

Storage Developer Conference September 22-23, 2020

Improve
Distributed Storage System
Total Cost of Ownership with
Host-Managed SMR HDDs

Albert Chen KALISTA IO

Introduction

Albert Chen

CEO of KALISTA IO. Previously, senior engineering and management roles at WDC, MSFT and various startups. Pioneered industry's HM-SMR storage solutions.

hselin@kalista.io

https://linkedin.com/in/alberthchen

Preview: enabling HM-SMR everywhere

Apache Hadoop® Gitlab®

NGINX® Docker® registry

Ceph® Media servers

MongoDB® Minio®

Kubernetes® vols and more...

Preview: without friction

No applications changes No kernel modifications Just works

Preview: consistent performance atscale

Agenda

SD@

Trends

Problems and opportunities

Solutions

Host-Managed SMR

Current implementations and limitations

Improvements

KALISTA Phalanx

Performance and simplicity

Trends

Explosive growth of digital data

Amount of data created globally will increase from 32 zettabytes (ZB) last year to over 100 ZB by 2023^[1]

Falling cost (\$/GB)^[2]

Pushing the limits of device physics

Storage devices are becoming more complex, difficult and costly to use

New and expected usage models

vessels

Increasing total capacity & device size^[2]

Declining 10 density

SD@

Limited margin for innovation^[2]

SD@

"Hard disk is the worst form of storage device, except for all the others."

Winston Leonard Spencer-Churchill

Demand for agility and optimal TCO

New architectures and usage models are growing increasingly incompatible & adverse for next generation storage technologies

10 Blender

Long taillatency

Total cost of ownership

Host Managed SMR

Higher capacity

Reduced total cost of ownership

Consistent performance

More restrictive usage model

Investment in storage stack

Layers of indirection

Application Modified application **Application** File system SMR file system **Device** mapper Direct device access **HM-SMR HM-SMR HM-SMR**

Available implementations

SG_IO

Direct access

libzbc

Direct access library

f2fs

SMR capable file system

dm-zoned Device mapper target

"Wisdom begins in wonder." - Socrates

Make room for innovation

Improve user experience

Minimize dependency and limitations

Kernel version

Modules/drivers

Hardware configuration

Protocol support

Leverage existing interfaces

File API

open(), read(), write()...

Object API

GET, PUT, DELETE

Block API

TUR, WRITE, READ

Work for alldevices

Conventional device

HDD

SSD

Zoned devices

HM/Hybrid-SMR HDD

ZNS SSD

Deploy anywhere at anytime

Minimal dependencies

Easy to add & remove capacity

Fits within existing workflows

Works with orchestration fwks

Be device friendly

Minimize seeks

Maximize IO transfersize

Prevent hot spots

Reduce background work

Perform at scale

Reduce contention

Increase IO concurrency

IO prioritization

Trim tail latency

SD@

Support new technologies

Multi-actuator

Variable capacity

Large block size

New usagemodels

KALISTAIO

Get ready for a storage revolution

Adding performance and simplicity

Performance, simplicity and future ready

Support existing interfaces & device types

Reducing dependencies and adapting tovariations

Engineered to minimize dependency

User space implementation

No kernelmodifications

No additional modules/drivers

Generalized for all kernel versions

Hardware

No zone configuration requirements

No device and zone size limitations

Know yourdependencies

Declare your independence

Deploy anywhere. Run everywhere.

Easy to deploy. Simple to operate.

 Download image docker pull kalistaio/phalanx:release

2. And start container

```
docker run\
...
--mount type=bind,src=<mount path>. ..\
kalistaio/phalanx:release
...
-d <path to HM-SMR devices> \
```

What happens when you remove frictions and barriers to HM-SMR

Distributed systems with HM-SMR

And much more

NGINX®

GitLab[®]

 $MongoDB^{\circledR}$

OpenStack Swift®

Docker® registry

Kubernetes® volumes

Minio®

Designed for performance and scalability

Minimize contention

Data/metadata separation

Log structured data layout

Maximize IO concurrency

Support multi-actuator disks

Distribute workload across devices

Generate device friendly behavior

Prevent hot spots

Minimize background work

Minimize seeks

Scale performance with capacity

Row and column architecture

Minimize seeks and contention

LBA 0

Distribute workload across devices

Decrease contention

Scale performance withcapacity

Semantic intelligence

Prioritization

Tiering

Caching

Predictive optimization

Quality of service (Qos)

What happens when you enable devices to perform at their best

Write tail latencies with legacy system^[3]

Curtailed with Phalanx and HM-SMR^[4]

	Legacy stack wi	Phalanx with Ultrastar HC620	
	28,4	16,924	99%
87 I	97,3	26,211	99.95%
227	202,2	41,736	99.99%

Benchmark systems configuration

Host-Managed SMR HDD Test System CMR HDD Test System

Benchmark application (e.g. fio/Hadoop/Ceph)

Benchmark application (e.g. fio/Hadoop/Ceph)

Kalista IO Phalanx storage system

XFS/ext4

Linux 5.0.0-25-generic kernel

Linux 5.0.0-25-generic kernel

Western Digital Ultrastar DC HC620 Host-Managed SMR HDD Western Digital
Ultrastar DC HC530
CMR HDD

Benchmark results

SD@

6x

more IOPS with fio random write^[5]

58%

higher IOPS with Ceph Rados write bench^[7]

19%

faster throughput with Hadoop TestDFSIO read^[6]

better performanceconsistency with Ceph Rados write bench^[7]

Thank you!

Contact

@kalista.io

"There is nothing impossible to him who will try." — Alexander

- 1. D. Reinsel and J. Rydning, "Worldwide Global DataSphere Forecast, 2019-2023: Consumer Dependence on the Enterprise Widening," IDC, 2019.
- 2. Source: Seagate Technology LLC and Western Digital Corp quarterly reports
- 3. Testing conducted by Kalista IO in July 2020 using XFS file system with Linux kernel 5.4.0-42-generic, and Intel® Core™ i7-4771 CPU 3.50GHz with 16GiB DDR3 Synchronous 2400 MHz RAM, and Western Digital Ultrastar DC HC530 CMR drive connected through SATA 3.2, 6.0 Gb/s interface. Write bench created a single 1GB file and executed 600,000 write commands each overwriting the first 64KB region of the file to capture latency values.
- 4. Testing conducted by Kalista IO in July 2020 using preproduction Olympus (Phalanx) software with Linux kernel 5.4.0-42-generic, and Intel® Core™ i7-4771 CPU 3.50GHz with 16GiB DDR3 Synchronous 2400 MHz RAM, and Western Digital Ultrastar DC HC620 host managed SMR drives connected through SATA 3.2, 6.0 Gb/s interface. Write bench created a single 1GB file and executed 600,000 write commands each overwriting the first 64KB region of the file capture latency values.

- 5. Testing conducted by Kalista IO in August 2019 using preproduction Phalanx software with Linux kernel 4.18.0-25-generic, and Intel Core i7-4771 CPU 3.50GHz with 16GiB DDR3 Synchronous 2400 MHz RAM, and Western Digital Ultrastar DC HC620 host managed SMR and Ultrastar DC HC530 CMR drives connected through SATA 3.2, 6.0 Gb/s interface. Tested with Flexible I/O tester (fio) version 3.14-11-g308a. Random write bench ran for 1800 seconds with 4KB block and 200GB file size, 64 concurrent threads each with queue depth of 1. Executed 3 times to capture average and standard deviation IOPS values.
- 6. Testing conducted by Kalista IO in August 2019 using preproduction Phalanx software with Linux kernel 5.0.0-25-generic, and Intel® Core™ i7-4771 CPU 3.50GHz with 16GiB DDR3 Synchronous 2400 MHz RAM, and Western Digital Ultrastar DC HC620 host managed SMR and Ultrastar DC HC530 CMR drives connected through SATA 3.2, 6.0 Gb/s interface. Tested with Apache Hadoop version 3.2.0 in single node pseudodistributed mode with single block replica, and TestDFSIO version 1.8 on OpenJDK version 1.8.0_222. TestDFSIO read benchmark ran with 32 files, 16GB each for a 512GB dataset. Executed 3 times to capture average and standard deviation throughput values.

7. Testing conducted by Kalista IO in August 2019 using preproduction Phalanx software with Linux kernel 5.0.0-25-generic, and Intel Core i7-4771 CPU 3.50GHz with 16GiB DDR3 Synchronous 2400 MHz RAM, and Western Digital Ultrastar DC HC620 host managed SMR and Ultrastar DC HC530 CMR drives connected through SATA 3.2, 6.0 Gb/s interface. Tested with Ceph version 13.2.6 Mimic in single node mode with single object replica. Rados write bench ran with 4MB object and block (op) size with 16 concurrent operations for 1800 seconds to capture average and standard deviation IOPS values.

Additional information

- 1. Western Digital Ultrastar DC HC600 SMR Series HDD https://www.westerndigital.com/products/data-center-drives/ultrastar-dc-hc600-series-hdd
- KALISTA IO and Western Digital joint solution brief:
 Distributed Storage System with Host-Managed SMR HDDs
 https://www.kalista.io/resources/joint-solution-briefs/KalistaIO-WDC-Joint-Solution-Brief.pdf
- 3. Addressing Shingled Magnetic Recording drives with Linear Tape File System https://www.snia.org/sites/default/files/files2/files2/SDC2013/presentations/Hardware/AlbertChenMalina_Addressing_Shingled_Magnetic_Recording.pdf
- 4. Host Managed SMR https://www.snia.org/sites/default/files/SDC15_presentations/smr/AlbertChen_JimMalina_H ost_Managed_SMR_revision5.pdf

Additional information

- Linux SCSI Generic (sg) driver http://sg.danny.cz/sg/index.html
- 6. libzbc https://github.com/hgst/libzbc
- 7. dm-zoned
 https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-zoned.html
- 8. Flash-Friendly File System (F2FS)
 https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt
- Zoned storage https://zonedstorage.io
- 10. Linux kernel changes https://kernelnewbies.org/LinuxVersions

Additional information

- 11. Another Layer of Indirection
 https://www.linkedin.com/pulse/another-layer-indirection-albert-chen/
- 12. The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things, IDC, April 2014
- 13. Phalanx Flexible I/O tester (fio) benchmarks https://www.kalista.io/resources/performance/phalanx-fio-benchmarks.pdf
- 14. Phalanx Hadoop TestDFSIO benchmarks
 https://www.kalista.io/resources/performance/phalanx-hadoop-benchmarks.pdf
- 15. Phalanx Ceph OSD and Rados benchmarks
 https://www.kalista.io/resources/performance/phalanx-ceph-benchmarks.pdf

Attributions

Attributions

SD@

1. Icons from Font Awesome. License available at https://fontawesome.com/license No modifications made.

Please take a moment to rate this session.

Your feedback matters to us.