
2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 1

SkyhookDM: Storage and
Management of Tabular Data
in Ceph

Jeff LeFevre, Carlos Maltzahn
Center for Research in Open
Source Software
University of California, Santa Cruz

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 2

Skyhook Data Management

 Open source software, LGPL 2.1 License
 Built on Ceph distributed object storage
 Computational storage for tabular data
 Extensible, scalable, generic

Google FlatBuffers: Memory Efficient Serialization Library

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 3

Approach

 Programmable storage (See programmability.us)
 Combine, expose, or extend existing storage

services toward new functionality
 In-storage execution of data management tasks

 Embed external libraries in storage
 Dynamically offload computation to storage servers
 Dynamically reorganize physical data configuration
 Reduce CPU and Network resources for client apps

http://programmability.us/

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 4

But How?

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 5

User-defined extensions to Ceph

 Utilize Ceph’s existing object class mechanism (‘cls’)
 Extensible framework for objects
 ceph/src/cls

 Methods executed directly by objects
 Shared libraries available on all OSDs

 Utilized by Ceph internals
 CephFS, rgw, rbd, others…

https://github.com/ceph/ceph/tree/master/src/cls

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 6

CLS growth in Ceph

Growth of object classes and methods in Ceph mainline

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 7

Snapshot of ‘cls’ Classes in Ceph

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 8

Read/Write Interface

 Ceph objects can access their local data via two
interfaces within ‘cls’
1. Chunkstore – raw device access
2. KVstore – Local instance of RocksDB on OSD

(omap interface)
 For us –

1. Map tabular data to a device and offset
2. Consider storing tabular data and/or metadata

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 9

CLS Interface Examples

 Some functions available within a cls method
 // read/write

 cls_cxx_read(ctx, off, len, buf)
 cls_cxx_write(ctx off, len, buf)
 cls_cxx_replace(ctx, off, len, buf)

 // metadata
 cls_cxx_setaxxtr(ctx, name, buf)
 cls_cxx_stat(ctx, size_t, NULL)

 // utilize local RocksDB instance on the OSD
 cls_cxx_map_setvals(ctx, map<str, buf>)
 cls_cxx_map_getval(ctx, key, buf)
 cls_cxx_map_getvals(ctx, keystart, nkeys, map<str,buf>, more)

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 10

CLS Interface Examples

 Some functions available within a cls method
 // read/write

 cls_cxx_read(ctx, off, len, buf)
 cls_cxx_write(ctx off, len, buf)
 cls_cxx_replace(ctx, off, len, buf)

 // metadata
 cls_cxx_setaxxtr(ctx, name, buf)
 cls_cxx_stat(ctx, size_t, NULL)

 // utilize local RocksDB instance on the OSD
 cls_cxx_map_setvals(ctx, map<str, buf>)
 cls_cxx_map_getval(ctx, key, buf)
 cls_cxx_map_getvals(ctx, keystart, nkeys, map<str,buf>, more)

Notice the use of
offset/length allows
partial read/write of

objects

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 11

Why use partial read/write of an object?

 Enables great flexibility for physical data layout within
each object

Object

Table

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 12

Why use partial read/write of an object?

 Enables great flexibility for physical data layout within
each object

Object

Sub-Table-1 Sub-Table-2

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 13

Why use partial read/write of an object?

 Enables great flexibility for physical data layout within
each object

 RocksDB enables query-able metadata
Object

Sub-Table-1 Sub-Table-2

RocksDB

Physical location (e.g., offset)

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 14

Why use partial read/write of an object?

 Enables great flexibility for physical data layout within
each object

 RocksDB enables query-able metadata
Object

Sub-Table-1 Sub-Table-2

RocksDB

Logical location (e.g., row num)Row contains=“hat”

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 15

Example Use Case

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 16

Example Use-case: Custom cls Write

 Write original image, create thumbnails during write
op

Object

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 17

Example Use-case: Custom cls Metadata

 Create metadata – generate image labels, store as
metadata in local RocksDB

RocksDB

“label=XYZ”

Object

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 18

Example Use-case: Custom cls Read

 Filter data by label=“XYZ”

RocksDB

“true”

Object

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 19

Create and Register Class/Method
CLS_VER(1,0)

CLS_NAME(tabular)

cls_handle_t h_class;

cls_method_handle_t h_exec_query_op;

cls_method_handle_t h_build_index;

void __cls_init()

{

CLS_LOG(20, "Loaded tabular class!");

cls_register("tabular", &h_class);

cls_register_cxx_method(h_class, "exec_query_op",

CLS_METHOD_RD, exec_query_op, &h_exec_query_op);

cls_register_cxx_method(h_class, "build_index",

CLS_METHOD_RD | CLS_METHOD_WR, build_index, &h_build_index);

}

C++ snippet
static int exec_query_op(cls_method_context_t hctx,

bufferlist *in,
bufferlist *out)

{

// contains the serialized user request.
query_op op;

// decode the query op to get the query params
bufferlist::const_iterator it = in->begin();
ceph::decode(op, it);

...

ceph::bufferlist buf;

// lookup metadata
cls_cxx_map_getval(hctx, key, buf)

...

// read local data
int ret = cls_cxx_read(hctx, off, len, &buf);

// process data

...

out->append(result, sizeof(result))

return 0;
}

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 20

‘cls’ for SkyhookDM

 Note that CLS mechanism already exists in Ceph
 Used heavily by Ceph internals as shown

 We create custom read/write methods
 Our methods are not Ceph specific
 C++ code, Arrow library

 We simply utilize Chunk store and KV store interfaces
 Approach is applicable to any system that

offers such interfaces for objects

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 21

SkyhookDM Architecture

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 22

SkyhookDM Architecture

OSD OSD OSD
Ceph cluster with SkyhookDM cls extensions

RocksDBRocksDBRocksDB

Objects provide local data processing

Query-able metadata

rados exec(obj, class, method, in, out)

Data Management Application

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 23

SkyhookDM Architecture

OSD OSD OSD
Ceph cluster with SkyhookDM cls extensions

RocksDBRocksDBRocksDB

Objects provide local data processing

Query-able metadata

rados exec(obj, class, method, in, out)

Data Management Application

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 24

Data Management Application

 Client-side interface to SkyhookDM’s LIBRADOS object
classes

 Can consider several approaches
 Distributed processing application frameworks

 Spark, Dask, others
 Database External Table interface (widely avail)

 e.g., PostgreSQL foreign data wrapper
 FileAPIs that map onto themselves/pass thru

 e.g., HDF5 Virtual Object Layer (VOL)

https://portal.hdfgroup.org/display/HDF5/Virtual+Object+Layer

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 25

SkyhookDM Architecture

OSD OSD OSD
Ceph cluster with SkyhookDM cls extensions

RocksDBRocksDBRocksDB

Objects provide local data processing

Query-able metadata

rados exec(obj, class, method, in, out)

Data Management Application

IO Parallelism

CPU Parallelism

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 26

‘Multi-tenancy’ of cls computations

obj1
obj2

OSD OSD OSD
Ceph cluster with SkyhookDM cls extensions

RocksDBRocksDBRocksDB

rados exec(obj1, myclass, mymethod, in, out)

Data Management Application-A

rados exec(obj2, yourclass, yourmethod, in, out)

Data Management Application-B

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 27

Data Format, Partitioning, Access Methods

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 28

Data Formats in SkyhookDM

 Utilize fast in-memory serialization formats
 Google Flatbuffers/Flexbuffers

 Fields can be accessed without parsing / copying / object
allocation.

 Apache Arrow – Provide “Arrow Native” storage + processing!
 Very popular in big data world and for data exchange
 Recent stable release of version 1.0 (July 24, 2020)
 Compute API for Arrow tables
 Recent Dataset API, provides table abstraction over a

collection of remote files/fragments

https://google.github.io/flatbuffers/flexbuffers.html

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 29

Partitioning in SkyhookDM
Input Table

Vertical (col) Partitioning

Formatted
Partitions Objects

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 30

Partitioning in SkyhookDM

Formatted
Partitions Objects

Horizontal (row) Partitioning

*uses JumpConsistentHash

Input Table

https://arxiv.org/abs/1406.2294

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 31

Partitioning in SkyhookDM

Formatted
Partitions Objects

Horizontal (row) Partitioning

*uses JumpConsistentHash

Input Table
• Format retains data's

semantics (data
schema)

• Object names are
generated

• Objects are distributed
by Ceph based on name

• Object location not
stored by Skyhook

Key properties of partitions

https://arxiv.org/abs/1406.2294

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 32

Data Processing

 SELECT, PROJECT, Aggregate, Groupby, Sort

min

 Moving to Arrow Compute API, will support more

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 33

What Metadata to Store in RocksDB?

 Physical offsets
 Logical content location

 Create index on various columns
 Can consider text indexing as well

 Column statistics, access patterns
 Value distribution important for query optimization
 Estimate selectivity, then choose scan or index

 Object-local metadata, so each object can optimize
itself

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 34

When to Pushdown (offload) Processing

 Currently this is binary to pushdown into storage or
not

 Can be a runtime decision by query optimizer based
on cluster knowledge

 What if a storage server is overloaded?
 Object may reject processing, “pushback”

 We are working on this mechanism
 Key consideration when offloading in our framework

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 35

Physical Design Optimizations

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 36

Physical Design

 Long-studied problem in databases
 Good physical design is crucial for workload

performance
 Includes partitioning, data format, data layout,

indexing, materialized views
 In our case

 Map table data structure to physical layout on disk

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 37

Data Layouts within Object

 Consider Arrow table format
Schema

Record Batch

Record Batch

Record Batch

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 38

Data Layouts within Object

 Consider Arrow table format
Object

Sub-Table-1 Sub-Table-2

Schema

Record Batch

Record Batch

Record Batch

RocksDB

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 39

Data Layouts within Object

 Consider Arrow table format
Object

Sub-Table-1 Sub-Table-2

Schema

Record Batch

Record Batch

Record Batch
Object

Sc
he

m
a

R
ec

or
d

Ba
tc

h

R
ec

or
d

Ba
tc

h

R
ec

or
d

Ba
tc

h

RocksDB

RocksDB

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 40

Data Layouts within Object

 Consider Arrow table format
Object

Sub-Table-1 Sub-Table-2

Schema

Record Batch

Record Batch

Record Batch
Object

Sc
he

m
a

RocksDB

col1
col2

col3

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 41

Local vs. Distributed Transformations

col2

Object Object

Local Distributed

Object’ Object-1 Object-2

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 42

Experimental Results

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 43

Experimental Setup

 Data: TPC-H Lineitem table 750M rows
 10,000 objects, 75,000 rows/object

 Formats: Flatbuffer/Flexbuffer (row), Arrow (col)
 Queries: select and project

 SELECT * FROM lineitem WHERE extended_price > 91,500.00
 SELECT extended_price FROM lineitem

 Hardware: NSF Cloudlab 40 core, 10GbE, 1TB HDD
 Ceph with SkyhookDM extensions, 8 OSDs, 1 client machine
 Simple client side driver, process in client or pushdown to

storage using SkyhookDM extensions

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 44

Benefit of Offloading: CPU – 8 OSDs
Client-side Server-side (stacked)

SELECT 1%
No offload to storage

SELECT 1%
Offload to storage

BASELINE
Read cost only, no query

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 45

Benefit of Offloading: CPU – 8 OSDs
Client-side Server-side (stacked)

SELECT 1%
No offload to storage

SELECT 1%
Offload to storage

BASELINE
Read cost only, no query

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 46

Benefit of Offloading: CPU – 8 OSDs
Client-side Server-side (stacked)

SELECT 1%
No offload to storage

SELECT 1%
Offload to storage

BASELINE
Read cost only, no query

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 47

Benefit of Offloading: CPU – 8 OSDs
Client-side Server-side (stacked)

SELECT 1%
No offload to storage

SELECT 1%
Offload to storage

BASELINE
Read cost only, no query

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 48

Benefit of Transform Phys Layout

row

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 49

Ongoing Work

 Adapting to Apache Arrow Dataset API
 Interacting with Arrow community for feedback
 Creating a LIBRADOS Fragment, hopefully push

upstream (just starting implementation now)
 RADOS read from remote object (collect)
 Deployment now via Kubernetes and Rook

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 50

 Bridges gap between student research & open source projects
 Funded by endowment from Sage Weil (Ceph founder) & corporate

memberships.
 Fujitsu Laboratories, Kioxia, Seagate

 Supports graduate research & Incubates work beyond graduation to
reach critical mass
 Skyhookdm project (skyhookdm.com) – store & manage tabular data in Ceph
 Popper project (getpopper.io) – container native workflow execution engine

 Directed by Carlos Maltzahn carlosm@ucsc.edu
 cross.ucsc.edu for more information

mailto:carlosm@ucsc.edu
http://www.cross.ucsc.edu/

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 51

Summing it up - SkyhookDM

 Data partitioning and layout
 Physical mapping of data onto objects

 Offload processing
 Custom `cls’ methods to execute query ops

 Offload physical design
 Format transformations, indexing, and query-able

metadata
 Not hacking Ceph, just using existing mechanism

 CLS methods updated by copying .so file to OSDs

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 52

Acknowledgements

 Center for Research in Open Source Software at UCSC (CROSS)
 NSF Grant OAC-1836650, CNS-1764102, CNS-1705021
 IRIS-HEP Software Institute
 Current and previous CROSS Corporate Member companies
 Everyone who has contributed to SkyhookDM project!

 Esp. Noah Watkins, Michael Sevilla, Ivo Jimenez, Ken Iizawa
 Many internal and external students, Google Summer of Code fellows, IRIS-HEP

fellows, Master’s projects and theses

 Thank you!

SkyhookDM.com
jlefevre@ucsc.edu

https://www.skyhookdm.com/
mailto:jlefevre@ucsc.edu

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 53

Please take a moment
to rate this session.

Your feedback matters to us.

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 54

Thank you.

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 55

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 56

Network Resources 8 OSDs

SELECT 1%
No offload to storage

SELECT 1%
Offload to storage

Client 1 Server

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 57

Scaling the number of OSDs

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 58

Local vs. Distributed Transform

In-storage

Outside
storage

4 OSDs, Transform cost, row to column format

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved. 59

	SkyhookDM: Storage and Management of Tabular Data in Ceph
	Skyhook Data Management
	Approach
	But How?
	User-defined extensions to Ceph
	CLS growth in Ceph
	Snapshot of ‘cls’ Classes in Ceph
	Read/Write Interface
	CLS Interface Examples
	CLS Interface Examples
	Why use partial read/write of an object?
	Why use partial read/write of an object?
	Why use partial read/write of an object?
	Why use partial read/write of an object?
	Example Use Case
	Example Use-case: Custom cls Write
	Example Use-case: Custom cls Metadata
	Example Use-case: Custom cls Read
	Create and Register Class/Method
	‘cls’ for SkyhookDM
	SkyhookDM Architecture
	SkyhookDM Architecture
	SkyhookDM Architecture
	Data Management Application
	SkyhookDM Architecture
	‘Multi-tenancy’ of cls computations
	Data Format, Partitioning, Access Methods
	Data Formats in SkyhookDM
	Partitioning in SkyhookDM
	Partitioning in SkyhookDM
	Partitioning in SkyhookDM
	Data Processing
	What Metadata to Store in RocksDB?
	When to Pushdown (offload) Processing
	Physical Design Optimizations
	Physical Design
	Data Layouts within Object
	Data Layouts within Object
	Data Layouts within Object
	Data Layouts within Object
	Local vs. Distributed Transformations
	Experimental Results
	Experimental Setup
	Benefit of Offloading: CPU – 8 OSDs
	Benefit of Offloading: CPU – 8 OSDs
	Benefit of Offloading: CPU – 8 OSDs
	Benefit of Offloading: CPU – 8 OSDs
	Benefit of Transform Phys Layout
	Ongoing Work
	Slide Number 50
	Summing it up - SkyhookDM
	Acknowledgements
	Please take a moment �to rate this session. ��Your feedback matters to us. �
	Thank you.
	Slide Number 55
	Network Resources 8 OSDs
	Scaling the number of OSDs
	Local vs. Distributed Transform
	Slide Number 59

