SDG

BY Developers FOR Developers

Storage Developer Conference
September 22-23, 2020

Rethinking Distributed Storage
System Architecture for Fast

Storage Devices

Myoungwon Oh

Samsung Electronics

\

\/

<

\

™N

NN
Vi

VAN

AN/
\V/

FAVAY/
\

NN\

L INCINNC T T TP
VAVANAVANAN NSNS SN

20\

VAN NAVAVAVANE VAN

/

AN
ANANAN
ANAVAN

INONNINCININC L L L L L L L L

FANAVAN
AVAVAN

_/
N/
AN

mailto:myoungwon.oh@Samsung.com

AGENDA

Background and Motivation

Proposed Design for Fast Storage Devices
« Lightweight Data Store

« Thread Control

« Replication Offloading using NVMe-oF

Summary

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

-
N/

Background and MotivaM

Ceph Architecture

« 3in 1 Interfaces
= Object (RGW): Amazon S3 & OpenStack Swift
= Block (RBD): Amazon EBS
= File (CephFS): Lustre & GlusterFS

= RADOS
= Heart of Ceph

= Favor consistency and correctness over perfor
mance

= Serve |/O request, Protect data, and Check the
consistency and integrity of data

(1) OSD: Serve 1/0, Replication/EC, Rebalance, Cohering Data
(2) MON: Maintain a master copy of the cluster map and state
(3) MGR: Collect the statistics within the cluster

(4) MDS: Manage the metadata (only for CephFS)

(AFF) (AFP) (HDSTFVM) (Client)

Dbjectl

Dbjectl'

ElluckL

File¢

LIBRADOS

RGW

RBD

CephF3s

RADOS

(Reliable Autonomous Distributed Object Store)

MON f~ MON /=~ MON M~ MON m~ MDS
I | | | |
OSD = OSD = OSD = OSD = OSD
| I I I I
OSD =~ OSD =~ OSD =~ OSD =~ OSD
I I I I I
0OSD = OSD = OSD =~ OSD =~ OSD
I | | | |
OSD =~ OSD = OSD =~ OSD = OSD

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Challenging Issue: Performance

u Seq u e ntla | I/O IS g OOd ‘ 128KB Sequential Read (W1, QD32) 128KB Sequential Write (W1, QD32)

60.00 16.00 25.00 40.00
50.28 51.34 51.61 5191 51.46 51.56

14.00 19.05 1947 19.22 19.49 1899 1902 Ta7s 3500

= Can fully saturate the network == == . P

80 100 120 140 180 200 20 80 100 120 140 180 200
of clients # of clients

:
o 8
8 8

3
8

Throughtput (GB/s)
Latency (ms)
Througghput (GB/s)
Latency (ms)

8

= Throughput —— Avg. Latency m Throughput ——Avg. Latency

= Random small write is bad
CPU can become a bottleneck woco

g
300.00
g 243.86
55000 179.12 2
127.78 -
100.00 N —

QD1 Q2 QD4 Qs Q16
o OPS —— Avg. 99% Latency Avg. 99.99% Latency Avg. Latency

4KB Random Write (©200 Clients)

Latency(ms)

Reference: https://www.samsung.com/semiconductor/global.semi/file/resource/2020/05/redhat-ceph-whitepaper-0521.pdf

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

The 1/0O path

Baseline
RECV Protocol ~ SEND RECV Protocol Reply

. ¥ e v
Primary OSD Ij iProcessing ,{ | Prepare Trx sm=c=- ’Iﬁ\/ Ij’\l
Messenger THD Object Store

l RGFLiCiit 0;/_/£ ¥ > Commit

Primary OSD
PG THD

RECV Protocol

Secondary OSD . .Ijj;; are Tix] Network
Messenger THD ‘ Object Store)

* Commit
Secondary OSD
PG THD

...

wn

m

Z 2

() =
O
o
3
3

vomepda===1-

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Experiment - RTC

= Write I/0 Path in “RTC”
= Run-to-completion model
= Can eliminate the context switching overhead
RTC
PG i Protocol
RECV Processing SEND Object Store REGV -
Prepare Trx . All Commit
¥Protocol Rephcatl P b) Commit {\/ e
B “aad eply
Primary OSD T] I Iﬁ\/
RTC THD + No Context
* Switch Overhead '
': RECV Prepare Tl Commit ! Network
‘. Protocol bject Store SEND
“‘ JI *]:T"‘

Secondary OSD

RTC THD
2020 Storage Developer Conference. © Samsung. All Rights Reserved

Experiment - Null Test

= Write I/O Path in “Null Test’

= Hypothetical maximum performance when only network stack
overhead exists

Null Test
RECV Protocol
Protocol SEND RECV , Reply
. L y ¥
Primary OSD Only Network Stack Overhead
Messenger THD (Assuming no cluster map changes)
‘.]
] 1
] L]
: SEND; Network
RECV: Protocol N
Al
Secondary OSD Y
Messenger THD

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Experiment - Setup

Use limited resource to eliminate other interference factors Ceph Configuration
+ Each OSD has two messenger threads -
. _E_ach OS_D has two storage threads

15.02 (Octopus)

Ceph S5torage Type RBD

I AR ".I 05D Backend Stor- Bluestore
saEEEEw Cluster age
_ . Metwork # of OSD daemon 32
— - - ~~ Storage / Client 05Ds per NVMe 55D 4
10— | Node =
pep— - Replication Factor x2
= =] =y
Ceph OS50 + MON + MGR éﬂa gm%ﬁ # of PG (Placement 1024
1000+ LA ==

Storage Nodes (x4)

CEEh osD
' Intel® Xeon® Gold 6152 CPU @ 2.10GHz
I ["]I][I liil]_ ‘ Processor (x2) (22-core 44 thread)
Ceph 050 Samsung 16GE DDR4-2400 MT/s (128GE
I [l[”]l] "'I] Samsung PM1725a (x2) L b per nade)
Samsung PM1725a NVMe 550, 1.6TB, 2.5
Ceph 05D inch form factor
“ Mellanox Connect X®-5 MCX516A-CCAT
Dual-Port adapter (100G bE)

Network devices

Mellanox MSN2700-C52F 1U Ethernet
switch (100GBE)

Mellanox Connect X®-5 MCX516A-CCAT
Dual-Port adapter (100GbE)

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Experiment - Results

FIO 4KB Random Write — RBD

Use limited resource to eliminate other interference factors

K IOPS

‘ 3 g MP: Message Processing
E[OPS =T atency BMP SSP BRTC ®MISC ——P SP: Storage Processing
140 35 400 RTC: Run-to-completion
120 N 3 MISC: Compaction, sync, etc.
100 255 300
80 2 z2lz
S/ L5 =11 5 200 =
10 % 1 & e
y @ @ = ~ 100 =
0 0 o Z=
> «<C) i .
& \\“}\‘v 0 : = User | Data | Misc | Total
N = — - - T .
) ; Original RTC NULL Original (GB) 21 42 78 120
IOPS / Latency CPU usage Write Amplification

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Improvement Points

« High CPU Consumption of Object Store
= Write Amplification / Data Partition / Log-structured Data Layout

= Inefficient Threading Architecture

= Conventional thread pool design (network and storage) caused performance deg
radation

= Strong consistency service needs an ordering and persistency

= Lots of Works in a Server Node
= Network I/O Dispatching, Replication I/0O Handling, Fault and Meta Managing, ..

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

-

Proposed Design \/ \/

Key ldeas

« Hybrid Update (out-of-place & in-place) based Application-managed Store
= to minimize CPU consumption of data store

« Locality-aware Prioritized Thread Control
= to minimize the context switching overhead while prioritizing network processing

« Offload Replication Processing using NVMe-oF Techniques
= to minimize CPU consumption

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

@ Lightweight Data Store

Drawbacks of BlueStore

= LSM-tree based store incurs high write OSD (ceph-osd)
amplification and CPU overhead due to
the compaction process el e ——————— ,
' J L Object Store Interface '
= Unnecessary data copy and serializatio V Blass
n/deserialization overhead :
= Parallelism (single partition) ot
BlueFS
Block Interface
Block Device

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

@ Lightweight Data Store

Overview
= Target only high-end NVMe SSDs and NVM
= Hybrid update strategies for different data types (in-place, out-of-place)
= to minimize CPU consumption by reducing host-side GC

Utilize NVMe feature (atomic large write command)

Sharded data/processing model

Support transactions

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

@ Lightweight Data Store

Overview

= WAL Partition

Log and frequently updated metadata are stored as a WAL entry in the WAL partition
Space within the WAL partition is continually reused in a circular manner
Flush the metadata if necessary

= Write procedure for Metadata
Appended at the WAL first -> Overwrite the metadata in the data partition in case of flushing

= Write procedure for Data
Overwrite the data in the data partition

_ Can be placed on NVM

< A Sharded Partition > I:l Can be placed on NVMe
A
co— - - . . . ™
- WAL (Write Ahead Log) | Object Met | Allocation bi
™ Metadata | SB 3 tmap Data blocks

o Oa te f-p/aci " /Z/)/h-p/ace update in cas in-place upaate g
Metad@ e of flushing Dataﬁ

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

@ Lightweight Data Store

= Overview
NVM NVMe SSD
T 1
| Sharded | " A\ Tiiite Ahead Log) | ob; Allocat I
I Partition I,—-——-—-——-——-—-—-——-—-l SB Ject ocation Data blocks 1
: 1 L Metadata 1 Meta bitmap :
S o B o =1
[e =1
I T I
Sharded .

I WAL (Write Ahead Lo I
| Partition |_____(________g_)__1 sB Object AIIc‘Jcanon Data blocks I
I 2 L Metadata 1 Meta bitmap I

............... 1 I
b e i o o o o 1
e [
: ihft':;j_e‘j ML_(EVr_itgﬁﬁeiq_ng)__' = Object Allocation Data blocks :
I a ',Gmn Metadata 1 Meta bitmap I
I --------------- — I
e, e, e, e, —,——————— |

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

@ Lightweight Data Store

Best case vs. Worst case

= Best case (pre-allocation):

One write for WAL + One write for data

With pre-allocation, object meta and data bitmap aren’t required to be updated
« Worst case (flush happens):

One write for WAL + One write for object meta + One write for allocation bitmap
+ One writes for data

= |n either cases, it doesn’t produce unpredictable severe write amp
lification (constant rate) unlike LSM-tree DB

- Frequent updated data can be placed in the NVM

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

@ Locality-aware Prioritized
Thread Control

Baseline
RECV Protocol ~ SEND RECV Protocol Reply

, ¥ re v
Primary OSD Ij EProcessing o] Prepare Trx smm==- .I—_A/de Ij’\)
Messenger THD - Object Store

-_-'/ Replicét onp/_/g -
. All Commit
J A ¥ > Commit \E \Conrext

i Context
Primary OSD sﬁ_g Switch
PG THD Overhead Overhead

Secondary OSD

Ry Prepare Tr S
Messenger THD .Ijj\ip " oo

Object Store
/ ‘ * Commit
Secondary OSD Context Context

Switch f
PG THD Overhead oiggfg;d

RECV Protocol

~
ceo o sisessseessee
’

veeehd==T
L

Need an order !!!

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

@ Locality-aware Prioritized

Thread Control

High-priority thread

Network processing an
d I/O forwarding (Laten
cy critical job)

Low-priority thread

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Storage processing (B
est-effort batch job)

Core 0

Core 1

OSD

Core 2

Core 3

Priority Core

High-priority

Thread

Priority Core

High-priority
Thread

Priority Core

High-priority

Thread

Non-Priority Core

Low-priority
Thread

[
[
:
E [Replication
[
[

Protocol

In-memory Logging

High-priority Thread
(Per Core)

)
)
PG Processing] E
)
|

+*

[
E [10 Completion
[

Commit

llllllll

Low-priority Thread
(Per Logical Group)

@ Locality-aware Prioritized

Thread Control

Baseline
RECV Protocol ~ SEND RECV Protocol Reply
) ¥ e
Primary OSD tprocessing | ropare T e .ﬁ—_/ Ij,__/
Messenger THD ===t Replication Object Store ‘ -
B Commit | All Commit
Primary OSD ' '
PG THD 4 .
A, RECV Protocol ,-:_____fEND
' ' Network
Secondary OSD een -.Ijﬁle/pare Trx - ﬁ emer
Messenger THD Object Store
Commit
Secondary OSD
PG THD
Proposed Architecture
PG In-memory Log Latenc
RECV Processing SEND Prfftocol ,y
Replication RECY fA” Con RedUCIIO n

Primary OSD
RTC-Top THD

Primary OSD
RTC-Bottom THD

Lightweight
Object Store
Prepare Trxl

Protocol

S

[l
L

REC\/: Protocol SENG
....... e
Secondary OSD . L Object Store Reduced
RTC-Top THD Prepare Trx /(Commit CPU
Secondary OSD S i I_:[' Consumption
RTC-Bottom THD .

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Throughput (KIOPS)

1000
900
800
700
600
500
400
300
200
100

@ Locality-aware Prioritized

Thread Control

IOPS Latency
(Higher is better) (Lower is better)
4.5 4.1
822 4.0
35
‘g 3.0
4.54x ;;2.5 3.41)(
€20
g
815 12
181 10
05
0.0
Original Proposed Original Proposed

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

5000
4500
= 4000
= 3500
£ 3000
-]
N 2500
5 2000
2 1500
© 1000
500

CPU utilization
(Lower is better??)

48 cores
4602
3671
Original Proposed

® Replication Offloading
using NVMe-oF
« Storage Disaggregation with NVMe-oF

A less powerful node (cheaper) c

Storage Node (OSD)

CPU CPU

CPU CPU CPU CPU CPU
DISK i DISK DISK DISK DISK DISK
DISK ! DISK

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

® Replication Offloading
using NVMe-oF

= Idea
= Replication is offloaded to NVMe-oF based storage solution that support
S mirroring

= OSD does not process replication but is aware of where data is mirrored

Storage node-side CPU usage is reduced without losing data redundancy

—Node (OSD) | | _Node (OSD) | [_Node (OSD)

Compute Compute Compute

Node (OSD) Node (OSD)
Rep.
Compute pr| Compute

™ = “
|; < Existing System> . Mirroring

/10

<Replication Offloading>

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

® Replication Offloading
using NVMe-oF

= Separate Fault Domain

< Computing Fault Domain > < Storage Fault Domain >
Root Root
Rack Primary Rack Main
active
— Host (/) L1 OSTO /
|_ OSDO / Mirrored
— Host Backyp — OST 1
{ (passive)
|— OsSD 7
Rack . Rack Mirrored
ad Backup |_ /
|— Host | (Passive) OST 2

o]

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

® Replication Offloading
using NVMe-oF

« Computing Fault Domain

< CRUSH >
Input : Pool ID, Placement Group #

Output : A set of OSDs

{OSD 0, OSD 7, OSD 11} «

Primary (active)

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Root

Rack

Primary (

Host

active)

OSD 0

: Backup (

Host

Y passive)

Rack

OSD 7

Backup (

Host

passive)

OSD 11|

® Replication Offloading
using NVMe-oF

« Storage Fault Domain 0ST 0 (NVMeOF)
Root Volume 0
Rack Volume 1
< CRUSH > | [osTo Main Volume 2
Input : Primary OSD ID / —
Output : A set of OSTs Vol.OSDO
. OST 1 (NVMeOF)
L1 0ST 1] Mirrored Volume 0 =
Main / Volume 1 g
{OSTO.VOI'OSDO, Vol-OSDO0 Volume 2 g
OST1.Vol-0SDO, — = olume 3
OST2.VO|-OSDO} I_ _ OST 2 (NVMeOF)
OST 2 / Mirrored Volume 0
Vol-0SDO volume ?
. Volume 2
Volume 3

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

® Replication Offloading
using NVMe-oF

« |/O Path
= {OSD 0, OSD 7, OSD 11} OST\ZS:;:A:OF)L
. {OST0.Vol-0SD0, OST1.Vol-OSD0, OST2.Vol-OSDO} voimer ||
[Root | Volume2 |
| voumes |

OST 1 (NVMeOF)

- | Volume 0 |

OS? : | Volume 1 |
No replications | Volume 2 |

| Volume 3 |

T

by OSD
: OST 2 (NVMeOF)

Volume 0

""'s180 Aq suop st Bupouny

Volume 1 :
| Volume 2 |<I
| Volume 3 |

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

® Replication Offloading
using NVMe-oF

« OSD (Computing) Failure
- {0Sb-0, 0SD 7, OSD 11} JOST\ZE;’Q”;OF)
= {OST0.Vol-OSD0, OST1.Vol-OSDO0, OST2.Vol-OSDO0} |

I
I

Volume 2

| Root |

H-
Volume 1 |
|

Volume 3 |

OST 1 (NVMeOF)

Volume 0

Volume 2

I |
| Volume 1 | i
I |
I |

Volume 3

T

"'s180 Aq suop s Buouny

OST 2(NVMeOF)

Volume 0

Volume 1 :
| Volume 2 |<I
| Volume 3 |

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

® Replication Offloading

using NVMe-oF

OST (Storage) Failure
- {OSD 0, OSD 7, OSD 11}
- {OST0-Vel-0SDB0O, OST1.Vol-O0SD0, OST2.Vol-OSDO0}

| Root |

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

OST 1 (NVMeOF)

Volume 0

Volume 1

Volume 2

Volume 3

OST 2 (NVMeOF)

Volume 0

Volume 1

Volume 2

Volume 3

"SISO Aq suop st Bunopy

Conclusion

Reliable distributed storage systems face the challenge to fully
exploit NVMe performance

Excessive CPU usage is the main problem
It's time to rethink the conventional I/O SW stack

We propose a lightweight 1/O architecture for distributed storage
systems

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Upstream Status

= Efforts to make flash devices more attractive to the world

= Tiering / Global deduplication Improvement
= hitps://github.com/ceph/ceph/pull/29283 (Merged)
= https://github.com/ceph/ceph/pull/35899
= https://github.com/ceph/ceph/pull/34684
= https://github.com/ceph/ceph/pull/35112

= New Store Design
= https://github.com/ceph/ceph/pull/36343

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

https://github.com/ceph/ceph/pull/29283
https://github.com/ceph/ceph/pull/35899
https://github.com/ceph/ceph/pull/34684
https://github.com/ceph/ceph/pull/35112
https://github.com/ceph/ceph/pull/36343

-

Question v \/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

