SDG

BY Developers FOR Developers

Storage Developer Conference
September 22-23, 2020

SkyhookDM: Storage and
Management of Tabular Data

in Ceph

Jeff LeFevre, Carlos Maltzahn <
Center for Research in Open

Source Software

University of California, Santa Cruz

\

\/

\

N

\

A

\V/

BV

AV

\

a
/N

/

N\ /
ANANAN //<\\
VAN NAVAVAVANE VAN

R\

\
/

L INCINNC T T TP
VAVANAVANAN NSNS SN

INONNINCININC L L L L L L L L

FANAVAN
AVAVAN

_/
N/
AN

Skyhook Data Management %%’/

« Open source software, LGPL 2.1 License
= Built on Ceph distributed object storage
Computational storage for tabular data
Extensible, scalable, generic

CENTER FOR RESEARCH IN
<Q> OPEN SOURCE SOFTWARE
Q ARROW>>>
ceph > =
Google FlatBuffers: Memory Efficient Serialization Library it

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Approach

Programmable storage (See programmability.us)

« Combine, expose, or extend existing storage
services toward new functionality

In-storage execution of data management tasks

= Embed external libraries in storage

Dynamically offload computation to storage servers
Dynamically reorganize physical data configuration
Reduce CPU and Network resources for client appsg

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

http://programmability.us/

-

But How? v v

User-defined extensions to Ceph

« Utilize Ceph’s existing object class mechanism (‘cls’)
« Extensible framework for objects
= ceph/src/cls
« Methods executed directly by objects
« Shared libraries available on all OSDs
« Utilized by Ceph internals
« CephFS, rgw, rbd, others...

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

https://github.com/ceph/ceph/tree/master/src/cls

- 20000

CLS growth in Ceph

A1 Methods 7
—— LOC (C++) 17500

200

7] L 15000

12500
150 A

10000

Interface Count
Lines of Code

100 r 7500

/ L 5000

- 2500

1777 78 78 /it

2010 2011 2012 2013 2014 2015 2016 2017 2018
Sample Date

/-r"

Growth of object classes and methods in Ceph mainline
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Snapshot of ‘cls’ Classes in Ceph

¥ master - ceph/src/cls/ Go to file Add file ~
ivancich Merge pull request #31058 from cbodley/wip-rgw-skip-bilog 86df8b9 4 days ago (O History
2pc_queue rgw/notifications: persistency - cleanup stale reservations 19 days ago
cas cls/cas: replace bool get() with void get() 3 months ago
cephfs cls: Build ceph-osd without using namespace declarations in headers 5 months ago
cmpomap cls/fempomap: add cls module for CMPXATTR-like functionality in omap 5 months ago
hello cls: Build ceph-osd without using namespace declarations in headers 5 months ago
journal cls/journal: use EC pool stripe width for padding appends 5 months ago
lock cls,rados,rbd,mds,common: Avoid name collision with Windows headers 2 months ago
log cls: Build ceph-osd without using namespace declarations in headers 5 months ago
lua librados: add symbol versioning to the C++ API 2 years ago
numops cls: Build ceph-osd without using namespace declarations in headers 5 months ago
otp cls: Build ceph-osd without using namespace declarations in headers 5 months ago
queue cls/rgw_gc: Clearing off urgent data in bufferlist, before 3 months ago
rbd librbd: track in-progress migration aborting operation 22 days ago
refcount cls: Build ceph-osd without using namespace declarations in headers 5 months ago
rgw Merge pull request #31058 from cbodley/wip-rgw-skip-bilog 4 days ago
rgw_gc cls/rgw_gc: Fixing carriage returns in log statement. 3 months ago
sdk cls/sdk: Update cls_sdk.cc to work without using namespace 2 years ago
timeindex cls: Build ceph-osd without using namespace declarations in headers 5 months ago
user rgw: introduce safe user-reset-stats 2 months ago

wareinn ales Buiild ranh_ned withait sicina namacnana danlaratinne in hasdare E manthe ann

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Read/Write Interface

« Ceph objects can access their local data via two
interfaces within ‘cls’

1. Chunkstore — raw device access

2. KVstore — Local instance of RocksDB on OSD
(omap interface)

= Forus-
1. Map tabular data to a device and offset
2. Consider storing tabular data and/or metadata

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

CLS Interface Examples

= Some functions available within a cls method
= //read/write

= cls_cxx_read(ctx, off, len, buf)
= cls_cxx_write(ctx off, len, buf)
= cls_cxx_replace(ctx, off, len, buf)

= // metadata
= cls_cxx_setaxxtr(ctx, name, buf)
= cls_cxx_stat(ctx, size_t, NULL)
= // utilize local RocksDB instance on the OSD
= cls_cxx_map_setvals(ctx, map<str, buf>)
= cls_cxx_map_getval(ctx, key, buf)
= cls_cxx_map_getvals(ctx, keystart, nkeys, map<str,buf>, more)

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

CLS Interface Examples

= Some functions available within a cls method

- // read/write Notice the use of
= cls_cxx_read(ctx, off, len, buf) offset/length allows
« cls_cxx_write(ctx off, len, buf) partial read/write of
= cls_cxx_replace(ctx, off, len, buf) objects

= // metadata
= cls_cxx_setaxxtr(ctx, name, buf)
= cls_cxx_stat(ctx, size_t, NULL)
= // utilize local RocksDB instance on the OSD
= cls_cxx_map_setvals(ctx, map<str, buf>)
= cls_cxx_map_getval(ctx, key, buf)
= cls_cxx_map_getvals(ctx, keystart, nkeys, map<str,buf>, more)

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Why use partial read/write of an object?

Enables great flexibility for physical data layout within
each object

Object

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Why use partial read/write of an object?

« Enables great flexibility for physical data layout within
each object

Object

Sub-Table-1 Sub-Table-2

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Why use partial read/write of an object?

« Enables great flexibility for physical data layout within
each object

= RocksDB enables query-able metadata
Object

Sub-Table-1 Sub-Table-2

Physical location (e.g., offset)

RocksDB l

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Why use partial read/write of an object?

« Enables great flexibility for physical data layout within
each object

= RocksDB enables query-able metadata
Object

Sub-Table-1 Sub-Table-2

Row contains="hat” Logical location (e.g., row num)

RocksDB l

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

-

Example Use Case \/ v

Example Use-case: Custom cls Write

= Write original image, create thumbnails during write

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Example Use-case: Custom cls Metadata

« Create metadata — generate image labels, store as
metadata in local RocksDB

Object

RocksDB l

“label=XYZ"

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Example Use-case: Custom cls Read

« Filter data by label="XYZ"

RocksDB l

“true”

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Create and Register Class/Method

C++ snippet

CLS_VER(1,0)

CLS_NAME(tabular)

cls_handle_t h_class;
cls_method_handle_t h_exec_query_op;

cls_method_handle_t h_build_index;

void __cls_init()
{
CLS_LOG(20, "Loaded tabular class!");

cls_register("tabular", &h_class);

cls_register_cxx_method(h_class, "exec_query_op",

CLS_METHOD_RD, exec_query_op, &h_exec_query_op);

cls_register_cxx_method(h_class, "build_index",

CLS_METHOD_RD | CLS_METHOD_WR, build_index, &h_build_index);

static int exec_query_op(cls_method_context_t hctx,
bufferlist *in,
bufferlist *out)

{

// contains the serialized user request.
query_op op;

// decode the query op to get the query params

bufferlist::const_iterator it = in->begin();
ceph::decode(op, it);

ceph::bufferlist buf;

// lookup metadata
cls_cxx_map_getval(hctx, key, buf)

// read local data
int ret = cls_cxx_read(hctx, off, len, &buf);

// process data

out->append(result, sizeof(result))

return 0;

}

SDC

‘cls’ for SkyhookDM

- Note that CLS mechanism already exists in Ceph
« Used heavily by Ceph internals as shown
« We create custom read/write methods

- Our methods are not Ceph specific
-« C++ code, Arrow library
- We simply utilize Chunk store and KV store interfaces &

= Approach is applicable to any system that
offers such interfaces for objects

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

-
\/

SkyhookDM Architectu>e/

SkyhookDM Architecture

Data Management Application

rados exec(obj, class, method, in, out)

A Objects provide local data processing

Query-able metadata

RocksDB RocksDB RocksDB

_ OSD 0SD 0SD

Ceph cluster with SkyhookDM cls extensions
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

SkyhookDM Architecture

Data Management Application

—7TTT

rados exec(obj, class, method, in, out)
A

Objects provide local data processing

Query-able metadata

RocksDB RocksDB RocksDB

_ OSD 0SD 0SD

Ceph cluster with SkyhookDM cls extensions
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Data Management Application

= Client-side interface to SkyhookDM'’s LiBrADOS Object
classes

= Can consider several approaches

= Distributed processing application frameworks
= Spark, Dask, others

= Database External Table interface (widely avail)
= e.g., PostgreSQL foreign data wrapper

= FileAPls that map onto themselves/pass thru
= e.g., HDF5 Virtual Object Layer (von)

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

https://portal.hdfgroup.org/display/HDF5/Virtual+Object+Layer

SkyhookDM Architecture

Data Management Application

A

rados exec(obj, class, method, in, out)

— AP,
CPU Parallelism
Query-able metadata

(

RocksDB

RocksDB RocksDB

_ OSD 0SD 0SD

Ceph cluster with SkyhookDM cls extensions
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

‘Multi-tenancy’ of cls computations

Data Management Application-A Data Management Application-B

rados exec(obj1, myclass, mymethod, in, out)
A

rados exec(obj2, yourclass, yourmethod, in, o

f N\
objl
obj2 [RocksDB
_ OSD OSC OSC P

Ceph cluster with SkyhookDM cls extensions
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

X
NI
S5 Mothods.

Data Format, Partitioning, Acces

Data Formats in SkyhookDM

« Utilize fast in-memory serialization formats
« Google Flatbuffers/Flexbuffers

= Fields can be accessed without parsing / copying / object
allocation.
= Apache Arrow — Provide “Arrow Native” storage + processing!
= Very popular in big data world and for data exchange
= Recent stable release of version 1.0 (July 24, 2020)
= Compute API for Arrow tables

= Recent Dataset API, provides table abstraction over a
collection of remote files/fragments

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

https://google.github.io/flatbuffers/flexbuffers.html

Partitioning in SkyhookDM

nput Table

Formatted
Partitions Objects

N - e — e

) —)
= N =

Vertical (col) Partitioning

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Partitioning in SkyhookDM

Input Table

=== Paritons. Objects
— . —
NN

) —)

N - Y

Horizontal (row) Partitioning

*uses JumpConsistentHash
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

https://arxiv.org/abs/1406.2294

Partitioning in SkyhookDM

Input Table Key properties of partitions
Formatted _
.-- Partitions Objects « Format retains data's

ics (d
SR — ———-—

* Object names are
—) —) generated
* Objects are distributed

.-- ——) - — - by Ceph based on name

* Object location not
stored by Skyhook

Horizontal (row) Partitioning

*uses JumpConsistentHash
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

https://arxiv.org/abs/1406.2294

Data Processing

« SELECT, PROJECT, Aggregate, Groupby, Sort

B |
>

= Moving to Arrow Compute API, will support more

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

What Metadata to Store in RocksDB?

= Physical offsets
= Logical content location
= Create index on various columns
« Can consider text indexing as well
» Column statistics, access patterns
= Value distribution important for query optimization
« Estimate selectivity, then choose scan or index
« Object-local metadata, so each object can optimize

2025t§'a?%>llfeveloper Conference. © CROSS@UCSC. All Rights Reserved.

When to Pushdown (offload) Processing

« Currently this is binary to pushdown into storage or
not

« Can be a runtime decision by query optimizer based
on cluster knowledge

« What if a storage server is overloaded?

= Object may reject processing, “pushback”
= We are working on this mechanism
= Key consideration when offloading in our framework

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Physical Design OptimizaMs v

Physical Design

Long-studied problem in databases

Good physical design is crucial for workload
performance

Includes partitioning, data format, data layout,
iIndexing, materialized views

In our case
= Map table data structure to physical layout on disk

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Data Layouts within Object

= Consider Arrow table format

Schema

Record Batch

Record Batch

Record Batch

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Data Layouts within Object

= Consider Arrow table format .
Object

Schema

Record Batch Sub-Table-1 Sub-Table-2

Record Batch

==

Record Batch

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Data Layouts within Object

= Consider Arrow table format .
Object

Schema

Record Batch Sub-Table-1 Sub-Table-2

Record Batch

==

Record Batch

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Data Layouts within Object

= Consider Arrow table format .
Object

Schema

Record Batch Sub-Table-1 Sub-Table-2

Record Batch

Object

Record Batch

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Local vs. Distributed Transformations

Local Distributed
Object

Object

Object-1

N

\ Object-2

I

Object’

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

-

Experimental Resultsv v

Experimental Setup

Data: TPC-H Lineitem table 750M rows
10,000 objects, 75,000 rows/object
Formats: Flatbuffer/Flexbuffer (row), Arrow (col)

Queries: select and project

SELECT * FROM lineitem WHERE extended_price > 91,500.00
SELECT extended_price FROM lineitem

Hardware: NSF Cloudlab 40 core, 10GbE, 1TB HDD
Ceph with SkyhookDM extensions, 8 OSDs, 1 client machine

Simple client side driver, process in client or pushdown to
storage using SkyhookDM extensions

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Benefit of Offloading: CPU — 8 OSDs

Client-side Server-side (stacked)

Client machine - standard read, no processing Storage machines - standard read - no processinc

nnnnn

BASELINE -
Read cost only, no query i T

i e A AN Y
e o ~
, o

W osdo

s A,

o
50 60 10 20 0 40 50 60

Benefit of Offloading: CPU — 8 OSDs

Client-side Server-side (stacked)

Client machine - standard read, no processing Storage machines - standard read - no processing
47
546
ooooo
g g W osd4
< <
g 4 W osd3
BASELINE : : :
10 10
2 3] W osd1
4 &
[} |] 40
g Al | £
ead cost only, no que s R A e | [
) o | V 5] R e, NN AN\ T,)
P N N
/ =i NN R
i | . o
10 20 30 40 50 60 10 20 a0 40 50 60
Timestep Timest tep
Client machine - without pushdown processing Storage machines - without pushdown processing
20 2 d
d
5
5 W 5
§ 15 & 15 G
a I 543
| - 5 sd2
S 1 g 10
0 3] f\‘/\ & W osdl
0 5 { \/\\,./—\\/—\ =\ A & W osdo
a v Sl o
2 N 2
a o
S | 3]

No offload to storage] =

Benefit of Offloading: CPU — 8 OSDs

Client-side Server-side (stacked)

Client machine - standard read, no processing Storage machines - standard read - no processing
47
546
nnnnn
< <
2 2 gl
BASELINE : :
10 10
2 3] W osd1
4 &
[} |] 40
g /\- LN 3
ead cost only, no que g ® [M AT g
) g | I e e YN 0 2\
| /“‘—'\JAWV—M_,_\/W
, & . Bt B i A
10 20 30 40 50 60 10 20 a0 40 50 60
Timestep Timest tep
Client machine - without pushdown processing Storage machines - without pushdown processing
20 2 8d7
546
- 0sd5
g 1 o B W osdd
& &
9 4 W osd3
| - 5 sd2
g 1 g 10
SELECT 1% : =W : b
@ - 4
{ N\ -~ 1\ 500
° : / O AAA Ao | | & "
> =
a o
S | 3]

No offload to storage] =

Ti tep Timestep
Client machine - with pushdown processing Storage machines - with pushdown processing
0 20 47
osd6
SELECT 1%
o g b g e W osda
2 b= W osd3
= = sd2
Offload to storage 5w : w ;
2 Q W osdl
i i W osd
a a
2 s 7 - A
E il AN AA—

/\'\\’\ T A AL /-»—\V

™ N— A
e e e —— — 0 e—

2020 Storage Developer Conference. © CROSS@UCSC) 2 £ z = 2 = 2 2 = £ 2 2

Benefit of Offloading: CPU — 8 OSDs

BASELINE
Read cost only, no query

SELECT 1%
No offload to storage

SELECT 1%
Offload to storage

2020 Storage Developer Conference. © CROSS@UCSC

Client-side

Client machine - standard 3 - standard read - no processing
Receive all data
w
o 15
<
P}
> =
s H
o 20]
(%) (%}
& &
w w
o S NN a
7 5 \/\/’\,N,V—\/\.\ /v/«/\ A 2 5 R
. | R J ~ T~
10 20 30 40 50 60 10 20 a0 40 50 60
Timestep Timest tep
Client machine - without | without pushdown processing
20
w oo
@ 5 o
< <
@ @
2 =1
= E
g w0 g 1
i i
g [_/\\/\/_\ g
= w
& Vo' \//\)/\/\NJ/\/ i
> =
g [N~V
¥ b e N ey o P)
/
e e S g N
10 20 30) 0 60 10 20 30 40 50 60
Timestep Timestep
Client machine - with pushdown processing Storage machines - with pushdown processing
20 20
R i d
y eceilve processe
@ 15
b4
g
-
P ata
Z w
Q =
i i
= = A\
2 s 2 IRl
o o

e T, S

Server-side (stacked)

nnnnn

nnnnn

Benefit of Transform Phys Layout

SELECT extended_price FROM lineitem

100 III

Execution Time (seconds)

@ Before transform @ After transform
After transform with PROJECT extended_price

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Ongoing Work

= Adapting to Apache Arrow Dataset API
« Interacting with Arrow community for feedback

« Creating a uiBrabos Fragment, hopefully push
upstream (just starting implementation now)

= RrADOS read from remote object (collect)
= Deployment now via Kubernetes and Rook

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

CENTER FOR RESEARCH IN
OPEN SOURCE SOFTWARE

Bridges gap between student research & open source projects

« Funded by endowment from Sage Weil (Ceph founder) & corporate
memberships.

« Fujitsu Laboratories, Kioxia, Seagate

« Supports graduate research & Incubates work beyond graduation to
reach critical mass
= Skyhookdm project (skyhookdm.com) — store & manage tabular data in Ceph
= Popper project (getpopper.io) — container native workflow execution engine
« Directed by Carlos Maltzahn carlosm@ucsc.edu

= cross.ucsc.edu for more information

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

mailto:carlosm@ucsc.edu
http://www.cross.ucsc.edu/

Summing it up - SkyhookDM

- Data partitioning and layout

= Physical mapping of data onto objects
- Offload processing

« Custom "cls’ methods to execute query ops
« Offload physical design

« Format transformations, indexing, and query-able
metadata

« Not hacking Ceph, just using existing mechanism
« CLS methods updated by copying .so file to OSDs

2020 Storage Developer Conference. © CROSS@UCB: All Rights Res

Acknowledgements

Center for Research in Open Source Software at UCSC (CROSS)
NSF Grant OAC-1836650, CNS-1764102, CNS-1705021
IRIS-HEP Software Institute

Current and previous CROSS Corporate Member companies
Everyone who has contributed to SkyhookDM project!

Esp. Noah Watkins, Michael Sevilla, lvo Jimenez, Ken lizawa

Many internal and external students, Google Summer of Code fellows, IRIS-HEP
fellows, Master’s projects and theses

Thank you!

SkyhookDM.com —Sle. L

ilefevre@ucsc.edu CENTER FOR RESEARCH IN
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. OPEN SOURCE SOFTWARE

https://www.skyhookdm.com/
mailto:jlefevre@ucsc.edu

w@ AV
Please take a moment
to rate this session.

Your feedback matters to us.

-

Thank you. v v

Network Resources 8 OSDs

1,500

1,000

SELECT 1% o

=

No offload to storage *”

1,500

1,000

SELECT 1% o
Offload to storage 500

2020 Storage Deve

Client

== RECV (MB) == SEND (MB)

avs

" ‘.‘ -’ R x“ -
» + *a L]
20 40 60
ELAPSED TIME (seconds)
== RECV (MB) = SEND (MB)
20 40 60

ELAPSED TIME (seconds)

MB

MB

1,500

1,000

500

1 Server

v= RECV (MB) = SEND (MB)

PN

1,500

1,000

500

20 40 60

ELAPSED TIME (seconds)

«= RECV (MB) = SEND (MB)

20 40 60

ELAPSED TIME (seconds)

Scaling the number of OSDs

ARROW FORMAT
@ NO PROCESSING = SELECTIVITY 1%

1,500
1,000

500

Execution Time (seconds)

1 2 4 8 16

Number of Storage Servers (OSDs)

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Local vs. Distributed Transform

4 OSDs, Transform cost, row to column format

Outside

/ storage

200

) 150
©
c
§ In-storage
L 00
()]
£
cC
o
— 50
-}
O
)]
>
Ll

0

local tranform distributed client transform
transform

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.

Average execution time for point query (unigue record), client-side vs. server-
side processing (pushdown)

B client-side [server-side server-side+index

400
W
=
o 300
]
[a]
2,
¥ 2
g 200
|_
=
o 100
=
=
[]
]
(L 0

[
i =ch
co
o

Number of 0SDs

	SkyhookDM: Storage and Management of Tabular Data in Ceph
	Skyhook Data Management
	Approach
	But How?
	User-defined extensions to Ceph
	CLS growth in Ceph
	Snapshot of ‘cls’ Classes in Ceph
	Read/Write Interface
	CLS Interface Examples
	CLS Interface Examples
	Why use partial read/write of an object?
	Why use partial read/write of an object?
	Why use partial read/write of an object?
	Why use partial read/write of an object?
	Example Use Case
	Example Use-case: Custom cls Write
	Example Use-case: Custom cls Metadata
	Example Use-case: Custom cls Read
	Create and Register Class/Method
	‘cls’ for SkyhookDM
	SkyhookDM Architecture
	SkyhookDM Architecture
	SkyhookDM Architecture
	Data Management Application
	SkyhookDM Architecture
	‘Multi-tenancy’ of cls computations
	Data Format, Partitioning, Access Methods
	Data Formats in SkyhookDM
	Partitioning in SkyhookDM
	Partitioning in SkyhookDM
	Partitioning in SkyhookDM
	Data Processing
	What Metadata to Store in RocksDB?
	When to Pushdown (offload) Processing
	Physical Design Optimizations
	Physical Design
	Data Layouts within Object
	Data Layouts within Object
	Data Layouts within Object
	Data Layouts within Object
	Local vs. Distributed Transformations
	Experimental Results
	Experimental Setup
	Benefit of Offloading: CPU – 8 OSDs
	Benefit of Offloading: CPU – 8 OSDs
	Benefit of Offloading: CPU – 8 OSDs
	Benefit of Offloading: CPU – 8 OSDs
	Benefit of Transform Phys Layout
	Ongoing Work
	Slide Number 50
	Summing it up - SkyhookDM
	Acknowledgements
	Please take a moment �to rate this session. ��Your feedback matters to us. �
	Thank you.
	Slide Number 55
	Network Resources 8 OSDs
	Scaling the number of OSDs
	Local vs. Distributed Transform
	Slide Number 59

