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Skyhook Data Management %%’/

« Open source software, LGPL 2.1 License
= Built on Ceph distributed object storage
Computational storage for tabular data
Extensible, scalable, generic

CENTER FOR RESEARCH IN
<Q> OPEN SOURCE SOFTWARE
Q ARROW>>>
ceph > =
Google FlatBuffers: Memory Efficient Serialization Library it
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Approach

Programmable storage (See programmability.us)

« Combine, expose, or extend existing storage
services toward new functionality

In-storage execution of data management tasks

= Embed external libraries in storage

Dynamically offload computation to storage servers
Dynamically reorganize physical data configuration
Reduce CPU and Network resources for client appsg
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User-defined extensions to Ceph

« Utilize Ceph’s existing object class mechanism (‘cls’)
« Extensible framework for objects
= ceph/src/cls
« Methods executed directly by objects
« Shared libraries available on all OSDs
« Utilized by Ceph internals
« CephFS, rgw, rbd, others...
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https://github.com/ceph/ceph/tree/master/src/cls
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Snapshot of ‘cls’ Classes in Ceph

¥ master - ceph/src/cls/ Go to file Add file ~
ivancich Merge pull request #31058 from cbodley/wip-rgw-skip-bilog 86df8b9 4 days ago (O History
2pc_queue rgw/notifications: persistency - cleanup stale reservations 19 days ago
cas cls/cas: replace bool get() with void get() 3 months ago
cephfs cls: Build ceph-osd without using namespace declarations in headers 5 months ago
cmpomap cls/fempomap: add cls module for CMPXATTR-like functionality in omap 5 months ago
hello cls: Build ceph-osd without using namespace declarations in headers 5 months ago
journal cls/journal: use EC pool stripe width for padding appends 5 months ago
lock cls,rados,rbd,mds,common: Avoid name collision with Windows headers 2 months ago
log cls: Build ceph-osd without using namespace declarations in headers 5 months ago
lua librados: add symbol versioning to the C++ API 2 years ago
numops cls: Build ceph-osd without using namespace declarations in headers 5 months ago
otp cls: Build ceph-osd without using namespace declarations in headers 5 months ago
queue cls/rgw_gc: Clearing off urgent data in bufferlist, before 3 months ago
rbd librbd: track in-progress migration aborting operation 22 days ago
refcount cls: Build ceph-osd without using namespace declarations in headers 5 months ago
rgw Merge pull request #31058 from cbodley/wip-rgw-skip-bilog 4 days ago
rgw_gc cls/rgw_gc: Fixing carriage returns in log statement. 3 months ago
sdk cls/sdk: Update cls_sdk.cc to work without using namespace 2 years ago
timeindex cls: Build ceph-osd without using namespace declarations in headers 5 months ago
user rgw: introduce safe user-reset-stats 2 months ago
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2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.




Read/Write Interface

« Ceph objects can access their local data via two
interfaces within ‘cls’

1. Chunkstore — raw device access

2. KVstore — Local instance of RocksDB on OSD
(omap interface)

= Forus-
1.  Map tabular data to a device and offset
2. Consider storing tabular data and/or metadata
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CLS Interface Examples

= Some functions available within a cls method
= //read/write

= cls_cxx_read(ctx, off, len, buf)
= cls_cxx_write(ctx off, len, buf)
= cls_cxx_replace(ctx, off, len, buf)

= // metadata
= cls_cxx_setaxxtr(ctx, name, buf)
= cls_cxx_stat(ctx, size_t, NULL)
= // utilize local RocksDB instance on the OSD
= cls_cxx_map_setvals(ctx, map<str, buf>)
= cls_cxx_map_getval(ctx, key, buf)
= cls_cxx_map_getvals(ctx, keystart, nkeys, map<str,buf>, more)
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CLS Interface Examples

= Some functions available within a cls method

- // read/write Notice the use of
= cls_cxx_read(ctx, off, len, buf) offset/length allows
« cls_cxx_write(ctx off, len, buf) partial read/write of
= cls_cxx_replace(ctx, off, len, buf) objects

= // metadata
= cls_cxx_setaxxtr(ctx, name, buf)
= cls_cxx_stat(ctx, size_t, NULL)
= // utilize local RocksDB instance on the OSD
= cls_cxx_map_setvals(ctx, map<str, buf>)
= cls_cxx_map_getval(ctx, key, buf)
= cls_cxx_map_getvals(ctx, keystart, nkeys, map<str,buf>, more)
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Why use partial read/write of an object?

Enables great flexibility for physical data layout within
each object

Object

2020 Storage Developer Conference. © CROSS@UCSC. All Rights Reserved.




Why use partial read/write of an object?

« Enables great flexibility for physical data layout within
each object

Object

Sub-Table-1 Sub-Table-2
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Why use partial read/write of an object?

« Enables great flexibility for physical data layout within
each object

= RocksDB enables query-able metadata
Object

Sub-Table-1 Sub-Table-2

Physical location (e.g., offset)

RocksDB l
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Why use partial read/write of an object?

« Enables great flexibility for physical data layout within
each object

= RocksDB enables query-able metadata
Object

Sub-Table-1 Sub-Table-2

Row contains="hat” Logical location (e.g., row num)

RocksDB l
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Example Use-case: Custom cls Write

= Write original image, create thumbnails during write
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Example Use-case: Custom cls Metadata

« Create metadata — generate image labels, store as
metadata in local RocksDB

Object

RocksDB l

“label=XYZ"
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Example Use-case: Custom cls Read

« Filter data by label="XYZ"

RocksDB l

“true”
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Create and Register Class/Method

C++ snippet

CLS_VER(1,0)

CLS_NAME(tabular)

cls_handle_t h_class;
cls_method_handle_t h_exec_query_op;

cls_method_handle_t h_build_index;

void __cls_init()
{
CLS_LOG(20, "Loaded tabular class!");

cls_register("tabular", &h_class);

cls_register_cxx_method(h_class, "exec_query_op",

CLS_METHOD_RD, exec_query_op, &h_exec_query_op);

cls_register_cxx_method(h_class, "build_index",

CLS_METHOD_RD | CLS_METHOD_WR, build_index, &h_build_index);

static int exec_query_op(cls_method_context_t hctx,
bufferlist *in,
bufferlist *out)

{

// contains the serialized user request.
query_op op;

// decode the query op to get the query params

bufferlist::const_iterator it = in->begin();
ceph::decode(op, it);

ceph::bufferlist buf;

// lookup metadata
cls_cxx_map_getval(hctx, key, buf)

// read local data
int ret = cls_cxx_read(hctx, off, len, &buf);

// process data

out->append(result, sizeof(result))

return 0;

}

SDC




‘cls’ for SkyhookDM

- Note that CLS mechanism already exists in Ceph
« Used heavily by Ceph internals as shown
« We create custom read/write methods

- Our methods are not Ceph specific
-« C++ code, Arrow library
- We simply utilize Chunk store and KV store interfaces &

= Approach is applicable to any system that
offers such interfaces for objects
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SkyhookDM Architecture

Data Management Application

rados exec(obj, class, method, in, out)

A Objects provide local data processing

Query-able metadata

RocksDB RocksDB RocksDB

\_ OSD 0SD 0SD

Ceph cluster with SkyhookDM cls extensions
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SkyhookDM Architecture

Data Management Application

—7TTT

rados exec(obj, class, method, in, out)
A

Objects provide local data processing

Query-able metadata

RocksDB RocksDB RocksDB

\_ OSD 0SD 0SD

Ceph cluster with SkyhookDM cls extensions
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Data Management Application

= Client-side interface to SkyhookDM'’s LiBrADOS Object
classes

= Can consider several approaches

= Distributed processing application frameworks
= Spark, Dask, others

= Database External Table interface (widely avail)
= e.g., PostgreSQL foreign data wrapper

= FileAPls that map onto themselves/pass thru
= e.g., HDF5 Virtual Object Layer (von)
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https://portal.hdfgroup.org/display/HDF5/Virtual+Object+Layer

SkyhookDM Architecture

Data Management Application

A

rados exec(obj, class, method, in, out)

— AP,
CPU Parallelism
Query-able metadata

(

RocksDB

RocksDB RocksDB

\_ OSD 0SD 0SD

Ceph cluster with SkyhookDM cls extensions
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‘Multi-tenancy’ of cls computations

Data Management Application-A Data Management Application-B

rados exec(obj1, myclass, mymethod, in, out)
A

rados exec(obj2, yourclass, yourmethod, in, o

f N\
objl
obj2 [ RocksDB
\_ OSD OSC OSC P

Ceph cluster with SkyhookDM cls extensions
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Data Formats in SkyhookDM

« Utilize fast in-memory serialization formats
« Google Flatbuffers/Flexbuffers

= Fields can be accessed without parsing / copying / object
allocation.
= Apache Arrow — Provide “Arrow Native” storage + processing!
= Very popular in big data world and for data exchange
= Recent stable release of version 1.0 (July 24, 2020)
= Compute API for Arrow tables

= Recent Dataset API, provides table abstraction over a
collection of remote files/fragments
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Partitioning in SkyhookDM

nput Table

Formatted
Partitions Objects

N - e — e

) —)
= N =

Vertical (col) Partitioning
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Partitioning in SkyhookDM

Input Table

=== Paritons. Objects
— . —
NN

) —)

N - Y

Horizontal (row) Partitioning

*uses JumpConsistentHash
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https://arxiv.org/abs/1406.2294

Partitioning in SkyhookDM

Input Table Key properties of partitions
Formatted _
.-- Partitions Objects « Format retains data's

ics (d
SR — ———-—

* Object names are
—) —) generated
* Objects are distributed

.-- ——) - — - by Ceph based on name

* Object location not
stored by Skyhook

Horizontal (row) Partitioning

*uses JumpConsistentHash
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Data Processing

« SELECT, PROJECT, Aggregate, Groupby, Sort

B |
>

= Moving to Arrow Compute API, will support more
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What Metadata to Store in RocksDB?

= Physical offsets
= Logical content location
= Create index on various columns
« Can consider text indexing as well
» Column statistics, access patterns
= Value distribution important for query optimization
« Estimate selectivity, then choose scan or index
« Object-local metadata, so each object can optimize
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When to Pushdown (offload) Processing

« Currently this is binary to pushdown into storage or
not

« Can be a runtime decision by query optimizer based
on cluster knowledge

« What if a storage server is overloaded?

= Object may reject processing, “pushback”
= We are working on this mechanism
= Key consideration when offloading in our framework
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Physical Design

Long-studied problem in databases

Good physical design is crucial for workload
performance

Includes partitioning, data format, data layout,
iIndexing, materialized views

In our case
= Map table data structure to physical layout on disk
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Data Layouts within Object

= Consider Arrow table format

Schema

Record Batch

Record Batch

Record Batch
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Data Layouts within Object

= Consider Arrow table format .
Object

Schema

Record Batch Sub-Table-1 Sub-Table-2

Record Batch

==

Record Batch
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Data Layouts within Object

= Consider Arrow table format .
Object

Schema

Record Batch Sub-Table-1 Sub-Table-2

Record Batch

==

Record Batch
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Data Layouts within Object

= Consider Arrow table format .
Object

Schema

Record Batch Sub-Table-1 Sub-Table-2

Record Batch

Object

Record Batch
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Local vs. Distributed Transformations

Local Distributed
Object

Object

Object-1

N

\ Object-2

I

Object’
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Experimental Setup

Data: TPC-H Lineitem table 750M rows
10,000 objects, 75,000 rows/object
Formats: Flatbuffer/Flexbuffer (row), Arrow (col)

Queries: select and project

SELECT * FROM lineitem WHERE extended_price > 91,500.00
SELECT extended_price FROM lineitem

Hardware: NSF Cloudlab 40 core, 10GbE, 1TB HDD
Ceph with SkyhookDM extensions, 8 OSDs, 1 client machine

Simple client side driver, process in client or pushdown to
storage using SkyhookDM extensions
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Benefit of Offloading: CPU — 8 OSDs

Client-side Server-side (stacked)

Client machine - standard read, no processing Storage machines - standard read - no processinc
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Benefit of Offloading: CPU — 8 OSDs

Client-side Server-side (stacked)
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Benefit of Offloading: CPU — 8 OSDs
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Benefit of Offloading: CPU — 8 OSDs

BASELINE
Read cost only, no query

SELECT 1%
No offload to storage

SELECT 1%
Offload to storage
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Benefit of Transform Phys Layout

SELECT extended_price FROM lineitem

100 III

Execution Time (seconds)

@ Before transform @ After transform
After transform with PROJECT extended_price
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Ongoing Work

= Adapting to Apache Arrow Dataset API
« Interacting with Arrow community for feedback

« Creating a uiBrabos Fragment, hopefully push
upstream (just starting implementation now)

= RrADOS read from remote object (collect)
= Deployment now via Kubernetes and Rook
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CENTER FOR RESEARCH IN
OPEN SOURCE SOFTWARE

Bridges gap between student research & open source projects

« Funded by endowment from Sage Weil (Ceph founder) & corporate
memberships.

« Fujitsu Laboratories, Kioxia, Seagate

« Supports graduate research & Incubates work beyond graduation to
reach critical mass
= Skyhookdm project (skyhookdm.com) — store & manage tabular data in Ceph
= Popper project (getpopper.io) — container native workflow execution engine
« Directed by Carlos Maltzahn carlosm@ucsc.edu

= cross.ucsc.edu for more information
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Summing it up - SkyhookDM

- Data partitioning and layout

= Physical mapping of data onto objects
- Offload processing

« Custom "cls’ methods to execute query ops
« Offload physical design

« Format transformations, indexing, and query-able
metadata

« Not hacking Ceph, just using existing mechanism
« CLS methods updated by copying .so file to OSDs
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Network Resources 8 OSDs
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Scaling the number of OSDs

ARROW FORMAT
@ NO PROCESSING = SELECTIVITY 1%

1,500
1,000

500

Execution Time (seconds)

1 2 4 8 16

Number of Storage Servers (OSDs)
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Local vs. Distributed Transform

4 OSDs, Transform cost, row to column format

Outside

/ storage
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Average execution time for point query (unigue record), client-side vs. server-
side processing (pushdown)
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