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AGENDA

Background and Motivation

Proposed Design for Fast Storage Devices
« Lightweight Data Store

« Thread Control

« Replication Offloading using NVMe-oF

Summary
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Ceph Architecture

« 3in 1 Interfaces
= Object (RGW): Amazon S3 & OpenStack Swift
= Block (RBD): Amazon EBS
= File (CephFS): Lustre & GlusterFS

= RADOS
= Heart of Ceph

= Favor consistency and correctness over perfor
mance

= Serve |/O request, Protect data, and Check the
consistency and integrity of data

(1) OSD: Serve 1/0, Replication/EC, Rebalance, Cohering Data
(2) MON: Maintain a master copy of the cluster map and state
(3) MGR: Collect the statistics within the cluster

(4) MDS: Manage the metadata (only for CephFS)

(AFF ) (AFP ) (HDSTFVM) (Client )

Dbjectl

Dbjectl'

ElluckL

File¢

LIBRADOS

RGW

RBD

CephF3s

RADOS

(Reliable Autonomous Distributed Object Store)

MON f~ MON /=~ MON M~ MON m~ MDS
I | | | |
OSD = OSD = OSD = OSD = OSD
| I I I I
OSD =~ OSD =~ OSD =~ OSD =~ OSD
I I I I I
0OSD = OSD = OSD =~ OSD =~ OSD
I | | | |
OSD =~ OSD = OSD =~ OSD = OSD
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Challenging Issue: Performance

u Seq u e ntla | I/O IS g OOd ‘ 128KB Sequential Read (W1, QD32) 128KB Sequential Write (W1, QD32)

60.00 16.00 25.00 40.00
50.28 51.34 51.61 5191 51.46 51.56

14.00 19.05 1947 19.22 19.49 1899 1902 Ta7s 3500

= Can fully saturate the network == == . P
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= Throughput  —— Avg. Latency m Throughput  ——Avg. Latency

= Random small write is bad
CPU can become a bottleneck woco

g
300.00
g 243.86
55000 179.12 2
127.78 -
100.00 N —

QD1 Q2 QD4 Qs Q16
o OPS  —— Avg. 99% Latency Avg. 99.99% Latency Avg. Latency

4KB Random Write (©200 Clients)

Latency(ms)

Reference: https://www.samsung.com/semiconductor/global.semi/file/resource/2020/05/redhat-ceph-whitepaper-0521.pdf
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The 1/0O path

Baseline
RECV Protocol ~ SEND RECV Protocol Reply

. ¥ e v
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Messenger THD Object Store
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RECV Protocol

Secondary OSD . .Ijj;; are Tix ] Network
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* Commit
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Experiment - RTC

= Write I/0 Path in “RTC”
= Run-to-completion model
= Can eliminate the context switching overhead
RTC
PG i Protocol
RECV Processing SEND Object Store REGV -
Prepare Trx . All Commit
¥Protocol Rephcatl P b) Commit {\/ e
B “aad eply
Primary OSD T ] I Iﬁ\/
RTC THD + No Context
* Switch Overhead '
': RECV Prepare Tl Commit ! Network
‘. Protocol bject Store SEND
“‘ JI * ]:T"‘

Secondary OSD

RTC THD
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Experiment - Null Test

= Write I/O Path in “Null Test’

= Hypothetical maximum performance when only network stack
overhead exists

Null Test
RECV Protocol
Protocol SEND RECV ,  Reply
. L y ¥
Primary OSD Only Network Stack Overhead
Messenger THD (Assuming no cluster map changes)
‘. ]
] 1
] L]
: SEND; Network
RECV: Protocol N
Al
Secondary OSD Y
Messenger THD
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Experiment - Setup

Use limited resource to eliminate other interference factors Ceph Configuration
+ Each OSD has two messenger threads -
. _E_ach OS_D has two storage threads

15.02 (Octopus)

Ceph S5torage Type RBD

I AR ".I 05D Backend Stor- Bluestore
saEEEEw Cluster age
_ . Metwork # of OSD daemon 32
— - - ~~ Storage / Client 05Ds per NVMe 55D 4
10— | Node =
pep— - Replication Factor x2
= = ] =y
Ceph OS50 + MON + MGR éﬂa gm%ﬁ # of PG (Placement 1024
1000+ LA ==

Storage Nodes (x4)

CEEh osD
' Intel® Xeon® Gold 6152 CPU @ 2.10GHz
I ["]I][I liil]_ ‘ Processor (x2) (22-core 44 thread)
Ceph 050 Samsung 16GE DDR4-2400 MT/s (128GE
I [l[”]l] "'I] Samsung PM1725a (x2) L b per nade)
Samsung PM1725a NVMe 550, 1.6TB, 2.5
Ceph 05D inch form factor
“ Mellanox Connect X®-5 MCX516A-CCAT
Dual-Port adapter (100G bE)

Network devices

Mellanox MSN2700-C52F 1U Ethernet
switch (100GBE)

Mellanox Connect X®-5 MCX516A-CCAT
Dual-Port adapter (100GbE)
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Experiment - Results

FIO 4KB Random Write — RBD

Use limited resource to eliminate other interference factors

K IOPS

‘ 3 g MP: Message Processing
E[OPS =T atency BMP SSP BRTC ®MISC ——P SP: Storage Processing
140 35 400 RTC: Run-to-completion
120 N 3 MISC: Compaction, sync, etc.
100 255 300
80 2 z2lz
S/ L5 =11 5 200 =
10 % 1 & e
y @ @ = ~ 100 =
0 0 o Z=
>  «<C ) i .
& \\“}\‘v 0 : = User | Data | Misc | Total
N = — - - T .
) ; Original RTC NULL Original (GB) 21 42 78 120
IOPS / Latency CPU usage Write Amplification
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Improvement Points

« High CPU Consumption of Object Store
= Write Amplification / Data Partition / Log-structured Data Layout

= Inefficient Threading Architecture

= Conventional thread pool design (network and storage) caused performance deg
radation

= Strong consistency service needs an ordering and persistency

= Lots of Works in a Server Node
= Network I/O Dispatching, Replication I/0O Handling, Fault and Meta Managing, ..
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Key ldeas

« Hybrid Update (out-of-place & in-place) based Application-managed Store
= to minimize CPU consumption of data store

« Locality-aware Prioritized Thread Control
= to minimize the context switching overhead while prioritizing network processing

« Offload Replication Processing using NVMe-oF Techniques
= to minimize CPU consumption
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@ Lightweight Data Store

Drawbacks of BlueStore

= LSM-tree based store incurs high write OSD (ceph-osd)
amplification and CPU overhead due to
the compaction process el e ——————— ,
' J L Object Store Interface '
= Unnecessary data copy and serializatio V Blass
n/deserialization overhead :
= Parallelism (single partition) ot
BlueFS
Block Interface
Block Device
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@ Lightweight Data Store

Overview
= Target only high-end NVMe SSDs and NVM
= Hybrid update strategies for different data types (in-place, out-of-place)
= to minimize CPU consumption by reducing host-side GC

Utilize NVMe feature (atomic large write command)

Sharded data/processing model

Support transactions
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@ Lightweight Data Store

Overview

= WAL Partition

Log and frequently updated metadata are stored as a WAL entry in the WAL partition
Space within the WAL partition is continually reused in a circular manner
Flush the metadata if necessary

= Write procedure for Metadata
Appended at the WAL first -> Overwrite the metadata in the data partition in case of flushing

= Write procedure for Data
Overwrite the data in the data partition

_ Can be placed on NVM

< A Sharded Partition > I:l Can be placed on NVMe
A
co— - - . . . ™
- WAL (Write Ahead Log) | Object Met | Allocation bi
™ Metadata | SB 3 tmap Data blocks

o Oa te f-p/aci " /Z/)/h-p/ace update in cas in-place upaate g
Metad@ e of flushing Dataﬁ
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@ Lightweight Data Store

= Overview
NVM NVMe SSD
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
| Sharded | " A\ Tiiite Ahead Log) | ob; Allocat I
I Partition I,—-——-—-——-——-—-—-——-—-l SB Ject ocation Data blocks 1
: 1 L Metadata 1 Meta bitmap :
S o B o =1
[ e =1
I T I
Sharded .

I WAL (Write Ahead Lo I
| Partition |_____(________g_)__1 sB Object AIIc‘Jcanon Data blocks I
I 2 L Metadata 1 Meta bitmap I

............... 1 I
b e e e e e e e e e e e e e e e e e e e e e e e e e i o o o o 1
e [
: ihft':;j_e‘j ML_(EVr_itgﬁﬁeiq_ng)__' = Object Allocation Data blocks :
I a ',Gmn Metadata 1 Meta bitmap I
I --------------- — I
e, e, e, e, —,——————— |
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@ Lightweight Data Store

Best case vs. Worst case

= Best case (pre-allocation):

One write for WAL + One write for data

With pre-allocation, object meta and data bitmap aren’t required to be updated
« Worst case (flush happens):

One write for WAL + One write for object meta + One write for allocation bitmap
+ One writes for data

= |n either cases, it doesn’t produce unpredictable severe write amp
lification (constant rate) unlike LSM-tree DB

- Frequent updated data can be placed in the NVM
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@ Locality-aware Prioritized
Thread Control

Baseline
RECV Protocol ~ SEND RECV Protocol  Reply

, ¥ re v
Primary OSD Ij EProcessing o] Prepare Trx smm==- .I—_A/de Ij’\)
Messenger THD - Object Store

-_-'/ Replicét onp/_/g -
. All Commit
J A ¥ > Commit \E \Conrext

i Context
Primary OSD sﬁ_g Switch
PG THD Overhead Overhead

Secondary OSD

Ry Prepare Tr S
Messenger THD .Ijj\ip " oo

Object Store
/ ‘ * Commit
Secondary OSD Context Context

Switch f
PG THD Overhead oiggfg;d

RECV Protocol

~
ceo o sisessseessee
’

veeehd==T
L

Need an order !!!
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@ Locality-aware Prioritized

Thread Control

High-priority thread

Network processing an
d I/O forwarding (Laten
cy critical job)

Low-priority thread
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Storage processing (B
est-effort batch job)

Core 0

Core 1

OSD

Core 2

Core 3

Priority Core

High-priority

Thread

Priority Core

High-priority
Thread

Priority Core

High-priority

Thread

Non-Priority Core

Low-priority
Thread

[
[
:
E [ Replication
[
[

------------------

Protocol

In-memory Logging

High-priority Thread
(Per Core)

)
)
PG Processing ] E
)
|

-------
+*

[
E [ 10 Completion
[

Commit

llllllll

Low-priority Thread
(Per Logical Group)




@ Locality-aware Prioritized

Thread Control

Baseline
RECV Protocol ~ SEND RECV Protocol  Reply
) ¥ e
Primary OSD tprocessing | ropare T e .ﬁ—_/ Ij,_\_/
Messenger THD ===t Replication Object Store ‘ -
B Commit | All Commit
Primary OSD ' '
PG THD 4 .
A, RECV Protocol ,-:\_____fEND
' ' Network
Secondary OSD een -.Ijﬁle/pare Trx - ﬁ emer
Messenger THD Object Store
Commit
Secondary OSD
PG THD
Proposed Architecture
PG In-memory Log Latenc
RECV Processing SEND Prfftocol ,y
Replication RECY fA” Con RedUCIIO n

Primary OSD
RTC-Top THD

Primary OSD
RTC-Bottom THD

Lightweight
Object Store
Prepare Trxl

Protocol

S

[l
L

REC\/: Protocol SENG
....... e
Secondary OSD . L Object Store Reduced
RTC-Top THD Prepare Trx /( Commit CPU
Secondary OSD S i I_:[ ' Consumption
RTC-Bottom THD .

2020 Storage Developer Conference. © Samsung. All Rights Reserved.




Throughput (KIOPS)

1000
900
800
700
600
500
400
300
200
100

@ Locality-aware Prioritized

Thread Control

IOPS Latency
(Higher is better) (Lower is better)
4.5 4.1
822 4.0
35
‘g 3.0
4.54x ;;2.5 3.41)(
€20
g
815 12
181 10
05
0.0
Original Proposed Original Proposed
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® Replication Offloading
using NVMe-oF
« Storage Disaggregation with NVMe-oF

A less powerful node (cheaper) c

Storage Node (OSD)

CPU CPU

CPU CPU CPU CPU CPU
DISK i DISK DISK DISK DISK DISK
DISK ! DISK
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® Replication Offloading
using NVMe-oF

= Idea
= Replication is offloaded to NVMe-oF based storage solution that support
S mirroring

=  OSD does not process replication but is aware of where data is mirrored

Storage node-side CPU usage is reduced without losing data redundancy

—Node (OSD) | | _Node (OSD) | [ _Node (OSD)

Compute Compute Compute

Node (OSD) Node (OSD)
Rep.
Compute pr| Compute

™ = “
|; < Existing System> . Mirroring

/10

<Replication Offloading>
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® Replication Offloading
using NVMe-oF

= Separate Fault Domain

< Computing Fault Domain > < Storage Fault Domain >
Root Root
Rack Primary Rack Main
active
— Host (/ ) L1 OSTO /
|_ OSDO / Mirrored
— Host Backyp — OST 1
{ (passive)
|— OsSD 7
Rack . Rack Mirrored
ad Backup |_ /
|— Host | (Passive) OST 2

o]
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® Replication Offloading
using NVMe-oF

« Computing Fault Domain

< CRUSH >
Input : Pool ID, Placement Group #

Output : A set of OSDs

{OSD 0, OSD 7, OSD 11} «

Primary (active)
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Host
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Backup (
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® Replication Offloading
using NVMe-oF

« Storage Fault Domain 0ST 0 (NVMeOF)
Root Volume 0
Rack Volume 1
< CRUSH > | [osTo Main Volume 2
Input : Primary OSD ID / —
Output : A set of OSTs Vol.OSDO
. OST 1 (NVMeOF)
L1 0ST 1 ] Mirrored Volume 0 =
Main / Volume 1 g
{OSTO.VOI'OSDO, Vol-OSDO0 Volume 2 g
OST1.Vol-0SDO, — = olume 3
OST2.VO|-OSDO} I_ _ OST 2 (NVMeOF)
OST 2 / Mirrored Volume 0
Vol-0SDO volume ?
. Volume 2
Volume 3
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® Replication Offloading
using NVMe-oF

« |/O Path
= {OSD 0, OSD 7, OSD 11} OST\ZS:;:A:OF)L
. {OST0.Vol-0SD0, OST1.Vol-OSD0, OST2.Vol-OSDO} voimer ||
[Root | Volume2 |
|  voumes |

OST 1 (NVMeOF)

- | Volume 0 |

OS? : | Volume 1 |
No replications | Volume 2 |

| Volume 3 |

T

by OSD
: OST 2 (NVMeOF)

Volume 0

""'s180 Aq suop st Bupouny

Volume 1 :
| Volume 2 |<I
| Volume 3 |
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® Replication Offloading
using NVMe-oF

« OSD (Computing) Failure
- {0Sb-0, 0SD 7, OSD 11} JOST\ZE;’Q”;OF)
= {OST0.Vol-OSD0, OST1.Vol-OSDO0, OST2.Vol-OSDO0} |

I
I

Volume 2

| Root |

H-
Volume 1 |
|

Volume 3 |

OST 1 (NVMeOF)

Volume 0

Volume 2

I |
| Volume 1 | i
I |
I |

Volume 3

T

"'s180 Aq suop s Buouny

OST 2(NVMeOF)

Volume 0

Volume 1 :
| Volume 2 |<I
| Volume 3 |
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® Replication Offloading

using NVMe-oF

OST (Storage) Failure
- {OSD 0, OSD 7, OSD 11}
- {OST0-Vel-0SDB0O, OST1.Vol-O0SD0, OST2.Vol-OSDO0}

| Root |
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OST 1 (NVMeOF)

Volume 0

Volume 1

Volume 2

Volume 3

OST 2 (NVMeOF)

Volume 0

Volume 1

Volume 2

Volume 3
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Conclusion

Reliable distributed storage systems face the challenge to fully
exploit NVMe performance

Excessive CPU usage is the main problem
It's time to rethink the conventional I/O SW stack

We propose a lightweight 1/O architecture for distributed storage
systems
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Upstream Status

= Efforts to make flash devices more attractive to the world

= Tiering / Global deduplication Improvement
= hitps://github.com/ceph/ceph/pull/29283 (Merged)
= https://github.com/ceph/ceph/pull/35899
= https://github.com/ceph/ceph/pull/34684
= https://github.com/ceph/ceph/pull/35112

= New Store Design
= https://github.com/ceph/ceph/pull/36343
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