
2020 Storage Developer Conference. © Memhive  All Rights Reserved. 1

Scaling PostgreSQL with 
Persistent Memory

Naresh Kumar Inna and
Keshav Prasad

Memhive



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 2

Agenda

▪ Databases and PMEM
▪ PostgreSQL storage architecture
▪ Scaling PostgreSQL with Memhive and PMEM 
▪ Benchmarks
▪ Conclusions



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 3

Databases and PMEM

▪ Databases are considered as one of the top use 
cases of PMEM - scaling capacity and performance

Multiple ways of using PMEM:
▪ Storing DB Logs including redo log, Write Ahead Log 

(WAL), etc - the most common use case (Eg:Redis AOF, 
Oracle)

▪ DB cache store (instead of storing in DRAM or as a 
cache tier)

▪ Relational data store (large "in-memory" store) 



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 4

Databases and PMEM (contd..)

Conflicting modes of PMEM usage:
▪ Memory mode (transparent, but inefficient) cache
▪ AppDirect (complex but highly efficient) 



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 5

PostgreSQL 
storage architecture



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 6

Traditional PostgreSQL

▪ PostgreSQL storage 
architecture
▪ Cache on shared 

DRAM memory via 
mmap(2)

▪ WAL and relation data  
laid out as directories 
and files (index, table) 
on a disk-based file 
system. Disk based storage

PostgreSQL server 

Cache  
(buffer pool 

+ buffer 
manager)

DRAM

Client 1 Client 2 ….. Client N

DB 
files ..

WAL 
files



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 7

PostgreSQL cache layer

▪ Cache a.k.a shared buffer cache 
layer.

▪ Three layer buffer manager:
▪ Buffer table (map buffer tag to buf ID)
▪ Buffer descriptors (metadata)
▪ Buffer blocks (data buffers) – 8KB

▪ Each 8KB buffer directly holds 
the page data of the on-disk 
table file it points to at the offset.

Buffer table (hash)
BufferTag<->buffer_id

……..

PostgreSQL Backend

Tag

BufferDescriptors[ ]

tag buffer_id

…..

On-disk

DB files

BufferBlocks

page page

mmap() to
DRAM

Tag



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 8

Scaling PostgreSQL
with PMEM



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 9

Design considerations with PMEM

▪ AppDirect fsdax choices PostgreSQL:
▪ libpmemobj
▪ libpmem

▪ libpmemobj challenges with PostgreSQL: 
▪ No pluggable storage engine like MySQL or MariaDB.  
▪ Introducing TX_xxx() API required re-designing core 

storage paths.
▪ libpmem :

▪ Inline changes to existing storage paths, no design 
changes.



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 10

Additional design considerations

▪ libpmem provides no redundancy to protect 
against local DIMM failure, à la libpmemobj 
poolsets. fsdax has no LVM mirror support.
▪ Critical for both WAL and DB relation files.

▪ NUMA effects: more pronounced with PMEM.



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 11

Memhive PostgreSQL

▪ PMEM based 
persistent cache

▪ WAL files on PMEM

▪ DB relation files on 
PMEM

▪ Manager

ibpmem)
Memhive 
manager

Disk 
storage

Memhive PostgreSQL
server 

AppDirect    (libpmem)

Client 1 Client 2 ….. Client N

PMEM

DB files WAL 
files 

Persistent cache 
(buffers+ desc)

DB 
files



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 12

Persistent Cache

▪ PMEM based non-volatile 
cache.

▪ Buffer descriptors and buffers 
mapped to an fsdax
namespace on PMEM.

▪ CPU cache flushes and 
batched drains at critical 
points of the cache manager. 
Uses both variants 
pmem_memcpy_nodrain() and 
pmem_flush().

Buffer table (hash)
BufferTag<->buffer_id

……..

PostgreSQL Backend

Tag

BufferDescriptors[ ]

tag buffer
_id

…..

On-disk

DB files

BufferBlocks pmem_map_file() 
on PMEM

Tag

pagepage



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 13

▪ Minimal freelist updates during PostgreSQL server startup.
▪ Dual mode: 

▪ Always persistent: CPU cache flush/drain for buffer contents and 
selected descriptor fields. Persistence for both planned and 
unplanned server restarts.

▪ Selective persistence: No flush/drain after buffer/meta updates to 
avoid penalty (albeit minimal). Persistence for planned server 
restarts only. 

▪ Optimized for persisting meaningful buffers only:
▪ Avoid flushes/drains on short lived cache buffers (eg: VACUUM, 

COPY IN)

Persistent Cache (contd..)



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 14

WAL and relational data on PMEM

▪ WAL on PMEM:
▪ Performance mode: fsdax type namespace, writes in the 

Xlog flush path replaced by pmem_memcpy_xxx() calls
▪ Local (DIMM) redundancy mode: LVM mirror on sector 

type namespaces.
▪ Relational data files (indexes, tables) on sector type 

PMEM when DB size <= PMEM size, cache on 
DRAM.

▪ PostgreSQL replication for redundancy with both 
sector and fsdax types.



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 15

Possible configurations

▪ Persistent cache + WAL on PMEM:
▪ Local redundancy: LVM mirror on sector (WAL)+ fsdax 

(cache) namespaces, non-interleaved DIMMs.
▪ performance: fsdax (WAL + cache), interleaved DIMMs
▪ Relational data files on existing DAS/SAN storage.

▪ Relational data files + WAL on PMEM:
▪ Local redundancy: LVM mirror on sector namespace (WAL 

+ relational data), non-interleaved DIMMs.
▪ performance: LVM on sector (relational data) + fsdax 

(WAL).
▪ Cache on DRAM



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 16

PostgreSQL file layout

Standard Memhive with PMEM



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 17

The story in numbers



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 18

Strategic partnership with 
Intel® Optane™

▪ PMEM options: NVDIMM, 
Intel® Optane™.

▪ Optane™ PMEM is ideal 
for vertically scaling 
PostgreSQL due to the 
price/capacity advantage.

▪ All benchmarking tests 
performed on Intel’s SDP 
cloud server with Optane.



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 19

Test environment
Hardware
CPU Intel Cascade Lake Xeon processor 24 cores 

x 2 (2 threads per core)

DRAM 16 GB x 12

PMEM 128 GB Optane x 12

SSD 800 GB SATA SSD, 480GB SATA SSD x 2

Software
OS Fedora Core-31 Linux 5.5.8-200

PMDK 1.7

Standard Postgres PostgreSQL v12

Memhive v1.0

File system ext4



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 20

Test environment (contd..)

▪ All tests bound to one socket with numactl(8)
▪ 128 GB Optane PMEM x 6 (interleaved)
▪ Intel Xeon processor 24 cores x 1
▪ 16 GB RAM x 6

Benchmarks 
DBT-3 (TPC-H) Test parameters:

Database sizes: 32, 64, 128 and 230 GB 
Streams: 1, 5, 10 and 15

pgbench  (TPC-B like) Test parameters:
Scaling factor: 24000, 350 GB database
Clients: 5, 10, 20 and 40
Jobs: 5
Time: 20 minutes



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 21

PostgreSQL config comparison
Standard PostgreSQL v12 Memhive PostgreSQL

Optane Persistent Cache N/A 400 GB

DRAM 90 GB 90 GB

WAL On SSD On Optane PMEM

Relation Data On SSD On SSD

Shared Buffers On DRAM On Optane PMEM



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 22

Benchmark results: OLAP - TPC-H DBT-3



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 23

Benchmark results: OLAP - TPC-H DBT-3



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 24

Benchmark results: OLTP - TPC-B like -
Pgbench



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 25

Benchmark results: OLTP - TPC-B like -
Pgbench



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 26

Benchmark results: Reduced RAM to 32G



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 27

Performance summary
• Upto 10x throughput in OLAP DBT-3 TPC-H workload
• Upto 5x query processing power in OLAP 

DBT-3 TPC-H workload
• Upto 15x Read transactions per second in OLTP 

TPC-B like PgBench
• Upto 3.5x Mixed Read/Write transactions per second 

in OLTP TPC-B like PgBench
• Negligible (2%-3%) impact of flush/drains.



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 28

Conclusions: 
PostgreSQL storage on PMEM



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 29

Conclusions

▪ PMEM as a persistent PostgreSQL cache
▪ PostgreSQL cache scales almost linearly with memory, making 

it ideal to reside on PMEM due to $/GB advantage. 
▪ Access to a large cache turns PostgreSQL into in-memory DB 

when DB size <= PMEM, ideal for OLAP.
▪ Flushes/drains have minimal impact.
▪ Instant startup, constantly warm cache.
▪ Dramatic reduction in DRAM requirements for PostgreSQL.
▪ No strict need for redundancy. Upon PMEM DIMM failures/bad 

blocks/unsafe shutdowns, cache is rebuilt from on-disk DB data 
files.



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 30

Conclusions

▪ PMEM for PostgreSQL data
▪ Ideal for storing relational objects such as WAL, table and 

index files.
▪ Combination of cache and WAL on PMEM leads to significant 

OLTP and OLAP performance gains.
▪ libpmem: Device redundancy versus performance

Pure performance/no redundancy: fsdax for cache and WAL.
Performance/recoverable from H/W errors: fsdax for cache.
Local redundancy for critical data: LVM mirror over sector for WAL 
and relational files.

….else, use libpmemobj.



2020 Storage Developer Conference. © Memhive  All Rights Reserved. 31

Thank you!


	Scaling PostgreSQL with Persistent Memory
	Agenda
	Databases and PMEM
	Databases and PMEM (contd..)
	�PostgreSQL �storage architecture
	Traditional PostgreSQL
	PostgreSQL cache layer
	Scaling PostgreSQLwith PMEM
	Design considerations with PMEM
	Additional design considerations
	Memhive PostgreSQL
	Persistent Cache
	Persistent Cache (contd..)
	WAL and relational data on PMEM
	Possible configurations
	PostgreSQL file layout
	The story in numbers
	Strategic partnership with Intel® Optane™
	Test environment
	Test environment (contd..)
	PostgreSQL config comparison
	Benchmark results: OLAP - TPC-H DBT-3
	Benchmark results: OLAP - TPC-H DBT-3
	Benchmark results: OLTP - TPC-B like - Pgbench
	Benchmark results: OLTP - TPC-B like - Pgbench
	Benchmark results: Reduced RAM to 32G
	Performance summary
	Conclusions: �PostgreSQL storage on PMEM
	Conclusions
	Conclusions
	Thank you!

