
2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 1

Fine Grained Block
Translation

Douglas Dumitru
EasyCo LLC

www.WildFire-Storage.com
doug@easyco.com

+1 610 237-2000 x43

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 2

Legal Stuff

Some of the methods discussed here are covered by US Patents 8,380,944 , 8,812,778 ,
9,092,325 , 9,535,830 and 10,248,359. Contact EasyCo LLC for licensing information.

Some of the methods discussed are licensed under open-source, non-restrictive BSD style
licenses. These include the LZ4 compression algorithms and others.

Any trademarks mentioned are the property of their respective companies.

Some methods are in the public domain, such as RAID-5 and RAID-6, dynamic hashing, and
others.

Some methods are released under the GPL.

2

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 3

The Benefits of Block Translation

 Block translation lets you change the nature of the IO
workload that a device sees.
 Convert random writes into linear writes
 Lower the overhead and wear of parity RAID

 … to levels that are lower than mirroring
 Block translation is also required for:

 Data reduction like compression and de-dupe
 … But block translation can do a lot more

3

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 4

Block Translation

 We see frequent examples of using block translation
with storage.

 How complex these techniques are largely depends
on how “dynamic” the translation scheme is.

4

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 5

Static Layouts

 Static Layouts are common. These are layouts where
the location of a block does not change and can
instead be computed.
 Partition Tables
 RAID
 LVM (sometimes)

5

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 6

Coarse Grained Dynamic Layouts

 Some layouts do move around as data changes.
These solutions often involve large blocks to keep the
management of the moves low cost.
 Bad block re-mapping
 LVM resizing
 Copy on Write

 LVM Snapshots

6

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 7

Medium Grained Dynamic Layouts

 Some solutions are in-between with a larger number
of blocks that move around
 ZFS

7

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 8

Fine Grained Dynamic Layouts

 Finally, some solutions are very dynamic with every
block being re-positioned on every update.
 SSD FTLs
 Various proprietary mapping engines

8

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 9

Fine Grained Translation Layers are
actually a Big Database Problem

 40TB of storage is 10 Billion 4K blocks
 Managing 10 billion of anything is non-trivial
 Even as a simple flat table this is:

 34 bits x 10B = 42.5 GB
 5 bytes x 10B = 50 GB
 8 bytes x 10B = 80 GB

 The math for 400TB gets even worse

9

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 10

Choosing a Mapping Size

 8 bytes entries seem ideal
 Aligned for speed
 Able to pack into pages
 But the memory footprint is higher

 Bit alignment is tempting
 Minimum memory usage
 But you have to use a lot of shifts and locks to access entries

 … probably not worth the trouble
 5 bytes seems to be the sweet spot with current hardware

 Unlike older systems, unaligned memory accesses no longer
have the extreme performance hits of days past.

10

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 11

The Real Problem is Data Consistency
Across a Crash

 We are updating two different data sets.
 The data blocks
 The map to the data blocks

 We cannot just update a RAM table
 Something has to keep the two sets in sync

 The solution is “atomic updates”

11

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 12

Atomic Updates

 We want to write the data blocks and the control
information that describes the data blocks in an
“atomic update”.

12

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 13

Atomic Update Styles

 Journals
 not great as we duplicate the writes

 In-place pointer updates
 Not great as this breaks any chance of linearization

 Generation counters and in-place “journal like writes”
 This is how we will get this to work

13

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 14

Flash back to 2005

 I did my first work on this in 2005
 My patents date back to 2007
 The goal as:

 Single update maintaining perfect linearity
 Move all of the overhead to mount

14

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 15

The On-Disk Update Structure

 So we get to dive into the actual update structures..
 First, the update “patterns”:

 The disk is segmented into large “write stripes”
 The stripes are large enough to keep the media and any underlying FTL

happy.
 This is typically 256 MB for SATA SSD, and 1GB for NVMe SSDs.
 The media does not EVER have have a write seek that is not

aligned with these stripes.
 The write stripes are further divided into “write buffers”

 We do this so that our already large memory footprint does not go thru
the sky

 The write buffers are further divided into variable length “write
segments”
 These write segments are the “atomic update” structure

15

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 16

The Write Segment Structure

 At it’s simplest, the structure has:
 A header
 Some number of data blocks
 Some number of meta tags

that describe the blocks
 Some CRC or Hash values

to verify the data is intact
 A footer

 This is the FBD v1 layout
16

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 17

Atomic Update Segment Layout
H

D
R Meta Tag Array Data Block Data Block Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

Data Block

H
D

R Meta Tag Array

H
D

R Meta Tag Array...

17

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 18

What is in the Header?

 A signature
 The size of the segment
 The number of elements in the segment
 The generation counter for the write stripe
 A CRC or hash to ensure the segment is intact

18

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 19

What about Trim?

 This structure makes it very easy to implement
trim/discard.
 Leave the data block out
 Output the meta array entry with bits that indicate all

zeros or FFFFs
 Trim is amazingly fast, and has almost no wear

 We routinely clock trim at > 500 GB/sec

19

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 20

This is Enough to Work Amazingly Well

 Mount is a bit slow, but safe
 You have to ‘walk” every segment on this media
 You don’t have to read the actual data blocks

 It is very space efficient with meta tags at only about
0.15% of space overhead

 It has size limits because of mount time
 It is not very extensible

20

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 21

Write Segment Optimzation #1

 Summarize the meta array for each write block.
 This keeps you from having to walk each segment.

 Mount is typically “two reads” for each write block
 You still have to walk the “tail write”, but there is only

one of these.
 You do lose an additional 0.15% of space

 Trading space for time and memory will become a
theme

 This pushes the practical array size to well over 200 TB

21

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 22

So Where Does This Get You?

 If you combine this write structure with an underlying
optimized array you can reach:
 Example 24 SATA SSD array running RAID-6

 > 11 GB/sec writes at large blocks
 > 2M 4K random writes

 Negligible overhead on reads
 Lowering of Flash Wear to near theoretical limits based

on free space

22

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 23

What Does the Array Need to Do?

 The Array must be optimized for aligned writes to
exact chunks

 This is an ideal environment for erasure codes
 Standard RAID-5/6 works very well if:

 GPL patch for drivers/md/raid5.c with logic to avoid
Read/Modify/Write cases

 Patch also does parity calcs on calling thread, so you
scale with cores.

 11+ GB/sec and 2M+ IOPS are for 24 SATA SSD
running RAID-6

23

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 24

Things the Simple Layout Achives

 All data blocks are 4K aligned
 No extra copies

 Large writes are stored together
 Subsequent read transfers are more efficient

 Chunks are typically small, making the array scale
better

 Large reads actually spread out across multiple SSDs in
parallel

24

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 25

But We Can Go Beyond 4K

 While 4K only blocks are efficient, the “linear write”
structure lets you do more

 Step 1, compression
 LZ4 Optimized for 4K blocks

 > 1GB/sec/core by limiting dict size so that it fits
in L1 cache

 Pad compressed blocks to 64 byte boundaries
 +12 bits in the lookup table
 6 bytes needed for up to 256 TB arrays

25

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 26

Write Segement with
Compressed Blocks

26

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 27

Compression Overhead

 Significantly more CPU usage
 Some additional latency for low Q depth IO
 But is it still easy to reach “drive speed”

 >11 GB/sec writes
 > 2M IOPS on writes

27

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 28

Beyond Just Translating Blocks

 We can abuse the atomic write segment structure to
create whole new solutions

 Step 1, lower the memory requirements and lower the
amount of time for a mount
 This is necessary for really large arrays
 This is necessary for dual-ported drives in HA/failover

configurations

28

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 29

Embed Most of the LBA Table
on Flash

 Place parts of the LBA table inside of the atomic write
structure.
 Each write will include a small LBA snippet that has

lookups for 4, 8, or 16 LBA entries
 This is not a “cache”

 It is updated in real-time with the data blocks
 Updating as few as four entries reduces the lookup

table DRAM requirements by 75%

29

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 30

Turning the LBA Table Into a Shallow
Tree

 The LBA “snippets” are very small
 They don’t add much to write overhead
 They have little impact on Flash capacity.

 We can push this further by writing a “mini tree”
 2.5% of flash space overhead (worst case)
 1:256 DRAM usage reduction

30

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 31

LBA Table Lookup Tree

31

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 32

LBA Trees

 40TB – we would typically need 10B entries
 60 GB of ram at 6 bytes/per entry
 1/256 of space needed – 240 MB

 Each level is 6 bytes * 4 – 24 bytes
 Each random write uses 96 extra bytes of

storage (2.5%). Linear writes use less.
 Nodes are easy to cache as 6 byte is enough to double as a

disk or RAM pointer.
 Only the top-level has to be mounted. The rest can be

demand paged (although perhaps we need another word
than “paged”).

32

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 33

Extended Write Segment Structure

 Master Header – total sizes, counts, and generation tags
 Sub Headers, one for each type of data

 Block data
 Meta tags used on mount
 Meta tags used on defrag (GC)
 CRC arrays used for data validation

 We still use summary meta arrays for each write block
 Mount can now read a fraction of the array

 Enables support for “huge” arrays
 Enables fast mounts that are quick enough for “HA Failover”

33

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 34

What can we use “low memory” for?

 Lowering system cost.
 De-dupe with high data reduction ratios

 De-dupe needs:
 LBA to Block ID translation
 ID to actual data translation with reference counters

 The LBA entries are most of the space, but they have
high “locality” so they cache well.

 The Block ID entries are hashes, so they need to have
committed memory or else you will pay with a read on
every access.

34

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 35

And finally, what about
“beyond blocks”?

 So far, we are just storing someone else’s blocks.
 We can map many LBA “numbers” to storage objects.

 The objects can be variable sized.
 The object can also be compressed.
 Different types of objects can be mapped in different

name spaces.
 The LBA ranges are “thin provisioned” which makes file

system design easier.
 The LBA tables themselves are “allocation bitmaps”

35

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 36

So, Lets Build a File System

 This is unlike any file system you have ever seen.
 It has no real concept of a “page”
 It is optimized for “object access”, but still allows in-

place updates.
 Most file creates require fractional IOs.
 Directories above 1 billion entries are practical
 Space utilization for small files is > 90%.

36

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 37

The WildFire File Sysytem

 Some of this actually has been implemented
 Ie, a single directory that can do creates, reads, and scans,

and deletes.
 Here are the “block namespaces” used so far.

 Block type 1: Directory Control
 Block type 2: Directory extents
 Block type 3: Directory groups
 Block type 4: Small File contents
 Block type 5: File extends
 Block type 6: Random access file blocks
 Block type 7: Object file blocks

37

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 38

But What are the Block Limits?

 If you push the “block pointer” to 8 bytes, you can
point to a block with:

 Up to a 16 PB array
 Variable sizes from 16 byte to 1 MB w/ compression
 … or 64 MB without compression

 Point to the local array, or off-array (perhaps to
spinning media for large objects)

38

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 39

So What Does a Directory Look Like?

 Each directory has a single, small control block with
counters.

 This gets updated a lot. Because it is small, the overhead
on disk wear and bandwidth is low.

 There is an “extents” block that maps to groups

39

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 40

Groups and Variable Sized Blocks are
Meant for Each Other

 Groups are added and removed dynamically, but still
use hashes for lookups
 This involves hashes to a binary modulus and single

group split/merges as files are created and removed
 Groups will vary in fill level, but the variable sized

blocks map this perfectly.
 Space utilization is excellent
 … which also translates to efficient use of disk IO

bandwidth

40

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 41

What Kind of Performance Can you Get?

 When running “from disk” (ie, nothing in cache)
 Each file open is a single direct read
 Each file write is a single read, and then a

merge/update of the group
 The write itself is a part of the coalesced “write stream”,

so it is very low overhead.
 Unless there is a split, then there are updates to two

blocks.

41

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 42

What Kind of Performance Can you Get?

 There is “no page cache”
 Writes go directly into the “write segment” buffer
 The “write segment can merge multiple requests before

an actual update goes out.

42

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 43

Small File Performance

 These were run on a Core-i7 VM
with a single SATA SSD.
 Create small files in a one directory

 < 4 uSec per file create for 100K
 < 7 uSec per file create for 4M

 2 uSec of this is VFS
 4x – 10x faster than EXT4
 8x – 30x faster than XFS
 “Lots” faster than ZFS

43

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 44

Small Files as Objects

 Small files don’t really need extents
 You can store “very little” files with their directory entries
 You can store “bigger” files with their data in a single

variable sized block
 Optimized for files that are created “all at once”

 But still support random and append files

44

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 45

Small Files as Objects

 This design is “built for speed”
 Minimize IO with direct access to the data
 Keep the data structure tight

 All direct RAM links
 Count “cache line misses”
 No BTREEs or other slow lookups
 No allocation bitmaps
 All data is written “exactly once”

 No journals

45

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 46

Really Big Directories

 1 billion item directories are practical
 It is easy to sustain creates at 2500/sec, single thread
 Under 5 days for 1B file creates

 vs 20 months for EXT4 and 6 years for XFS
 … and even longer (actually much longer) for ZFS

 While everyone talks about file systems “without
limits”, the limit that matters most is “time”

46

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 47

Incredible Space Efficiency

 1 billion 100 byte files with 20 byte file names
 About 200GB of space used with WFFS
 About 5 TB of space used with EXT4/XFS

 … and it all works because you are translating block
addresses.

47

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 48

But Why Is Block Translation Needed
for a File System?

 Block Translation keeps the design simple
 Space management can happen in the background

 This allows for defrag (GC)
 Thin provisioning of block addresses lets you assign

large linear ranges when needed or individual blocks
when needed.

 The atomic update structure is not an “extra write”.
 Writes are nearly 100% actual data with no pad.

48

2020 Storage Developer Conference. © EasyCo LLC. All Rights Reserved. 49

Please take a moment
to rate this session.

Your feedback matters.

Fine Grained Block
Translation

Douglas Dumitru
EasyCo LLC

www.WildFire-Storage.com
doug@easyco.com

+1 610 237-2000 x43

	Fine Grained Block Translation
	Legal Stuff
	The Benefits of Block Translation
	Block Translation
	Static Layouts
	Coarse Grained Dynamic Layouts
	Medium Grained Dynamic Layouts
	Fine Grained Dynamic Layouts
	Fine Grained Translation Layers are actually a Big Database Problem
	Choosing a Mapping Size
	The Real Problem is Data Consistency Across a Crash
	Atomic Updates
	Atomic Update Styles
	Flash back to 2005
	The On-Disk Update Structure
	The Write Segment Structure
	Atomic Update Segment Layout
	What is in the Header?
	What about Trim?
	This is Enough to Work Amazingly Well
	Write Segment Optimzation #1
	So Where Does This Get You?
	What Does the Array Need to Do?
	Things the Simple Layout Achives
	But We Can Go Beyond 4K
	Write Segement with�Compressed Blocks
	Compression Overhead
	Beyond Just Translating Blocks
	Embed Most of the LBA Table�on Flash
	Turning the LBA Table Into a Shallow Tree
	LBA Table Lookup Tree
	LBA Trees
	Extended Write Segment Structure
	What can we use “low memory” for?
	And finally, what about�“beyond blocks”?
	So, Lets Build a File System
	The WildFire File Sysytem
	But What are the Block Limits?
	So What Does a Directory Look Like?
	Groups and Variable Sized Blocks are Meant for Each Other
	What Kind of Performance Can you Get?
	What Kind of Performance Can you Get?
	Small File Performance
	Small Files as Objects
	Small Files as Objects
	Really Big Directories
	Incredible Space Efficiency
	But Why Is Block Translation Needed�for a File System?
	Please take a moment �to rate this session. ��Your feedback matters.

