
2020 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. 1

SplitFS: Reducing Software
Overhead in File Systems for
Persistent Memory

Vijay Chidambaram
University of Texas at Austin

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 2

Persistent Memory (PM)

Non-volatile Fast

Optane DC PM Latency Bandwidth

Loads 300 ns 1/3 of DRAM

Stores 100 ns 1/6 of DRAM

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 3

Storage Hierarchy

Conventional With Persistent Memory

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 4

DAX

File 1

File 1

Application
user space

DRAM

HDD / SSD

Application
user space

DRAM PMUsing DAX-mmap(), applications can directly access
data on PM without going through the kernel

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 5

PM File Systems

PM file
system

Application

File 1PM File 2 File n

read(), write(),
open(), close()POSIX API

ext4-DAX PMFS NOVA Strata

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 6

POSIX

Commonly used API by applications for accessing data in files

Data operations: read(), write()

Metadata operations: open(), unlink(), rename(), etc

File system guarantees:
• metadata atomicity
• data atomicity

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 7

ext4-DAX

Modification of the ext4 file system for Persistent Memory

Works with modern Linux kernels

Under active development by the ext4 community

Only PM file system that is widely used

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 8

Software overhead in File Systems

700

• Append 4KB data to a file

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

Ti
m

e
(n

s)

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

700

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

700

9002
(12x)

software
overhead

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

4150
(5x)

3021
(3x)

700

2450
(2.5x)

9002
(12x)

File systems suffer from high software overhead!

ext4-DAX, although widely used, suffers from highest
software overhead and provides weak guarantees

2020 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. 2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 9

Goals

▪ Low Software Overhead
▪ Strong Consistency Guarantees
▪ Leverage the maturity and active development of

ext4-DAX

2020 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. 2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 10

SplitFS

POSIX file system aimed at reducing software overhead for PM

SplitFS serves data operations from user space and metadata
operations using the ext4-DAX kernel file system

Reduces software overhead by up to 17x compared to ext4-DAX

Provides strong guarantees such as atomic and synchronous data
operations

Improves application throughput by up to 2x compared to NOVA

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 11

Outline

▪ Target Usage Scenario
▪ High-level design
▪ Handling data operations
▪ Consistency Guarantees
▪ Evaluation

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 12

Outline

▪ Target Usage Scenario
▪ High-level design
▪ Handling data operations
▪ Consistency Guarantees
▪ Evaluation

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 13

Target Usage Scenario

SplitFS is targeted at POSIX applications which use read() / write()
system calls in order to access their data on Persistent Memory.

SplitFS does not optimize for the case when multiple processes
concurrently access the same file

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 14

Outline

▪ Target Usage Scenario
▪ High-level design
▪ Handling data operations
▪ Consistency Guarantees
▪ Evaluation

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 15

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

ext4-DAX,
PMFS [EuroSys 14],

NOVA [FAST 16]

Strata [SOSP 17]

Low performance High complexity

SplitFS

Low complexity
High performance

Data in user
Metadata in kernel

Data in kernel
Metadata in kernel

Data in user
Metadata in user

Aerie [EuroSys 14]

High complexity

Data in user
Metadata in user

Allocations in kernel

Low performance

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 16

High-level Design

Accelerate data operations from user space
• Data operations are common and simple

Use ext4-DAX for metadata operations
• Metadata operations are rare and complex
• POSIX has many complex corner-cases

High performance

Low complexity

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 17

High-level Design

creat()
delete()

user

kernel

Application

File 1 File 2 File 3PM

read() write()

Log

U-Split

SplitFS accelerates common case data operations
while leveraging the maturity of ext4-DAX for metadata

operations

K-Split (ext4-DAX)

SplitFS uses logging and out of place updates for
providing atomic and synchronous operations

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 18

Outline

▪ Target Usage Scenario
▪ High-level design
▪ Handling data operations

▪ Handling file reads & updates
▪ Handling file appends

▪ Consistency Guarantees
▪ Evaluation

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 19

Handling reads & updates

read / update

K-Split
(ext4-DAX)

U-Split

Application

FilePM

DAX-mmaps

mmap

perform mmap

User
KernelIn the common case, file reads and updates do not

pass through the kernel

mmap

perform mmap

read / updateSplitFS maintains a list of mmap()s per file to
satisfy file reads and updates

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 20

Outline

▪ Target Usage Scenario
▪ High-level design
▪ Handling data operations

▪ Handling file reads & updates
▪ Handling file appends

▪ Consistency Guarantees
▪ Evaluation

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 21

Storage Hierarchy

foo

size = 10
foo inode

Persistent Memory

user

kernel

Application

staging file

size = 100

staging file inode

staging file mmap

append (foo,“abc”)

abc

read (foo)

fsync (foo)foo staging

ext4-journal transaction

abc

In the common case, file appends do not pass
through the kernel

relink()

loadstore

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 22

Staging & Relink

Do not unmap staging file regions on relink. Re-use the same
mapping for the target files

Maintain metadata for a collection of memory mappings per file

Create and map more staging files in the background as they are used
up

Configurable number of staging files per application

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 23

Collection of memory mappings

foo

Application

Staging file

staging mmapsfoo mmaps

user

kernel

append (foo)
fsync (foo)

bar

bar mmaps

append (bar)
fsync (bar)

U-Split maintains a collection of mappings per file

Mappings are logically moved from staging file to target
files without unmapping

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 24

Outline

▪ Target Usage Scenario
▪ High-level design
▪ Handling data operations

▪ Handling file reads & updates
▪ Handling file appends

▪ Consistency Guarantees
▪ Evaluation

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 25

SplitFS modes
App 1

U-Split

K-Split

File 1PM File 2 Staging 1

User
Kernel

update,
read appendmetadata

op

POSIX

Atomic data

Sync data

Atomic metadata

Sync metadata

Log

append &
metadata
operations

Atomic data

Sync data

Atomic metadata

Sync metadata

Sync

read update,
append

update,
append &
metadata
operations

Strict

Atomic data

Sync data

Atomic metadata

Sync metadata

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 26

Optimized Logging

SplitFS employs a per-application log in sync and strict mode, which
logs every logical operation

In the common case, each log entry fits in one cache line (64 bytes)

Each log entry is synchronously written to PM using DAX-mmap

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 27

Consistency Guarantees

Mode Metadata
Atomicity

Synchronous
Operations Data Atomicity File System

POSIX ext4-DAX,
SplitFS-POSIX

Sync PMFS,
SplitFS-Sync

Strict NOVA, Strata,
SplitFS-Strict

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 28

Flexible SplitFS

K-Split
(ext4-DAX)

App 1

File 1PM

App 2 App 3

U-Split-
POSIX

U-Split-
sync

U-Split-
strict

File 2 File 3 File 4

Data Data DataMeta Meta Meta

User
Kernel

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 29

Visibility

When are updates from one application visible to another?

▪ All metadata operations are immediately visible to all other
processes

▪ Writes are visible to all other processes on subsequent fsync()
▪ Memory mapped files have the same visibility guarantees as

that of ext4-DAX

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 30

SplitFS Techniques

Technique Benefit

SplitFS Architecture Low-overhead data operations,
Correct metadata operations

Staging + Relink Optimized appends,
No data copy

Optimized Logging + out-of-place writes Stronger guarantees

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 31

Implementation

9K LOC in user-space
500 LOC in kernel — added a new system call

Supports 35 common file-system related glibc calls:
(open, close, read, write, etc)

Supports fork(), execve() for multi-process applications
such as git, tar

Supports multithread applications using fine-grained
reader-writer locks

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 32

Outline

▪ Target Usage Scenario
▪ High-level design
▪ Handling data operations

▪ Handling file reads & updates
▪ Handling file appends

▪ Consistency Guarantees
▪ Evaluation

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 33

Evaluation

Setup:
1-socket 48-core machine with 32 MB LLC
768 GB Intel Optane DC PMM, 192 GB DRAM

File systems compared:
ext4-DAX, PMFS, NOVA, Strata

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 34

Storage Hierarchy
Does SplitFS reduce software overhead compared to
other file systems?

How does SplitFS perform on metadata intensive
workloads?

How does SplitFS perform on data intensive
workloads?

< 15% overhead

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved.

0

2000

4000

6000

8000

10000

device SplitFS-strict Strata NOVA PMFS ext4-DAX

4150
(5x)

3021
(3x)

9002
(12x)

700

2450
(2.5x)

35

Storage Hierarchy
• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

Ti
m

e
(n

s)

0

2000

4000

6000

8000

10000

device SplitFS-strict Strata NOVA PMFS ext4-DAX

1251
(0.8x)

4150
(5x)

3021
(3x)

700

2450
(2.5x)

9002
(12x)

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 36

Workloads

YCSB on LevelDB

Seq reads

Redis

Untar Git Rsync

Microbenchmarks

Data intensive

Metadata intensive

TPCC on SQLite

Rand reads

Seq writes

Rand writes

Appends

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 37

YCSB on LevelDB

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 38

YCSB on LevelDB

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict13

.3
9

ko
ps

/s

32
.2

4
ko

ps
/s

13
9.

94
 k

op
s/

s

17
4.

85
 k

op
s/

s

19
1.

54
 k

op
s/

s

13
.5

9
ko

ps
/s

17
.7

5
ko

ps
/s

66
.5

4
ko

ps
/s

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved.

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

39

YCSB on LevelDB

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

13
.3

9
ko

ps
/s

32
.2

4
ko

ps
/s

13
9.

94
 k

op
s/

s

17
4.

85
 k

op
s/

s

19
1.

54
 k

op
s/

s

13
.5

9
ko

ps
/s

17
.7

5
ko

ps
/s

66
.5

4
ko

ps
/s

Read-heavy workloads optimized because of converting
reads to loads

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved.

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

40

YCSB on LevelDB

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

13
.3

9
ko

ps
/s

32
.2

4
ko

ps
/s

13
9.

94
 k

op
s/

s

17
4.

85
 k

op
s/

s

19
1.

54
 k

op
s/

s

13
.5

9
ko

ps
/s

17
.7

5
ko

ps
/s

66
.5

4
ko

ps
/s

Write-heavy workloads optimized because of staging
and relink

2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 41

Limitations

SplitFS incurs overheads of ext4-DAX on all metadata operations.

File accessed and modified times are not reflected immediately

SplitFS does not optimize for applications accessing memory
mapped files

2020 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. 2020 Storage Developer Conference. © University of Texas at Austin. All Rights Reserved. 42

SplitFS

New architecture for
building PM file systems
that…

reduces software overhead,
provides strong guarantees,
and leverages the widely-
used ext4-DAX

https://github.com/utsaslab/splitfs

