

Storage Developer Conference September 22-23, 2020

AuriStor's next generation AFS and the Linux kernel AFS

Jeffrey Eric Altman AuriStor, Inc

David Howells

Welcome

This talk is a follow-up to the 2010 SDC talk which focused on the importance of AFS family file systems

and why they are still in use 35 years after inception and 20 years after IBM released OpenAFS 1.0 under the IBM Public License 1.0

This talk describes the future of AFS, as represented by AuriStorFS and the Linux kernel.

https://www.snia.org/sites/default/orig/sdc_archives/2010_presentations/monday/JeffreyAltman-Open_AFS.pdf

AFS Operational Goals - Review

SD@

Location Independence
Authentication, Integrity Protection, & Privacy
Geographic Replication of Critical Data
Atomic Publishing Model
One File System for all
Fine Grained Access Control
Federated Authentication
Platform specific path resolution (@sys)
Platform Architecture Independence
Distributed Administration

Still Here - Even Ten Years Later

For the work flows that AFS excels at there are no clear alternatives

Transition Costs are Huge

Legacy deployments are not enough

SD@

AuriStorFS: The Next Generation AFS

SD_@

Zero configuration clients

Improved Security Model

- Client cache poisoning attack prevention
- Performance

Scale

Enhanced File System Functionality Out-of-the-box /afs access

Zero configuration

Cell Discovery for /afs

20

In modern clients, the contents of /afs can be populated on-demand via DNS SRV queries

root@bullfrog:/afs# ls -la		
total 22		
drwxr-xr-x 8 root	root 2048 Dec 31	1969 .
drwxr-xr-x 23 root	root 4096 Mar 6	2018
> set type=SRV		1969 .@cell -> .your-file-system.com
> _afs3-vlserverudp.your-file-system.com.		1969 @cell -> vour-file-system.com
Server: router-nyc.auristor.com		1969 :mount
Addresses: 208.125.0.254		1969
50.75.226.158		1969 .@mount
Aliases: nvc-router.auristor.com		1969 .your-file-system.com
		2019 your-file-system.com
_afs3-vlserverudp.your-file-system.com	SRV service location:	
priority = 10		
weight = 0		
port = 7003		
<pre>svr hostname = atwater-block.auris</pre>	stor.com	
afs3-vlserver. udp.your-file-system.com	SRV service location:	

Federated Authentication

Likewise, cell mapping to authentication domains is also performed via DNS

GSS-Kerberos v5 resolves the realm from the service ticket host component

yfs-rxgk/_afs.your-file-system.com

SD (20

Security Model Improvements

GSS-API RX Security Class

Multiple authentication services

Kerberos v5 (Active Directory)

GSS Secure Anonymous

Modern crypto (e.g.AES, Camellia) Larger key sizes

Reduced key exposure

SD@

Rekeying Token combining

Combined Identity Authentication

20

Authenticated User on an Authenticated Machine

- 1. user@AD.YOUR-CELL-NAME.COM
- 2. DESKTOP\$@AD-YOUR-CELL-NAME.COM

Anonymous User on an Authenticated Machine

- 1. WELLKNOWN/ANONYMOUS@WELLKNOWN:ANONYMOUS
- 2. DESKTOP\$@AD-YOUR-CELL-NAME.COM

Key Combination protects against cache poisoning attacks

https://www.auristor.com/documentation/man/linux/7/auristorfs_acls.html

User-Centric, Constrained Elevation Access Control

Combined Identity Authentication, and Multi-factor Access Control Lists

- grant more rights, not fewer, when used to evaluate an ACL's Normal entries
- revoke more rights, not fewer, when used to evaluate an ACL's Negative entries

anonymous, machine-identity	1
system:authuser,machine-identity	lrk
group-of-users,group-of-machines	lrw

https://www.auristor.com/documentation/man/linux/7/auristorfs_acls.html

RX Security Class Capabilities

SD@

	yfs-rxgk	rxkad-k5	rxnull
Authentication	GSS-API	Kerberos v5	None
Integrity Protection	Yes	Yes	No
Privacy	AES256-CTS-HMAC- SHA1-96 AES256-CTS-HMAC- SHA512-384	fcrypt	No
Rekeying	Yes	No	No
Max Pkts / Call	2^64	2^30	unlimited
# identities	one or more (ordered)	one	none
Combined Key	Yes	No	No

Volume Security Policies and Maximum ACLs

AFS Volumes are relocatable, replicable object stores

Security Policies mandate the use of

RX Security Classes, and

Data Protection levels (integrity protection / wire privacy)

Also, determine which servers are permitted to store which objects

SD₂₀

32-bits just isn't enough Maximum ~2GiB or ~4GiB file size 2038-problem, 2106-problem 100ns granularity to match NTFS UNIX Epoch

20

Scaling to Meet Dem

and	SD@

	AuriStorFS	AFS
Year 2038 Ready	Yes	No
Timestamp Granularity	100ns (UNIX Epoch)	Is (UNIX Epoch)
Rx Listener Thread Throughput	<= 8.2 gbit/second	<= 2.4 gbits/second
Rx Listener Threads per Service	up to 16	I
Rx Window Size (default)	128 packets / 180.5KB	32 packets / 44KB
Rx Window Size (maximum)	65535 packets / 90.2MB	32 packets / 44KB
Rx Congestion Window Validation	Yes	No
Volume IDs per Cell	2 ⁶⁴	2 ³¹
Object IDs per Volume	2 ⁹⁵ directories and 2 ⁹⁵ files	2 ³⁰ directories and 2 ³⁰ files
Objects per Volume	2 ⁹⁰ directories or files	2 ²⁶ directories or files
Objects per Directory	Up to 2,029,072	up to 64,447
Maximum Distributed DB Size	l 6 exabytes (2 ⁶⁴ bytes)	2 gigabytes (2 ³¹ bytes)
Maximum Assignable Quota	16 zettabytes (2 ⁷⁴ bytes)	2 terabytes (2 ⁴¹ bytes)
Maximum Reported Volume Size	16 zettabytes (2 ⁷⁴ bytes)	2 terabytes (2 ⁴¹ bytes)
Maximum Volume Size	l 6 zettabytes (2 ⁷⁴ bytes)	l 6 zettabytes (2 ⁷⁴ bytes)
Maximum Transferable Volume Size	16 zettabytes (2 ⁷⁴ bytes)	5.639 terabytes
Maximum Partition Size	16 zettabytes (2 ⁷⁴ bytes)	l 6 zettabytes (2 ⁷⁴ bytes)

Enhanced File System and Network Functionality

Networking Improvements

G

Pipeline data engine

SACK based loss recovery as documented in RFC6675 with elements of

SD (20

New Reno from RFC6582 on top of

TCP-style congestion control elements as documented in RFC5681

Maximum window size increased to 65535 packets from 32

Filesystem Operation Enhancements

SD@

Locking

- Advisory Locks
- Mandatory Locks
- Atomic Create and Lock

Rename Variants

- Replace existing target
- NoReplace fail if existing target
- Exchange

Append Data

• Return offset at completion

Store Data Variants

- Reserve
- Reserve and Truncate
- Reserve and ZeroFill

Server Side Operations

- Silly Rename
- Copy Object
- Copy Range
- Move Object

Client Caching and Callback

Х

Data Version incremented for each object's data change Secure Callback notifications

Cached data is not considered valid unless an outstanding callback promise exists Callback promises expire after a period of time determined by the

object server.

() D

lssued to all subscribed clients for data and metadata change

Delivered before completion of the RPC to ensure serialization of object updates and subsequent communications via other channels

2020 Storage Developer Conference. © AuriStor, Inc. and David Howells. All Rights Reserved.

SD@

KAFS: Out of the Box AFS

KAFS – Linux Native AFS Client

Part of the Linux kernel

Compiled as a module by Fedora, Debian

Module signed by build process

kafs-client package (rpm, deb)

SD@

Sets home cell Handles DNS cell lookups /afs started by systemd during boot Basic Kerberos authentication

Fedora 32 Accessing /afs

SD@

dnf install krb5-workstation kafs-client

[optional] Create /etc/kafs/client.d/defaults.conf

- [defaults]
- thiscell = <cellname>
- sysname = <sysname>

systemctl start afs.mount

Systemctl enable afs.mount

Contrasting AuriStorFS and KAFS

AuriStorFS Linux Client Design

Cross Platform

Common code is shared across Linux, Solaris, AIX, macOS, and various BSD flavors; and a userland library Monolithic kernel module

Combines the filesystem, rx network stack, and data/metadata cache management.

The internal locking model for inodes and dentries is an imperfect match for all vfs implementations.

One Mounted Device For All Volumes

The entire file namespace is exposed to the vfs as a single device traditionally mounted on /afs

KAFS Linux Client Design

Single platform

Only exists on Linux, but will work with any arch Modular design

Userspace-accessible AF_RXRPC network protocol driver

FS-Cache caching, shared with NFS, CIFS, ...

Uses native Linux VFS locking model

Each volume has its own superblock

Vnode IDs map to inode numbers

df works correctly

Linux VFS automounter handles AFS mountpoints Individual volumes can be mounted anywhere

Contrasting Development Processes

Advantages of an External Project

SD (20

Kernel-independent

Already ported to many systems

Features developed there

Faster rollout

Point of focus for developers interested in AFS

Disadvantages of Being Out-of-tree

SD (20

Kernel interfaces change often

Parts of kernel API not accessible to non-GPL

Massive continuous building effort to support many kernels across distributions

User must find and install the packages

Advantages of Being In-Kernel (1) Kernel-reserved interfaces RCU, container features Shared components FS-Cache, keyrings Crypto **Tracepoints Debugging facilities**

SD₂₀

Advantages of Being In-Kernel (2)

Developers making big changes in-kernel must make the changes throughout

SD(20

- Automated testing
- Distributions build the filesystem modules with distribution kernels
- Much more widely available

Note: Not in any enterprise distros yet

Future KAFS Developments

SD (20

Direct-I/O local caching Per-container keyring Advanced AuriStorFS features

The End

References

https://www.auristor.com/filesystem/

https://www.infradead.org/~dhowells/kafs/

https://www.auristor.com/documentation/man/linux/7/auri storfs_acls.html

https://tools.ietf.org/html/draft-wilkinson-afs3-rxgk

https://tools.ietf.org/html/draft-wilkinson-afs3-rxgk-afs

https://tools.ietf.org/html/draft-howard-gss-sanon

Contact Info

SD@

David Howells dhowells at redhat dot com

Jeffrey Altman jaltman at auristor dot com

Please take a moment to rate this session.

Your feedback matters to us.