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Skyhook Data Management

 Open source software, LGPL 2.1 License
 Built on Ceph distributed object storage
 Computational storage for tabular data
 Extensible, scalable, generic

Google FlatBuffers: Memory Efficient Serialization Library
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Approach

 Programmable storage (See programmability.us)
 Combine, expose, or extend existing storage   

services toward new functionality
 In-storage execution of data management tasks

 Embed external libraries in storage
 Dynamically offload computation to storage servers
 Dynamically reorganize physical data configuration
 Reduce CPU and Network resources for client apps

http://programmability.us/
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But How?
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User-defined extensions to Ceph

 Utilize Ceph’s existing object class mechanism (‘cls’)
 Extensible framework for objects
 ceph/src/cls

 Methods executed directly by objects
 Shared libraries available on all OSDs

 Utilized by Ceph internals
 CephFS, rgw, rbd, others…

https://github.com/ceph/ceph/tree/master/src/cls
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CLS growth in Ceph

Growth of object classes and methods in Ceph mainline
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Snapshot of ‘cls’ Classes in Ceph
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Read/Write Interface

 Ceph objects can access their local data via two 
interfaces within ‘cls’
1. Chunkstore – raw device access
2. KVstore – Local instance of RocksDB on OSD 

(omap interface)
 For us –

1. Map tabular data to a device and offset 
2. Consider storing tabular data and/or metadata
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CLS Interface Examples 

 Some functions available within a cls method
 // read/write

 cls_cxx_read(ctx, off, len, buf)
 cls_cxx_write(ctx off, len, buf)
 cls_cxx_replace(ctx, off, len, buf)

 // metadata
 cls_cxx_setaxxtr(ctx, name, buf)
 cls_cxx_stat(ctx, size_t, NULL)

 // utilize local RocksDB instance on the OSD
 cls_cxx_map_setvals(ctx, map<str, buf>)
 cls_cxx_map_getval(ctx, key, buf) 
 cls_cxx_map_getvals(ctx, keystart, nkeys, map<str,buf>, more) 
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CLS Interface Examples 

 Some functions available within a cls method
 // read/write

 cls_cxx_read(ctx, off, len, buf)
 cls_cxx_write(ctx off, len, buf)
 cls_cxx_replace(ctx, off, len, buf)

 // metadata
 cls_cxx_setaxxtr(ctx, name, buf)
 cls_cxx_stat(ctx, size_t, NULL)

 // utilize local RocksDB instance on the OSD
 cls_cxx_map_setvals(ctx, map<str, buf>)
 cls_cxx_map_getval(ctx, key, buf) 
 cls_cxx_map_getvals(ctx, keystart, nkeys, map<str,buf>, more) 

Notice the use of 
offset/length allows 
partial read/write of 

objects 
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Why use partial read/write of an object?

 Enables great flexibility for physical data layout within 
each object

Object

Table
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Why use partial read/write of an object?

 Enables great flexibility for physical data layout within 
each object

 RocksDB enables query-able metadata
Object

Sub-Table-1 Sub-Table-2

RocksDB

Physical location (e.g., offset)



2020 Storage Developer Conference. © CROSS@UCSC.  All Rights Reserved. 14

Why use partial read/write of an object?

 Enables great flexibility for physical data layout within 
each object

 RocksDB enables query-able metadata
Object

Sub-Table-1 Sub-Table-2

RocksDB

Logical location (e.g., row num)Row contains=“hat”
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Example Use Case
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Example Use-case:  Custom cls Write

 Write original image, create thumbnails during write 
op

Object
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Example Use-case:  Custom cls Metadata

 Create metadata – generate image labels, store as 
metadata in local RocksDB

RocksDB

“label=XYZ”

Object



2020 Storage Developer Conference. © CROSS@UCSC.  All Rights Reserved. 18

Example Use-case:  Custom cls Read

 Filter data by label=“XYZ”

RocksDB

“true”

Object
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Create and Register Class/Method
CLS_VER(1,0)

CLS_NAME(tabular)

cls_handle_t h_class;

cls_method_handle_t h_exec_query_op;

cls_method_handle_t h_build_index;

void __cls_init()

{

CLS_LOG(20, "Loaded tabular class!");

cls_register("tabular", &h_class);

cls_register_cxx_method(h_class, "exec_query_op",

CLS_METHOD_RD, exec_query_op, &h_exec_query_op);

cls_register_cxx_method(h_class, "build_index",

CLS_METHOD_RD | CLS_METHOD_WR, build_index, &h_build_index);

}

C++ snippet
static int exec_query_op(cls_method_context_t hctx, 

bufferlist *in, 
bufferlist *out)

{

// contains the serialized user request.
query_op op;

// decode the query op to get the query params
bufferlist::const_iterator it = in->begin();
ceph::decode(op, it);

...

ceph::bufferlist buf;

// lookup metadata
cls_cxx_map_getval(hctx, key, buf)

...

// read local data
int ret = cls_cxx_read(hctx, off, len, &buf);

// process data 

...

out->append(result, sizeof(result))

return 0;
}
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‘cls’ for SkyhookDM

 Note that CLS mechanism already exists in Ceph
 Used heavily by Ceph internals as shown

 We create custom read/write methods
 Our methods are not Ceph specific
 C++ code, Arrow library

 We simply utilize Chunk store and KV store interfaces
 Approach is applicable to any system that 

offers such interfaces for objects
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SkyhookDM Architecture
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SkyhookDM Architecture

OSD OSD OSD
Ceph cluster with SkyhookDM cls extensions

RocksDBRocksDBRocksDB

Objects provide local data processing

Query-able metadata

rados exec(obj, class, method, in, out)

Data Management Application
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Data Management Application

 Client-side interface to SkyhookDM’s LIBRADOS object 
classes

 Can consider several approaches
 Distributed processing application frameworks

 Spark, Dask, others
 Database External Table interface (widely avail)

 e.g., PostgreSQL foreign data wrapper
 FileAPIs that map onto themselves/pass thru

 e.g., HDF5 Virtual Object Layer (VOL)

https://portal.hdfgroup.org/display/HDF5/Virtual+Object+Layer
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SkyhookDM Architecture

OSD OSD OSD
Ceph cluster with SkyhookDM cls extensions

RocksDBRocksDBRocksDB

Objects provide local data processing

Query-able metadata

rados exec(obj, class, method, in, out)

Data Management Application

IO Parallelism

CPU Parallelism
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‘Multi-tenancy’ of cls computations

obj1
obj2

OSD OSD OSD
Ceph cluster with SkyhookDM cls extensions

RocksDBRocksDBRocksDB

rados exec(obj1, myclass, mymethod, in, out)

Data Management Application-A

rados exec(obj2, yourclass, yourmethod, in, out)

Data Management Application-B
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Data Format, Partitioning, Access Methods
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Data Formats in SkyhookDM

 Utilize fast in-memory serialization formats
 Google Flatbuffers/Flexbuffers

 Fields can be accessed without parsing / copying / object 
allocation.

 Apache Arrow – Provide “Arrow Native” storage + processing!
 Very popular in big data world and for data exchange
 Recent stable release of version 1.0 (July 24, 2020)
 Compute API for Arrow tables
 Recent Dataset API, provides table abstraction over a 

collection of remote files/fragments

https://google.github.io/flatbuffers/flexbuffers.html
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Partitioning in SkyhookDM
Input Table

Vertical (col) Partitioning

Formatted 
Partitions Objects
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Partitioning in SkyhookDM

Formatted 
Partitions Objects

Horizontal (row) Partitioning

*uses JumpConsistentHash

Input Table

https://arxiv.org/abs/1406.2294
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Partitioning in SkyhookDM

Formatted 
Partitions Objects

Horizontal (row) Partitioning

*uses JumpConsistentHash

Input Table
• Format retains data's 

semantics (data  
schema)

• Object names are 
generated

• Objects are distributed 
by Ceph based on name

• Object location not 
stored by Skyhook

Key properties of partitions

https://arxiv.org/abs/1406.2294
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Data Processing

 SELECT, PROJECT, Aggregate,  Groupby,     Sort

min

 Moving to Arrow Compute API, will support more
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What Metadata to Store in RocksDB?

 Physical offsets
 Logical content location 

 Create index on various columns
 Can consider text indexing as well

 Column statistics, access patterns
 Value distribution important for query optimization
 Estimate selectivity, then choose scan or index

 Object-local metadata, so each object can optimize 
itself  
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When to Pushdown (offload) Processing

 Currently this is binary to pushdown into storage or 
not

 Can be a runtime decision by query optimizer based 
on cluster knowledge

 What if a storage server is overloaded?
 Object may reject processing, “pushback”

 We are working on this mechanism
 Key consideration when offloading in our framework
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Physical Design Optimizations
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Physical Design

 Long-studied problem in databases
 Good physical design is crucial for workload 

performance
 Includes partitioning, data format, data layout, 

indexing, materialized views
 In our case

 Map table data structure to physical layout on disk
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Data Layouts within Object

 Consider Arrow table format
Schema

Record Batch

Record Batch

Record Batch
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Data Layouts within Object

 Consider Arrow table format
Object

Sub-Table-1 Sub-Table-2

Schema

Record Batch

Record Batch

Record Batch

RocksDB
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Data Layouts within Object

 Consider Arrow table format
Object

Sub-Table-1 Sub-Table-2

Schema

Record Batch

Record Batch

Record Batch
Object

Sc
he

m
a

R
ec

or
d 

Ba
tc

h

R
ec

or
d 

Ba
tc

h

R
ec

or
d 

Ba
tc

h

RocksDB

RocksDB



2020 Storage Developer Conference. © CROSS@UCSC.  All Rights Reserved. 40

Data Layouts within Object

 Consider Arrow table format
Object

Sub-Table-1 Sub-Table-2

Schema

Record Batch

Record Batch

Record Batch
Object

Sc
he

m
a

RocksDB

col1
col2

col3
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Local vs. Distributed Transformations

col2

Object Object

Local Distributed

Object’ Object-1 Object-2
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Experimental Results
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Experimental Setup

 Data: TPC-H Lineitem table 750M rows
 10,000 objects, 75,000 rows/object

 Formats: Flatbuffer/Flexbuffer (row), Arrow (col)
 Queries: select and project

 SELECT * FROM lineitem WHERE extended_price > 91,500.00 
 SELECT extended_price FROM lineitem

 Hardware: NSF Cloudlab 40 core, 10GbE, 1TB HDD
 Ceph with SkyhookDM extensions, 8 OSDs, 1 client machine
 Simple client side driver, process in client or pushdown to 

storage using SkyhookDM extensions
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Benefit of Offloading: CPU – 8 OSDs
Client-side Server-side (stacked)

SELECT 1% 
No offload to storage

SELECT 1% 
Offload to storage

BASELINE
Read cost only, no query
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Benefit of Offloading: CPU – 8 OSDs
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Benefit of Transform Phys Layout

row
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Ongoing Work

 Adapting to Apache Arrow Dataset API
 Interacting with Arrow community for feedback
 Creating a LIBRADOS Fragment, hopefully push 

upstream (just starting implementation now)
 RADOS read from remote object (collect)
 Deployment now via Kubernetes and Rook
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 Bridges gap between student research & open source projects
 Funded by endowment from Sage Weil (Ceph founder) & corporate 

memberships.  
 Fujitsu Laboratories, Kioxia, Seagate

 Supports graduate research & Incubates work beyond graduation to 
reach critical mass
 Skyhookdm project (skyhookdm.com) – store & manage tabular data in Ceph
 Popper project (getpopper.io) – container native workflow execution engine

 Directed by Carlos Maltzahn carlosm@ucsc.edu
 cross.ucsc.edu for more information

mailto:carlosm@ucsc.edu
http://www.cross.ucsc.edu/


2020 Storage Developer Conference. © CROSS@UCSC.  All Rights Reserved. 51

Summing it up - SkyhookDM

 Data partitioning and layout
 Physical mapping of data onto objects

 Offload processing 
 Custom `cls’ methods to execute query ops

 Offload physical design
 Format transformations, indexing, and query-able 

metadata 
 Not hacking Ceph, just using existing mechanism

 CLS methods updated by copying .so file to OSDs
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Please take a moment 
to rate this session. 

Your feedback matters to us. 
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Thank you.
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Network Resources 8 OSDs

SELECT 1% 
No offload to storage

SELECT 1% 
Offload to storage

Client 1 Server
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Scaling the number of OSDs
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Local vs. Distributed Transform

In-storage

Outside 
storage

4 OSDs, Transform cost, row to column format
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