

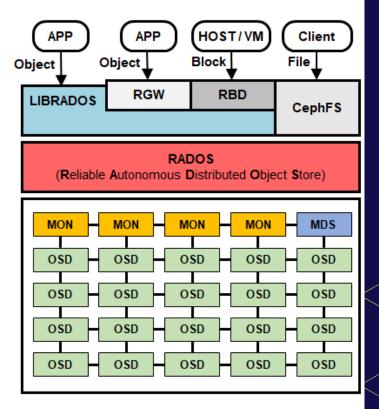
Storage Developer Conference September 22-23, 2020

Rethinking Distributed Storage System Architecture for Fast Storage Devices

Myoungwon Oh (<u>myoungwon.oh@samsung.com</u>) Samsung Electronics

AGENDA

20

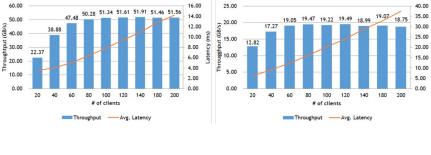

- Background and Motivation
- Proposed Design for Fast Storage Devices
 - Lightweight Data Store
 - Thread Control
 - Replication Offloading using NVMe-oF
- Summary

Background and Motivation

Ceph Architecture

- 3 in 1 Interfaces
 - Object (RGW): Amazon S3 & OpenStack Swift
 - Block (RBD): Amazon EBS
 - File (CephFS): Lustre & GlusterFS
- RADOS
 - Heart of Ceph
 - Favor consistency and correctness over perfor mance
 - Serve I/O request, Protect data, and Check the consistency and integrity of data

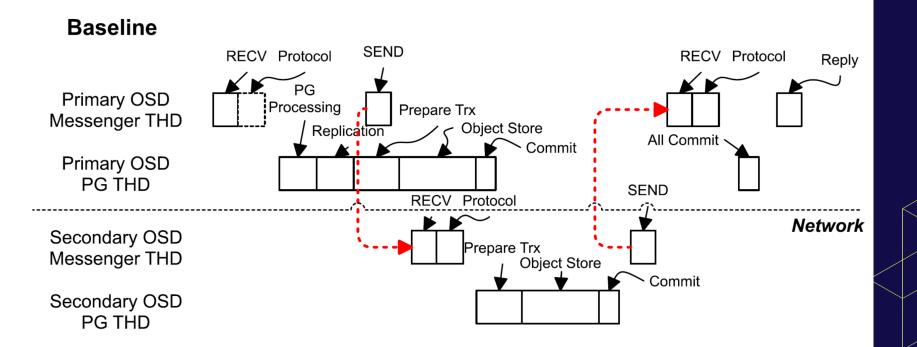
OSD: Serve I/O, Replication/EC, Rebalance, Cohering Data
 MON: Maintain a master copy of the cluster map and state
 MGR: Collect the statistics within the cluster
 MDS: Manage the metadata (only for CephFS)


Challenging Issue: Performance

128KB Seguential Read (W1, QD32)

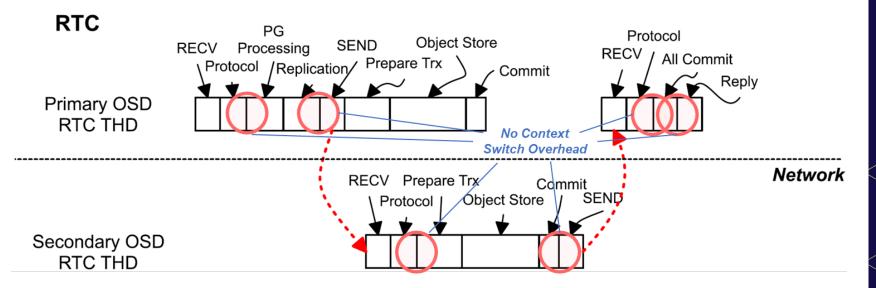
- Sequential I/O is good
 - Can fully saturate the network bandwidth

CPU can become a bottleneck


128KB Seguential Write (W1, OD32)

Reference: https://www.samsung.com/semiconductor/global.semi/file/resource/2020/05/redhat-ceph-whitepaper-0521.pdf

2020 Storage Developer Conference. © Samsung. All Rights Reserved.


The I/O path

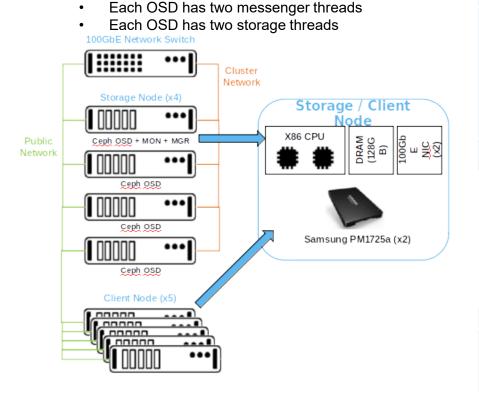
2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Experiment - RTC

- Write I/O Path in "<u>RTC</u>"
 - Run-to-completion model
 - Can eliminate the context switching overhead


2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Experiment - Null Test

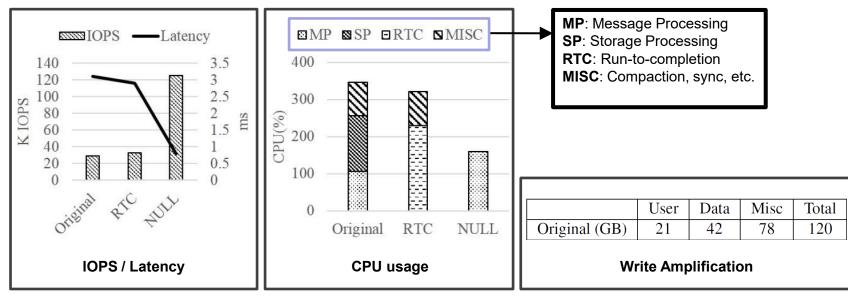

SD₂₀

- Write I/O Path in "<u>Null Test</u>"
 - Hypothetical maximum performance when only network stack overhead exists

Null Test

Experiment - Setup

Use limited resource to eliminate other interference factors


Ceph Configuration					
Ceph Version	15.02 (Octopus)				
Ceph Storage Type	RBD				
OSD Backend Stor- age	Bluestore				
# of OSD daemon	32				
OSDs per NVMe SSD	4				
Replication Factor	x2				
# of PG (Placement Group)	1024				
Storage Nodes (x4)					
Processor (x2)	Intel® Xeon® Gold 6152 CPU @ 2.10GHz (22-core 44-thread)				
DRAM (x8)	Samsung 16GB DDR4-2400 MT/s (128GB per node)				
NVMe SSD (x2)	Samsung PM1725a NVMe SSD, 1.6TB, 2.5 inch form factor				
NIC	Mellanox Connect X®-5 MCX516A-CCAT Dual-Port adapter (100GbE)				
Network devices					
Network Switch (x1)	Mellanox MSN2700-CS2F 1U Ethernet switch (100GbE)				
NIC	Mellanox Connect X®-5 MCX516A-CCAT Dual-Port adapter (100GbE)				

SD@

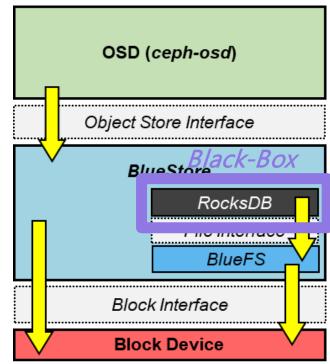
Experiment - Results

FIO 4KB Random Write – RBD

Use limited resource to eliminate other interference factors

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

Improvement Points

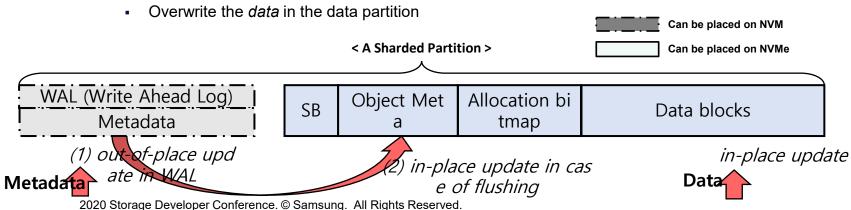

- High CPU Consumption of Object Store
 - Write Amplification / Data Partition / Log-structured Data Layout
- Inefficient Threading Architecture
 - Conventional thread pool design (network and storage) caused performance deg radation
 - Strong consistency service needs an ordering and persistency
- Lots of Works in a Server Node
 - Network I/O Dispatching, Replication I/O Handling, Fault and Meta Managing, .

Proposed Design

Key Ideas

- Hybrid Update (out-of-place & in-place) based Application-managed Store
 - to minimize CPU consumption of data store
- Locality-aware Prioritized Thread Control
 - to minimize the context switching overhead while prioritizing network processing
- Offload Replication Processing using NVMe-oF Techniques
 - to minimize CPU consumption

- Drawbacks of *BlueStore*
 - LSM-tree based store incurs high write amplification and CPU overhead due to the compaction process
 - Unnecessary data copy and serialization
 n/deserialization overhead
 - Parallelism (single partition)

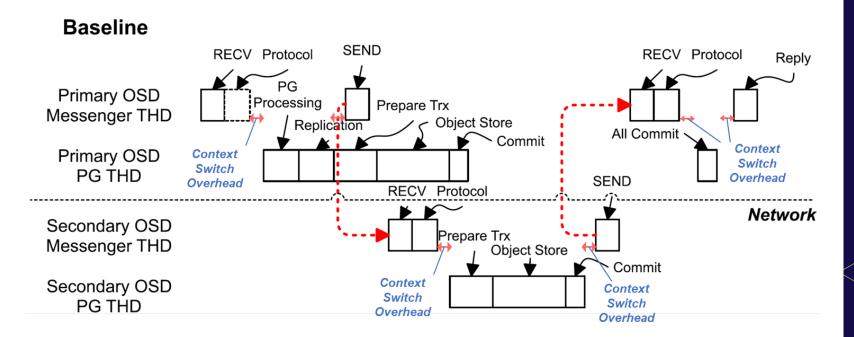

SD₂₀

20

- Overview
 - Target only high-end NVMe SSDs and NVM
 - Hybrid update strategies for different data types (in-place, out-of-place)
 - to minimize CPU consumption by reducing host-side GC
 - Utilize NVMe feature (atomic large write command)
 - Sharded data/processing model
 - Support transactions

SD(20

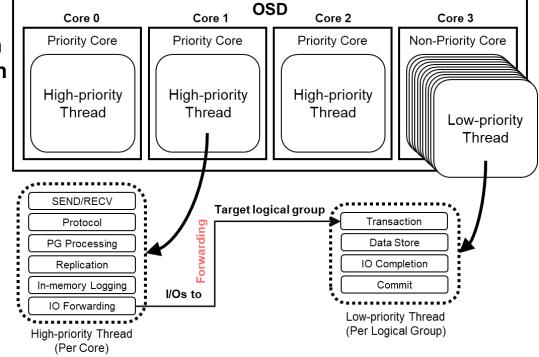
- Overview
 - WAL Partition
 - Log and frequently updated metadata are stored as a WAL entry in the WAL partition
 - Space within the WAL partition is continually reused in a circular manner
 - Flush the metadata if necessary
 - Write procedure for Metadata
 - Appended at the WAL first -> Overwrite the metadata in the data partition in case of flushing
 - Write procedure for Data

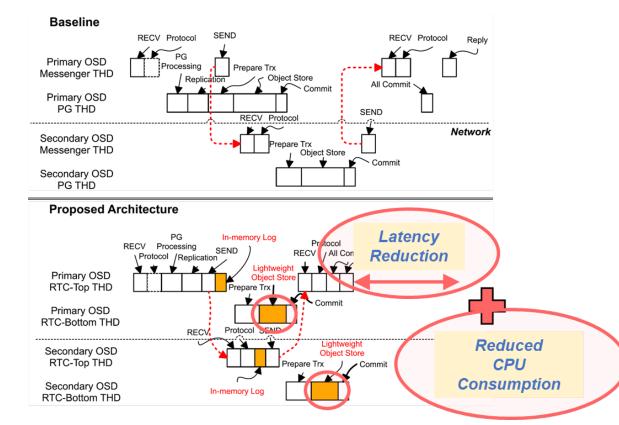

SD@

Overview

NVM	NVMe SSD				
Sharded Partition 1 Metadata	SB	Object Meta	Allocation bitmap	Data blocks	
Sharded Partition 2 Metadata	SB	Object Meta	Allocation bitmap	Data blocks	
		:			
Sharded Partition N Metadata	SB	Object Meta	Allocation bitmap	Data blocks	

20

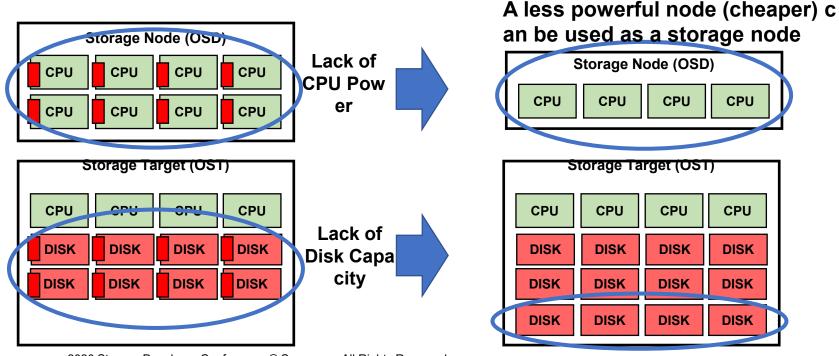

- Best case vs. Worst case
 - Best case (pre-allocation):
 - One write for WAL + One write for data
 - With pre-allocation, object meta and data bitmap aren't required to be updated
 - Worst case (flush happens):
 - One write for WAL + One write for object meta + One write for allocation bitmap
 + One writes for data
 - In either cases, it doesn't produce unpredictable severe write amp lification (constant rate) unlike LSM-tree DB
 - Frequent updated data can be placed in the NVM


Need an order !!!

2020 Storage Developer Conference. © Samsung. All Rights Reserved.

- High-priority thread
 - Network processing an d I/O forwarding (Laten cy critical job)
- Low-priority thread
 - Storage processing (B est-effort batch job)

SD@


2020 Storage Developer Conference. © Samsung. All Rights Reserved.

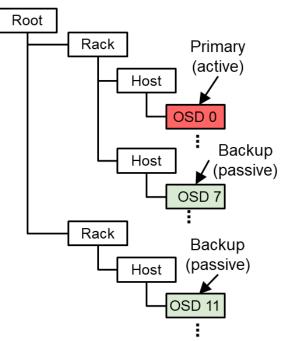
2020 Storage Developer Conference. © Samsung. All Rights Reserved.

SD@

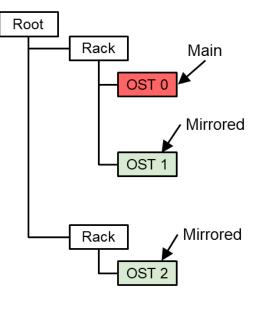
Storage Disaggregation with NVMe-oF

SD@

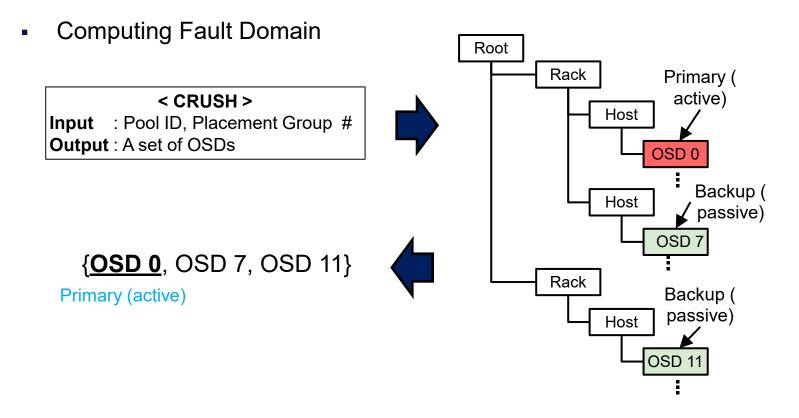
Idea

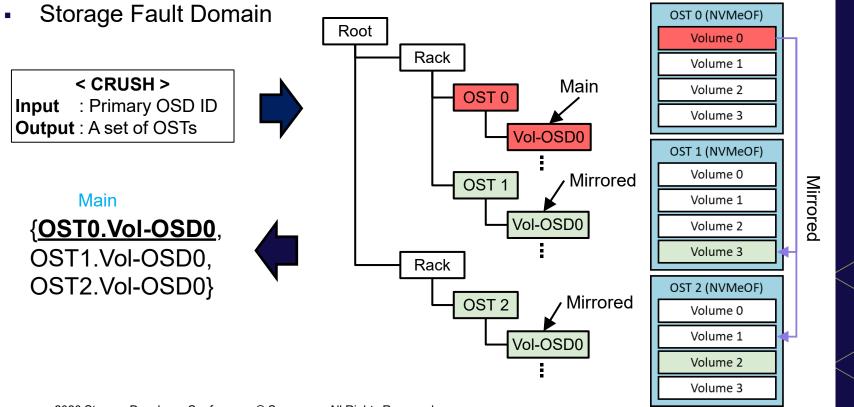

- Replication is offloaded to NVMe-oF based storage solution that support s mirroring
- OSD does not process replication but is aware of where data is mirrored

Storage node-side CPU usage is reduced without losing data redundancy

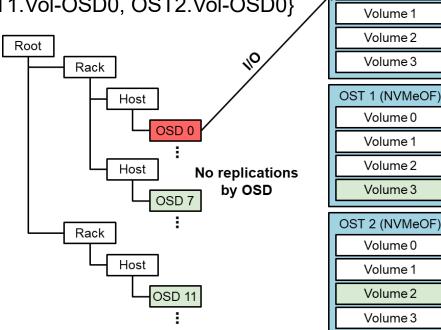


Separate Fault Domain




2020 Storage Developer Conference. © Samsung. All Rights Reserved.

SD @



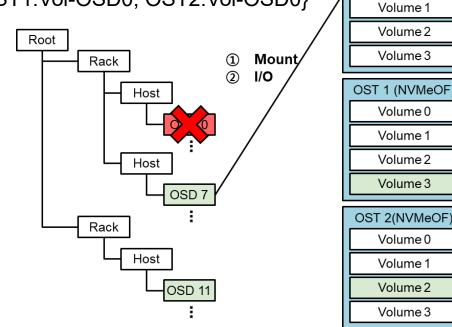
2020 Storage Developer Conference. © Samsung. All Rights Reserved.

SD@

- I/O Path
 - {<u>OSD 0</u>, OSD 7, OSD 11}
 - {<u>OST0.Vol-OSD0</u>, OST1.Vol-OSD0, OST2.Vol-OSD0}

OST 0 (NVMeOF)

Volume 0


Mirroring is

done by

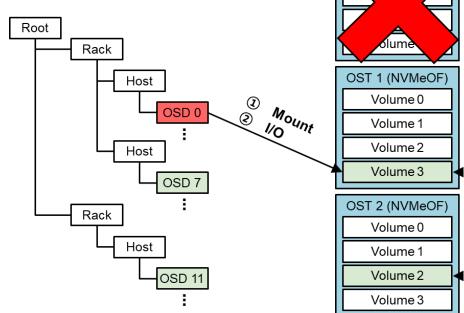
OSTs

SD@

- OSD (Computing) Failure
 - {OSD 0, <u>OSD 7</u>, OSD 11}
 - {<u>OST0.Vol-OSD0</u>, OST1.Vol-OSD0, OST2.Vol-OSD0}

SD@

OST 0 (NVMeOF)


Volume 0

Mirroring is

done by

OSTs

- OST (Storage) Failure
 - {<u>OSD 0</u>, OSD 7, OSD 11}
 - {OST0.Vol-OSD0, OST1.Vol-OSD0, OST2.Vol-OSD0}

(NVMe

Mirroring is

done by

OSTs

SD@

Conclusion

20

- Reliable distributed storage systems face the challenge to fully exploit NVMe performance
 - Excessive CPU usage is the main problem
- It's time to rethink the conventional I/O SW stack
- We propose a lightweight I/O architecture for distributed storage systems

Upstream Status

20

- Efforts to make flash devices more attractive to the world
 - Tiering / Global deduplication Improvement
 - https://github.com/ceph/ceph/pull/29283 (Merged)
 - https://github.com/ceph/ceph/pull/35899
 - https://github.com/ceph/ceph/pull/34684
 - https://github.com/ceph/ceph/pull/35112
 - New Store Design
 - https://github.com/ceph/ceph/pull/36343

