
2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 1

Fine Grained Block 
Translation

Douglas Dumitru
EasyCo LLC

www.WildFire-Storage.com
doug@easyco.com

+1 610 237-2000 x43



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 2

Legal Stuff

Some of the methods discussed here are covered by US Patents 8,380,944 , 8,812,778 , 
9,092,325 , 9,535,830 and 10,248,359.  Contact EasyCo LLC for licensing information.

Some of the methods discussed are licensed under open-source, non-restrictive BSD style 
licenses.  These include the LZ4 compression algorithms and others.

Any trademarks mentioned are the property of their respective companies.

Some methods are in the public domain, such as RAID-5 and RAID-6, dynamic hashing, and 
others.

Some methods are released under the GPL.

2



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 3

The Benefits of Block Translation

 Block translation lets you change the nature of the IO 
workload that a device sees.
 Convert random writes into linear writes
 Lower the overhead and wear of parity RAID

 … to levels that are lower than mirroring
 Block translation is also required for:

 Data reduction like compression and de-dupe
 … But block translation can do a lot more

3



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 4

Block Translation

 We see frequent examples of using block translation 
with storage.

 How complex these techniques are largely depends 
on how “dynamic” the translation scheme is.

4



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 5

Static Layouts

 Static Layouts are common.  These are layouts where 
the location of a block does not change and can 
instead be computed.
 Partition Tables
 RAID
 LVM (sometimes)

5



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 6

Coarse Grained Dynamic Layouts

 Some layouts do move around as data changes.  
These solutions often involve large blocks to keep the 
management of the moves low cost.
 Bad block re-mapping
 LVM resizing
 Copy on Write

 LVM Snapshots

6



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 7

Medium Grained Dynamic Layouts

 Some solutions are in-between with a larger number 
of blocks that move around
 ZFS

7



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 8

Fine Grained Dynamic Layouts

 Finally, some solutions are very dynamic with every 
block being re-positioned on every update.
 SSD FTLs
 Various proprietary mapping engines

8



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 9

Fine Grained Translation Layers are 
actually a Big Database Problem

 40TB of storage is 10 Billion 4K blocks
 Managing 10 billion of anything is non-trivial
 Even as a simple flat table this is:

 34 bits x 10B = 42.5 GB
 5 bytes x 10B = 50 GB
 8 bytes x 10B = 80 GB

 The math for 400TB gets even worse

9



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 10

Choosing a Mapping Size

 8 bytes entries seem ideal
 Aligned for speed
 Able to pack into pages
 But the memory footprint is higher

 Bit alignment is tempting
 Minimum memory usage
 But you have to use a lot of shifts and locks to access entries

 … probably not worth the trouble
 5 bytes seems to be the sweet spot with current hardware

 Unlike older systems, unaligned memory accesses no longer 
have the extreme performance hits of days past.

10



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 11

The Real Problem is Data Consistency 
Across a Crash

 We are updating two different data sets.
 The data blocks
 The map to the data blocks

 We cannot just update a RAM table
 Something has to keep the two sets in sync

 The solution is “atomic updates”

11



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 12

Atomic Updates

 We want to write the data blocks and the control 
information that describes the data blocks in an
“atomic update”.

12



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 13

Atomic Update Styles

 Journals
 not great as we duplicate the writes

 In-place pointer updates
 Not great as this breaks any chance of linearization

 Generation counters and in-place “journal like writes”
 This is how we will get this to work

13



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 14

Flash back to 2005

 I did my first work on this in 2005
 My patents date back to 2007
 The goal as:

 Single update maintaining perfect linearity
 Move all of the overhead to mount

14



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 15

The On-Disk Update Structure

 So we get to dive into the actual update structures..
 First, the update “patterns”:

 The disk is segmented into large “write stripes”
 The stripes are large enough to keep the media and any underlying FTL 

happy.
 This is typically 256 MB for SATA SSD, and 1GB for NVMe SSDs.
 The media does not EVER have have a write seek that is not 

aligned with these stripes.
 The write stripes are further divided into “write buffers”

 We do this so that our already large memory footprint does not go thru 
the sky

 The write buffers are further divided into variable length “write 
segments”
 These write segments are the “atomic update” structure

15



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 16

The Write Segment Structure

 At it’s simplest, the structure has:
 A header
 Some number of data blocks
 Some number of meta tags

that describe the blocks
 Some CRC or Hash values

to verify the data is intact
 A footer

 This is the FBD v1 layout
16



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 17

Atomic Update Segment Layout
H

D
R Meta Tag Array Data Block Data Block Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

H
D

R Meta Tag Array

H
D

R Meta Tag Array...

17



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 18

What is in the Header?

 A signature
 The size of the segment
 The number of elements in the segment
 The generation counter for the write stripe
 A CRC or hash to ensure the segment is intact

18



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 19

What about Trim?

 This structure makes it very easy to implement 
trim/discard.
 Leave the data block out
 Output the meta array entry with bits that indicate all 

zeros or FFFFs
 Trim is amazingly fast, and has almost no wear

 We routinely clock trim at > 500 GB/sec

19



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 20

This is Enough to Work Amazingly Well

 Mount is a bit slow, but safe
 You have to ‘walk” every segment on this media
 You don’t have to read the actual data blocks

 It is very space efficient with meta tags at only about 
0.15% of space overhead

 It has size limits because of mount time
 It is not very extensible

20



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 21

Write Segment Optimzation #1

 Summarize the meta array for each write block.
 This keeps you from having to walk each segment.

 Mount is typically “two reads” for each write block
 You still have to walk the “tail write”, but there is only 

one of these.
 You do lose an additional 0.15% of space

 Trading space for time and memory will become a 
theme

 This pushes the practical array size to well over 200 TB

21



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 22

So Where Does This Get You?

 If you combine this write structure with an underlying 
optimized array you can reach:
 Example 24 SATA SSD array running RAID-6

 > 11 GB/sec writes at large blocks
 > 2M 4K random writes

 Negligible overhead on reads
 Lowering of Flash Wear to near theoretical limits based 

on free space

22



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 23

What Does the Array Need to Do?

 The Array must be optimized for aligned writes to 
exact chunks

 This is an ideal environment for erasure codes
 Standard RAID-5/6 works very well if:

 GPL patch for drivers/md/raid5.c with logic to avoid 
Read/Modify/Write cases

 Patch also does parity calcs on calling thread, so you 
scale with cores.

 11+ GB/sec and 2M+ IOPS are for 24 SATA SSD 
running RAID-6

23



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 24

Things the Simple Layout Achives

 All data blocks are 4K aligned
 No extra copies

 Large writes are stored together
 Subsequent read transfers are more efficient

 Chunks are typically small, making the array scale 
better

 Large reads actually spread out across multiple SSDs in 
parallel

24



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 25

But We Can Go Beyond 4K

 While 4K only blocks are efficient, the “linear write” 
structure lets you do more

 Step 1, compression
 LZ4 Optimized for 4K blocks

 > 1GB/sec/core by limiting dict size so that it fits 
in L1 cache

 Pad compressed blocks to 64 byte boundaries
 +12 bits in the lookup table
 6 bytes needed for up to 256 TB arrays

25



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 26

Write Segement with
Compressed Blocks

26



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 27

Compression Overhead

 Significantly more CPU usage
 Some additional latency for low Q depth IO
 But is it still easy to reach “drive speed”

 >11 GB/sec writes
 > 2M IOPS on writes

27



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 28

Beyond Just Translating Blocks

 We can abuse the atomic write segment structure to 
create whole new solutions

 Step 1, lower the memory requirements and lower the 
amount of time for a mount
 This is necessary for really large arrays
 This is necessary for dual-ported drives in HA/failover 

configurations

28



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 29

Embed Most of the LBA Table
on Flash

 Place parts of the LBA table inside of the atomic write 
structure.
 Each write will include a small LBA snippet that has 

lookups for 4, 8, or 16 LBA entries
 This is not a “cache”

 It is updated in real-time with the data blocks
 Updating as few as four entries reduces the lookup 

table DRAM requirements by 75%

29



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 30

Turning the LBA Table Into a Shallow 
Tree

 The LBA “snippets” are very small
 They don’t add much to write overhead
 They have little impact on Flash capacity.

 We can push this further by writing a “mini tree”
 2.5% of flash space overhead (worst case)
 1:256 DRAM usage reduction

30



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 31

LBA Table Lookup Tree

31



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 32

LBA Trees

 40TB – we would typically need 10B entries
 60 GB of ram at 6 bytes/per entry
 1/256 of space needed – 240 MB

 Each level is 6 bytes * 4 – 24 bytes
 Each random write uses 96 extra bytes of

storage (2.5%).  Linear writes use less.
 Nodes are easy to cache as 6 byte is enough to double as a 

disk or RAM pointer.
 Only the top-level has to be mounted.  The rest can be 

demand paged (although perhaps we need another word 
than “paged”).

32



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 33

Extended Write Segment Structure

 Master Header – total sizes, counts, and generation tags
 Sub Headers, one for each type of data

 Block data
 Meta tags used on mount
 Meta tags used on defrag (GC)
 CRC arrays used for data validation

 We still use summary meta arrays for each write block
 Mount can now read a fraction of the array

 Enables support for “huge” arrays
 Enables fast mounts that are quick enough for “HA Failover”

33



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 34

What can we use “low memory” for?

 Lowering system cost.
 De-dupe with high data reduction ratios

 De-dupe needs:
 LBA to Block ID translation
 ID to actual data translation with reference counters

 The LBA entries are most of the space, but they have 
high “locality” so they cache well.

 The Block ID entries are hashes, so they need to have 
committed memory or else you will pay with a read on 
every access.

34



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 35

And finally, what about
“beyond blocks”?

 So far, we are just storing someone else’s blocks.
 We can map many LBA “numbers” to storage objects.

 The objects can be variable sized.
 The object can also be compressed.
 Different types of objects can be mapped in different 

name spaces.
 The LBA ranges are “thin provisioned” which makes file 

system design easier.
 The LBA tables themselves are “allocation bitmaps”

35



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 36

So, Lets Build a File System

 This is unlike any file system you have ever seen.
 It has no real concept of a “page”
 It is optimized for “object access”, but still allows in-

place updates.
 Most file creates require fractional IOs.
 Directories above 1 billion entries are practical
 Space utilization for small files is > 90%.

36



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 37

The WildFire File Sysytem

 Some of this actually has been implemented
 Ie, a single directory that can do creates, reads, and scans, 

and deletes.
 Here are the “block namespaces” used so far.

 Block type 1: Directory Control
 Block type 2: Directory extents
 Block type 3: Directory groups
 Block type 4: Small File contents
 Block type 5: File extends
 Block type 6: Random access file blocks
 Block type 7: Object file blocks

37



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 38

But What are the Block Limits?

 If you push the “block pointer” to 8 bytes, you can 
point to a block with:

 Up to a 16 PB array
 Variable sizes from 16 byte to 1 MB w/ compression
 … or 64 MB without compression

 Point to the local array, or off-array (perhaps to 
spinning media for large objects)

38



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 39

So What Does a Directory Look Like?

 Each directory has a single, small control block with 
counters.

 This gets updated a lot.  Because it is small, the overhead 
on disk wear and bandwidth is low.

 There is an “extents” block that maps to groups

39



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 40

Groups and Variable Sized Blocks are 
Meant for Each Other

 Groups are added and removed dynamically, but still 
use hashes for lookups
 This involves hashes to a binary modulus and single 

group split/merges as files are created and removed
 Groups will vary in fill level, but the variable sized 

blocks map this perfectly.
 Space utilization is excellent
 … which also translates to efficient use of disk IO 

bandwidth

40



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 41

What Kind of Performance Can you Get?

 When running “from disk” (ie, nothing in cache)
 Each file open is a single direct read
 Each file write is a single read, and then a 

merge/update of the group
 The write itself is a part of the coalesced “write stream”, 

so it is very low overhead.
 Unless there is a split, then there are updates to two 

blocks.

41



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 42

What Kind of Performance Can you Get?

 There is “no page cache”
 Writes go directly into the “write segment” buffer
 The “write segment can merge multiple requests before 

an actual update goes out.

42



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 43

Small File Performance

 These were run on a Core-i7 VM
with a single SATA SSD.
 Create small files in a one directory

 < 4 uSec per file create for 100K
 < 7 uSec per file create for 4M

 2 uSec of this is VFS
 4x – 10x faster than EXT4
 8x – 30x faster than XFS
 “Lots” faster than ZFS

43



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 44

Small Files as Objects

 Small files don’t really need extents
 You can store “very little” files with their directory entries
 You can store “bigger” files with their data in a single 

variable sized block
 Optimized for files that are created “all at once”

 But still support random and append files

44



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 45

Small Files as Objects

 This design is “built for speed”
 Minimize IO with direct access to the data
 Keep the data structure tight

 All direct RAM links
 Count “cache line misses”
 No BTREEs or other slow lookups
 No allocation bitmaps
 All data is written “exactly once”

 No journals

45



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 46

Really Big Directories

 1 billion item directories are practical
 It is easy to sustain creates at 2500/sec, single thread
 Under 5 days for 1B file creates

 vs 20 months for EXT4 and 6 years for XFS
 … and even longer (actually much longer) for ZFS

 While everyone talks about file systems “without 
limits”, the limit that matters most is “time”

46



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 47

Incredible Space Efficiency

 1 billion 100 byte files with 20 byte file names
 About 200GB of space used with WFFS
 About 5 TB of space used with EXT4/XFS

 … and it all works because you are translating block 
addresses.

47



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 48

But Why Is Block Translation Needed
for a File System?

 Block Translation keeps the design simple
 Space management can happen in the background

 This allows for defrag (GC)
 Thin provisioning of block addresses lets you assign 

large linear ranges when needed or individual blocks 
when needed.

 The atomic update structure is not an “extra write”.
 Writes are nearly 100% actual data with no pad.

48



2020 Storage Developer Conference. © EasyCo LLC.  All Rights Reserved. 49

Please take a moment 
to rate this session. 

Your feedback matters. 

Fine Grained Block 
Translation

Douglas Dumitru
EasyCo LLC

www.WildFire-Storage.com
doug@easyco.com

+1 610 237-2000 x43


	Fine Grained Block Translation
	Legal Stuff
	The Benefits of Block Translation
	Block Translation
	Static Layouts
	Coarse Grained Dynamic Layouts
	Medium Grained Dynamic Layouts
	Fine Grained Dynamic Layouts
	Fine Grained Translation Layers are actually a Big Database Problem
	Choosing a Mapping Size
	The Real Problem is Data Consistency Across a Crash
	Atomic Updates
	Atomic Update Styles
	Flash back to 2005
	The On-Disk Update Structure
	The Write Segment Structure
	Atomic Update Segment Layout
	What is in the Header?
	What about Trim?
	This is Enough to Work Amazingly Well
	Write Segment Optimzation #1
	So Where Does This Get You?
	What Does the Array Need to Do?
	Things the Simple Layout Achives
	But We Can Go Beyond 4K
	Write Segement with�Compressed Blocks
	Compression Overhead
	Beyond Just Translating Blocks
	Embed Most of the LBA Table�on Flash
	Turning the LBA Table Into a Shallow Tree
	LBA Table Lookup Tree
	LBA Trees
	Extended Write Segment Structure
	What can we use “low memory” for?
	And finally, what about�“beyond blocks”?
	So, Lets Build a File System
	The WildFire File Sysytem
	But What are the Block Limits?
	So What Does a Directory Look Like?
	Groups and Variable Sized Blocks are Meant for Each Other
	What Kind of Performance Can you Get?
	What Kind of Performance Can you Get?
	Small File Performance
	Small Files as Objects
	Small Files as Objects
	Really Big Directories
	Incredible Space Efficiency
	But Why Is Block Translation Needed�for a File System?
	Please take a moment �to rate this session. ��Your feedback matters. 

