

Storage Developer Conference September 22-23, 2020

NVMe-oF on RDMA Performance Challenges and Solutions in Commodity Servers

Yamin Friedman & Rob Davis Nvidia networking business unit

SSDs Create a Storage Networking Performance Bottleneck

SD @

200Gb Network Speeds and NVMe-oF on SD@ RoCE to the Rescue

What is NVMe over Fabrics (NVMe-oF)?

- Extending NVMe protocol over a fabric
 - NVMe commands and data structures are transferred end to end
 - Enables SAN features for NVMe based storage systems
- Bypassing legacy stacks for performance
- First products and early demos all used RDMA
 - Standard supports multiple transports
- Impressive performance gains

https://www.theregister.co.uk/2018/08/16/pavilion_fabrics_performance/

2020 Storage Developer Conference. © Nvidia Networking. All Rights Reserved.

SD@

What is RDMA?

12.00 10.00 100GbE Throughput (GB/sec) 8.00 RoCE 6.00 4.00 2.00 0.00 No RDMA **RDMA** With RDMA **2x Better Bandwidth** Half the Latency

33% Lower CPU

See MS demo: <u>https://www.youtube.com/watch?v=u8ZYhUjSUol</u>

Microsoft Storage Spaces Throughput

SD@

Applications That Need Even More Performance

2020 Storage Developer Conference. © Nvidia Networking. All Rights Reserved.

SD@

System interrupt overload

System interrupts and RDMA

20

- In order to handle networking traffic the kernel uses interrupts
- In NVMe-oF storage flows there are multiple interrupts per IO
- When the system is overloaded with interrupts it interferes with the ability to perform RDMA

Test setup

- CPU: Intel(R) Xeon(R) Platinum 8176M CPU @ 2.10GHz 28 cores
- Linux version: 5.7.0-rc3 with added shared CQs
- Network adapter: Mellanox ConnectX-5 Ex

Interrupt overload

SD@

Dynamic Interrupt Moderation (DIM)

Interrupt Moderation

 Interrupt moderation is a mechanism for aggregating more work per system interrupt

 RDMA completion queues can be configured to arm a system interrupt only once enough work has been gathered or a timeout reached

 There is no single configuration that is optimal for a specific system and time

Dynamic interrupt moderation

20

 In order to effectively use interrupt moderation we need a method that adapts to the current state

 DIM monitors the current state of the system and determines the optimal parameters moment to moment

DIM algorithm

- Statistics collected:
 - Number of completions polled
 - Number of interrupts
- Three stage algorithm:
 - Optimize for number of completions
 - Optimize for ratio of completions to interrupts
 - Reduce moderation if ratio is low

4K read comparison

2020 Storage Developer Conference. © Nvidia Networking. All Rights Reserved.

SD@

4K write comparison

4K read latency

SD@

Shared Completion Queues

Interrupt moderation across applications

- As presented DIM is very effective in reducing interrupts per CQ
- What happens when there are many applications each with their own set of CQs?

Shared CQs

- In the Linux kernel driver CQ interrupt handling is provided as a service for all applications
- In this model each application opening its own set of CQs is an inefficient use of system resources
- With shared CQs we provide an API that provides full functionality while reducing system overhead

4K read 4 disk comparison

4K read latency using 4 disks

SD₂₀

4K read 4 disk comparison

2500 3000000 3000 3000000 2500000 Puo 2500 2500000 2000 second Better sec 2000000 2000 2000000 ettei KIOPs nterrupts per 1500 Interrupts per 1500000 usec 1500 1500000 Ň 1000000 1000 1000 1000000 500000 500 500 500000 0 21 23 25 27 17 19 15 Number of cores 11 13 15 17 19 21 23 25 27 g Number of cores With DIM interrupts With DIM interrupts With DIM and shared CQs interrupts With DIM and shared CQs interrupts - With DIM KIOPS With DIM average latency With DIM and shared CQs KIOPS

4K write latency using 4 disks

SD₂₀

2020 Storage Developer Conference. © Nvidia Networking. All Rights Reserved.

4K writes KIOPS using 4 disks

Concluding remarks

Conclusions

- Discovered hardware limitation on commodity servers for handling interrupts during RDMA
- Provided two features to upstream Linux to overcome this limitation

Key takeaways

- While optimizing our storage solutions, bottlenecks may be found throughout the hardware and software stack
- Solutions may need to be very flexible and perhaps cross abstraction layers

Contact information

- Yamin Friedman: <u>yaminf@nvidia.com</u>
- Rob Davis: <u>rdavis@nvidia.com</u>

Please take a moment to rate this session.

Your feedback matters to us.