 09:08 pg xact
	-rw 1 postgres postgres 88 Sep 3 04:46 postgresgl.auto.conf
-rw 1 postgres postgres 59 Sep 4 15:46 postmaster.opts	-rw 1 postgres postgres 26678 Sep 3 04:46 postgresgl.conf
-rw 1 postgres postgres 89 Sep 4 15:46 postmaster.pid	-rw 1 postgres postgres 63 Sep 3 04:46 postmaster.opts
[postgres@localhost ~]\$	-rw 1 postgres postgres 109 Sep 3 04:46 postmaster.pid

The story in numbers

Strategic partnership with Intel[®] Optane[™]

- PMEM options: NVDIMM, Intel® Optane[™].
- Optane[™] PMEM is ideal for vertically scaling PostgreSQL due to the price/capacity advantage.
- All benchmarking tests performed on Intel's SDP cloud server with Optane.

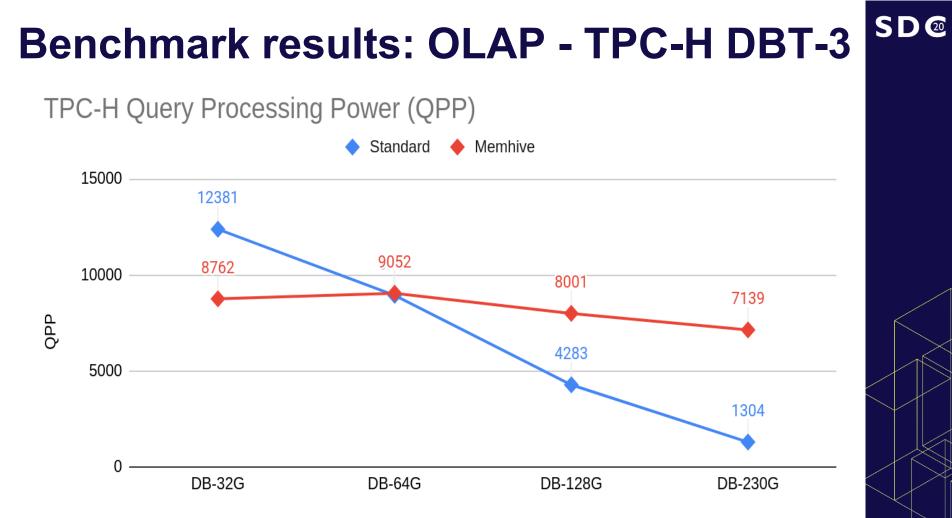
Test environment

SD@

Hardware	
CPU	Intel Cascade Lake Xeon processor 24 cores x 2 (2 threads per core)
DRAM	16 GB x 12
PMEM	128 GB Optane x 12
SSD	800 GB SATA SSD, 480GB SATA SSD x 2
Software	
OS	Fedora Core-31 Linux 5.5.8-200
PMDK	1.7
Standard Postgres	PostgreSQL v12
Memhive	v1.0
File system	ext4

Test environment (contd..)

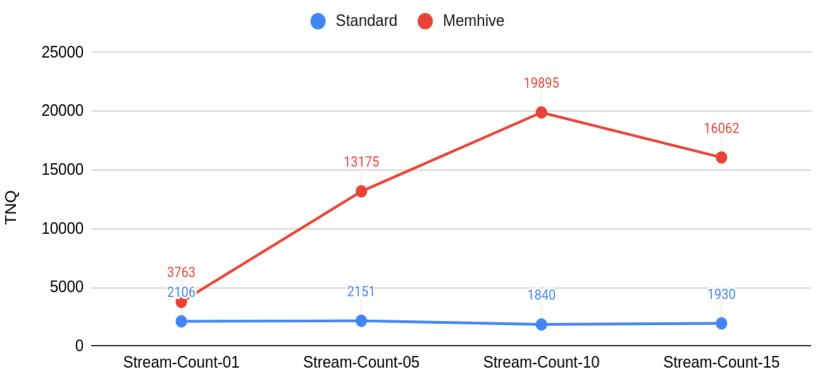
SD₂₀


Benchmarks	
DBT-3 (TPC-H)	Test parameters: Database sizes: 32, 64, 128 and 230 GB Streams: 1, 5, 10 and 15
pgbench (TPC-B like)	Test parameters: Scaling factor: 24000, 350 GB database Clients: 5, 10, 20 and 40 Jobs: 5 Time: 20 minutes

- All tests bound to one socket with numactl(8)
 - 128 GB Optane PMEM x 6 (interleaved)
 - Intel Xeon processor 24 cores x 1
 - 16 GB RAM x 6

PostgreSQL config comparison

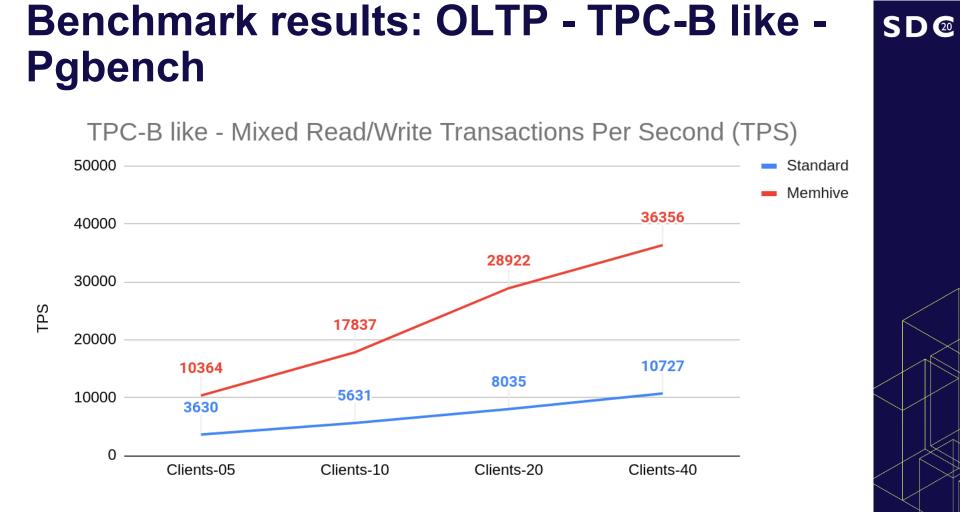
SD[®]


	Standard PostgreSQL v12	Memhive PostgreSQL
Optane Persistent Cache	N/A	400 GB
DRAM	90 GB	90 GB
WAL	On SSD	On Optane PMEM
Relation Data	On SSD	On SSD
Shared Buffers	On DRAM	On Optane PMEM

²⁰²⁰ Storage Developer Conference. © Memhive All Rights Reserved.

Benchmark results: OLAP - TPC-H DBT-3


TPC-H Throughput Numerical Quantity (TNQ)



Benchmark results: OLTP - TPC-B like - Pgbench

SD@

TPC-B like - Read-Only Transactions Per Second (TPS)

Benchmark results: Reduced RAM to 32G SD®

PgBench TPS with reduction of DRAM to 32G

		Standard	Memhive
	500000 —		
		485281	
	400000 —		
	300000 —		
TPS			
	200000 —		
	100000 —	24964	10576
	0		10576
	0 —	Read-Only TPS	Read-Write TPS

Performance summary

20

- Upto 10x throughput in OLAP DBT-3 TPC-H workload
- Upto 5x query processing power in OLAP DBT-3 TPC-H workload
- Upto 15x Read transactions per second in OLTP TPC-B like PgBench
- Upto 3.5x Mixed Read/Write transactions per second in OLTP TPC-B like PgBench
- Negligible (2%-3%) impact of flush/drains.

Conclusions: PostgreSQL storage on PMEM

Conclusions

PMEM as a persistent PostgreSQL cache

- PostgreSQL cache scales almost linearly with memory, making it ideal to reside on PMEM due to \$/GB advantage.
- Access to a large cache turns PostgreSQL into in-memory DB when DB size <= PMEM, ideal for OLAP.
- Flushes/drains have minimal impact.
- Instant startup, constantly warm cache.
- Dramatic reduction in DRAM requirements for PostgreSQL.
- No strict need for redundancy. Upon PMEM DIMM failures/bad blocks/unsafe shutdowns, cache is rebuilt from on-disk DB data files.

Conclusions

PMEM for PostgreSQL data

- Ideal for storing relational objects such as WAL, table and index files.
- Combination of cache and WAL on PMEM leads to significant OLTP and OLAP performance gains.
- libpmem: Device redundancy versus performance

Pure performance/no redundancy: *fsdax* for cache and WAL.

Performance/recoverable from H/W errors: *fsdax* for cache.

Local redundancy for critical data: LVM mirror over *sector* for WAL and relational files.

```
....else, use libpmemobj.
```

