Next Generation Datacenters Require Composable Architecture Enablers and Programmable Intelligence

Jean-François MARIE
Chief Solution Architect
jfmarie@kalrayinc.com
Kalray at SDC20

Kalray is well represented this year at SDC with 4 sessions! Please have a look.

- **A NVMe-oF Storage Diode for Classified Data Storage**
 Jean-Baptiste Riaux, Sr Field Application Engineer

- **High-performance RoCE/TCP Solutions for End-to-end NVMe-oF Communication**
 Jean-François Marie, Chief Solution Architect

- **Next Generation Datacenters Require Composable Architecture Enablers and Programmable Intelligence**
 Jean-François Marie, Chief Solution Architect

- **Smart Storage Adapter for Composable Architectures**
 Rémy Gauguey, Sr Software Architect
Abstract
Abstract

For the past years flash drives have started to push performance boundaries. Storage OS based on x86 architectures even with more and more cores have a hard time to scale. Very few architectures can sustain the coming multi-million IOPS workloads expected from next generation Flash drives and memories. Only a multi-dimension scalable architecture can propose an alternative.

At the heart of it, parallel programming and ease of programming are requested. In this talk we will explain why it is important, what are the key components and how you could achieve such a performance. We will use Kalray’s Many Core processor and our SDK as an example to offload storage services such as NVMe-oF.
The Presenter
About the Presenter

Jean-François has more than 30 years of experience in the high tech industry. He started his career dealing with real time systems, before joining Sun Microsystems as a data center architect, then EMC² and finally NetApp in 2006, where he had various roles in a 13-year career. He held various roles, from Chief Technologist and Product Marketing Director for EMEA, to French Expert team manager to handle new technology introduction. He also managed global and regional accounts, alliances and partners.

Jean-François was also an active SNIA member for 10 years and French SNIA President for 2 years. He has a Masters degree in Electronics, specialized in micro-processor design and embedded systems.

On a personal note, he has been a Basket Ball player, a coach and head coach for 25 years.
I am delighted to run two sessions for this SDC20.

This one, and “High-performance RoCE/TCP solutions for end-to-end NVMe-oF communication.”

With the magic of running a virtual event those have been scheduled at the same time today.

See you on Slack!
Jean-François
Why Composable Architectures?
The Data Processing Unit revolution
In the Data-Centric Era

Scale-out Data Center & micro-services based applications

- Network traffic explosion
 East-West traffic, multi-tenant, overlays...
- Data Storage Capacity explosion
 Storage spread across servers / disaggregation
- Multi-tenant and security threat
 Cryptography everywhere (storage, network…)
- More and more complex data processing
 AI, analytics …

General purpose CPUs/OS’ inefficiencies

- ~25% of the servers power spent in data centric computation
 Storage stack, network stack, crypto…
- General Purpose CPUs inefficient for data centric computation
 But Single threaded user applications
The Data Processing Unit revolution
In the Data-Centric Era

Scale-out Data Center & micro-services based applications

- **Network traffic explosion**
 East-West traffic, multi-tenant, overlays...

- **Data Storage Capacity explosion**
 Storage spread across servers / disaggregation

- **Multi-tenant and security threat**
 Cryptography everywhere (storage, network…)

- **More and more complex data processing**
 AI, analytics …

General purpose CPUs/OS’ inefficiencies

- **~25% of the servers power** spent in data centric computation
 Storage stack, network stack, crypto…

- **General Purpose CPUs** inefficient for data centric computation
 But Single threaded user applications

Need for a new class of processing accelerator for these pre-dominant data-centric processing tasks!
Future Data Center Infrastructure challenges

The Route to Composable Infrastructure

1. HCI
 (Hyper Converged Infrastructure)
 - Reduce complexity and hardware sprawl
 - Reduce costs
 - Increase agility and scalability

2. Disaggregation
 - Larger and larger datasets generated by Containerized applications and VMs
 - Large diversity of application workloads

3. Composable
 - Any HW can be plugged into the system and expose new services to the others
Future Data Center Infrastructure challenges

The Route to Composable Infrastructure

1. HCI (Hyper Converged Infrastructure)
 - Reduce complexity and hardware sprawl
 - Reduce costs
 - Increase agility and scalability

2. Disaggregation
 - Larger and larger datasets generated by Containerized applications and VMs
 - Large diversity of application workloads

3. Composable
 - Any HW can be plugged into the system and expose new services to the others

HCI 2.0 architecture is a solution for HCI/Disaggregation …
Future Data Center Infrastructure challenges
The Route to Composable Infrastructure

1. HCI (Hyper Converged Infrastructure)
 - Reduce complexity and hardware sprawl
 - Reduce costs
 - Increase agility and scalability

2. Disaggregation
 - Larger and larger datasets generated by Containerized applications and VMs
 - Large diversity of application workloads

3. Composable
 - Any HW can be plugged into the system and expose new services to the others

HCI 2.0 architecture is a solution for HCI/Disaggregation …

... BUT
- Additional load on HCI cluster CPU by SW disaggregation
- Additional load on HCI cluster interconnect
- Storage Disaggregation is complex and expensive
- Clusters scalability limitation
 - HCI does not enable COMPOSABILITY

2020 Storage Developer Conference. © Kalray. All Rights Reserved.
Future Data Center Infrastructure challenges

The Route to Composable Infrastructure

1. **HCI**
 - Hyper Converged Infrastructure
 - Reduce complexity and hardware sprawl
 - Reduce costs
 - Increase agility and scalability

2. **Disaggregation**
 - Larger and larger datasets generated by Containerized applications and VMs
 - Large diversity of application workloads

3. **Composable**
 - Any HW can be plugged into the system and expose new services to the others

HCI 2.0 architecture is a solution for HCI/Disaggregation …

... BUT
- Additional load on HCI cluster CPU by SW disaggregation
- Additional load on HCI cluster interconnect
- Storage Disaggregation is complex and expensive
- Clusters scalability limitation
- HCI does not enable COMPOSABILITY

Need a new approach for a true COMPOSABLE infrastructure!
Composable Components
A new type of IO Processor
Coolidge™: The Ultimate I/O Processor
Why Coolidge is a Revolution vs Competition?

“xPU” Usual Approach

- A few power hungry RISC CPU cores
- CPU flexibility limited to control plane
- Data plane is “hardwired” – No new services / no possible evolution!

Kalray’s MPPA®3 Coolidge™

- 80 highly efficient VLIW independent CPU cores, gathered into 5 clusters, running at 1.2GHz, connected to high speed fabrics & high speed interfaces.

CONS

- A few power hungry RISC CPU cores
- CPU flexibility limited to control plane
- Data plane is “hardwired” – No new services / no possible evolution!

PROS

- Fully programmable
- Control Plane / Mgt Plane – Linux – 16 cores
- Data Plane - 64 cores

- Power efficiency: 25W Typ
- High Speed I/O: 2x100Gbs, PCIeGen4, DDR4
- Top Performance: Any workload – 200KDMIPS, 25TOPS
- Functional Isolation & Safety: Secure Islands, Encrypt/Decrypt, Secure Boot
MPPA® Coolidge™ Architecture
The I/O Processor for Next Gen Intelligent Systems

3rd Generation Kalray Core
- VLIW 64-bit core
- 6-issue VLIW architecture
- MMU + I&D cache (16KB+16KB)
- 16-bit/32-bit/64-bit IEEE 754-2008 FPU
- Vision/CNN Co-processor (TCA)

Cluster
Architecture
- 16 cores
- 1 safety/security dedicated core
- 600 to 1200 MHz

Memory
- L1 cache coherency (configurable)
- 4MB configurable memory (L2 cache)
- 256 bits / bandwidth up to 614GB/s

Multi Cluster Architecture
5 Clusters: 80 cores + 80 co-processors
- Load Balancer / Packet Parser
- 2x100Gbps Ethernet
- PCIGen4
- DDR4 - 3200

AXI Bus + NoC Bus
- L2 refill in DDR and direct access to DDR from clusters
- DMA-based highly efficient data connection
Data Centric Computation

MPPA®³ Coolidge™ is the perfect fit

<table>
<thead>
<tr>
<th>DATA CENTRIC WORKLOAD CHARACTERISTICS</th>
<th>DATA PROCESSING UNIT REQUIREMENTS</th>
<th>KALRAY’S MPPA®³ COOLIDGE™</th>
</tr>
</thead>
<tbody>
<tr>
<td>High parallelism</td>
<td>Manycore (MIMD) architecture</td>
<td>- 80 VLIW cores @ 1.2 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 Clusters x16 cores</td>
</tr>
<tr>
<td>Short temporal data locality</td>
<td>Large on chip memory (TCM)</td>
<td></td>
</tr>
<tr>
<td>Complex memory hierarchy L1/L2/L3 not well suited</td>
<td>- With large bandwidth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Simple and deterministic memory subsystem</td>
<td></td>
</tr>
<tr>
<td>I/O intensive</td>
<td>- Optimized interconnect</td>
<td></td>
</tr>
<tr>
<td>High IOPS and GB/s, low latency</td>
<td>- High bandwidth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Low latency</td>
<td></td>
</tr>
<tr>
<td>Computational intensive</td>
<td>- Floating Point Unit</td>
<td></td>
</tr>
<tr>
<td>Inline AI inference, analytics, crypto, erasure coding…</td>
<td>- AI acceleration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cryptographic acceleration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Erasure Coding acceleration</td>
<td></td>
</tr>
<tr>
<td>Variability and flexibility</td>
<td>- C / C++ programmable data plane</td>
<td></td>
</tr>
<tr>
<td>Programmability / flexibility (C, C++, standard APIs)</td>
<td>- Standard APIs</td>
<td></td>
</tr>
</tbody>
</table>
Data Centric Computation

MPPA®3 Coolidge™ is the perfect fit

<table>
<thead>
<tr>
<th>DATA CENTRIC WORKLOAD CHARACTERISTICS</th>
<th>DATA PROCESSING UNIT REQUIREMENTS</th>
<th>KALRAY’S MPPA®3 COOLIDGE™</th>
</tr>
</thead>
<tbody>
<tr>
<td>High parallelism</td>
<td>Manycore (MIMD) architecture</td>
<td>- 80 VLIW cores @ 1.2 GHz</td>
</tr>
<tr>
<td>Many stateless or stateful contexts:</td>
<td></td>
<td>- 5 Clusters x16 cores</td>
</tr>
<tr>
<td>TCP/IP, TLS, IPsec sessions, NVMe queues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short temporal data locality</td>
<td>Large on chip memory (TCM)</td>
<td>- 20 MB TCM</td>
</tr>
<tr>
<td>Complex memory hierarchy L1/L2/L3 not well suited</td>
<td>- With large bandwidth</td>
<td>- 5 isolated clusters with $L2$</td>
</tr>
<tr>
<td>I/O intensive</td>
<td>Optimized interconnect</td>
<td></td>
</tr>
<tr>
<td>High IOPS and GB/s, low latency</td>
<td>- High bandwidth</td>
<td></td>
</tr>
<tr>
<td>Computational intensive</td>
<td>Floating Point Unit</td>
<td></td>
</tr>
<tr>
<td>Inline AI inference, analytics, crypto, erasure coding…</td>
<td>- AI acceleration</td>
<td></td>
</tr>
<tr>
<td>Variability and flexibility</td>
<td>C / C++ programmable data plane</td>
<td></td>
</tr>
<tr>
<td>Programmability / flexibility (C, C++, standard APIs)</td>
<td>- Standard APIs</td>
<td></td>
</tr>
</tbody>
</table>
Data Centric Computation

MPPA®3 Coolidge™ is the perfect fit

<table>
<thead>
<tr>
<th>DATA CENTRIC WORKLOAD CHARACTERISTICS</th>
<th>DATA PROCESSING UNIT REQUIREMENTS</th>
<th>KALRAY’S MPPA®3 COOLIDGE™</th>
</tr>
</thead>
<tbody>
<tr>
<td>High parallelism</td>
<td>Manycore (MIMD) architecture</td>
<td>- 80 VLIW cores @ 1.2 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 Clusters x16 cores</td>
</tr>
<tr>
<td></td>
<td>Many stateless or stateful contexts: TCP/IP, TLS, IPsec sessions, NVMe queues</td>
<td></td>
</tr>
<tr>
<td>Short temporal data locality</td>
<td>Large on chip memory (TCM)</td>
<td>- 20 MB TCM</td>
</tr>
<tr>
<td>Complex memory hierarchy L1/L2/L3 not well suited</td>
<td>- With large bandwidth</td>
<td>- 5 isolated clusters with $L2$</td>
</tr>
<tr>
<td>I/O intensive</td>
<td>- Optimized interconnect</td>
<td>- High perf. NoC</td>
</tr>
<tr>
<td>High IOPS and GB/s, low latency</td>
<td>- High bandwidth, low latency & deterministic memory subsystem</td>
<td>- 2x100 Gbps Ethernet</td>
</tr>
<tr>
<td>Computational intensive</td>
<td>- Floating Point Unit</td>
<td>- PCIe x16 Gen4 (RC/EP)</td>
</tr>
<tr>
<td>Inline AI inference, analytics, crypto, erasure coding…</td>
<td>- AI acceleration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cryptographic acceleration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Erasure Coding acceleration</td>
<td></td>
</tr>
<tr>
<td>Variability and flexibility</td>
<td>- C / C++ programmable data plane</td>
<td></td>
</tr>
<tr>
<td>Programmability / flexibility (C, C++, standard APIs)</td>
<td>- Standard APIs</td>
<td></td>
</tr>
</tbody>
</table>
Data Centric Computation

MPPA®3 Coolidge™ is the perfect fit

<table>
<thead>
<tr>
<th>DATA CENTRIC WORKLOAD CHARACTERISTICS</th>
<th>DATA PROCESSING UNIT REQUIREMENTS</th>
<th>KALRAY’S MPPA®3 COOLIDGE™</th>
</tr>
</thead>
<tbody>
<tr>
<td>High parallelism</td>
<td>Manycore (MIMD) architecture</td>
<td>- 80 VLIW cores @ 1.2 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 Clusters x16 cores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>![Green Circle]</td>
</tr>
<tr>
<td>Short temporal data locality</td>
<td>Large on chip memory (TCM)</td>
<td>- 20 MB TCM</td>
</tr>
<tr>
<td>Complex memory hierarchy L1/L2/L3</td>
<td>- With large bandwidth</td>
<td>- 5 isolated clusters with $L2$</td>
</tr>
<tr>
<td>not well suited</td>
<td>- Simple and deterministic memory</td>
<td>![Green Circle]</td>
</tr>
<tr>
<td>memory subsystem</td>
<td>subsystem</td>
<td></td>
</tr>
<tr>
<td>I/O intensive</td>
<td>- Optimized interconnect</td>
<td>- High perf. NoC</td>
</tr>
<tr>
<td>High IOPS and GB/s, low latency</td>
<td>- High bandwidth</td>
<td>- 2x100 Gbps Ethernet</td>
</tr>
<tr>
<td></td>
<td>- Low latency</td>
<td>- PCIe x16 Gen4 (RC/EP)</td>
</tr>
<tr>
<td></td>
<td>- Deterministic on chip</td>
<td></td>
</tr>
<tr>
<td>Computational intensive</td>
<td>- Floating Point Unit</td>
<td>- Up to 1.15TFLOPs (SP)</td>
</tr>
<tr>
<td>Inline AI inference, analytics,</td>
<td>- AI acceleration</td>
<td>- Up to 4.2TFLOPS (half precision)</td>
</tr>
<tr>
<td>crypto, erasure coding…</td>
<td>- Cryptographic acceleration</td>
<td>- Up to 25 TOPs (8bits) for AI</td>
</tr>
<tr>
<td></td>
<td>- Erasure Coding acceleration</td>
<td>- 100Gbps+ Crypto acc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Line rate Reed Solomon</td>
</tr>
<tr>
<td>Variability and flexibility</td>
<td>- C / C++ programmable data plane</td>
<td></td>
</tr>
<tr>
<td>Programmability / flexibility (C,</td>
<td>- Standard APIs</td>
<td></td>
</tr>
<tr>
<td>C++, standard APIs)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Centric Computation

MPPA®3 Coolidge™ is the perfect fit

<table>
<thead>
<tr>
<th>DATA CENTRIC WORKLOAD CHARACTERISTICS</th>
<th>DATA PROCESSING UNIT REQUIREMENTS</th>
<th>KALRAY’S MPPA®3 COOLIDGE™</th>
</tr>
</thead>
<tbody>
<tr>
<td>High parallelism</td>
<td>Manycore (MIMD) architecture</td>
<td>- 80 VLIW cores @ 1.2 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 Clusters x16 cores</td>
</tr>
<tr>
<td>Short temporal data locality</td>
<td>Large on chip memory (TCM)</td>
<td>- 20 MB TCM</td>
</tr>
<tr>
<td>Complex memory hierarchy L1/L2/L3 not well suited</td>
<td>- With large bandwidth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 isolated clusters with $L2$</td>
</tr>
<tr>
<td>I/O intensive</td>
<td>Optimized interconnect</td>
<td>- High perf. NoC</td>
</tr>
<tr>
<td>High IOPS and GB/s, low latency</td>
<td>- High bandwidth</td>
<td>- 2x100 Gbps Ethernet</td>
</tr>
<tr>
<td></td>
<td>- Deterministic memory subsystem</td>
<td>- PCIe x16 Gen4 (RC/EP)</td>
</tr>
<tr>
<td>Computational intensive</td>
<td>Floating Point Unit</td>
<td>- Up to 1.15TFLOPs (SP)</td>
</tr>
<tr>
<td>Inline AI inference, analytics, crypto, erasure coding…</td>
<td>- AI acceleration</td>
<td>- Up to 4.2TFLOPS (half precision)</td>
</tr>
<tr>
<td></td>
<td>- Cryptographic acceleration</td>
<td>- Up to 25 TOPs (8bits) for AI</td>
</tr>
<tr>
<td></td>
<td>- Erasure Coding acceleration</td>
<td>- 100Gbps+ Crypto acc.</td>
</tr>
<tr>
<td>Variability and flexibility</td>
<td>C / C++ programmable data plane</td>
<td>- Linux, OpenDataPlane</td>
</tr>
<tr>
<td>Programmability / flexibility (C, C++, standard APIs)</td>
<td>- Standard APIs</td>
<td>- SPDK BDEVs, NVMe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- OpenCL</td>
</tr>
</tbody>
</table>

- Optimized interconnect
- High bandwidth, low latency & deterministic on chip
- High speed interfaces

- Floating Point Unit
- AI acceleration
- Cryptographic acceleration
- Erasure Coding acceleration

- Up to 100 Gbps Crypto acc.
- Line rate Reed Solomon
Smart IO Adapter
Kalray Smart Storage Adapter

AccessCore™ Storage framework on MPPA® to deliver Data Services

Standard NVMe-oF TCP & RoCE

Management through GbE

Storage cluster interconnect

Ease of integration on a x86 node via SR-IOV NVMe Emulation

Drives access through PCIe (RC or P2P)
Kalray Smart Storage Adapter Solution

K200/ K200-LP & ACS SDK

K200 & K200-LP

manufactured by wistron

- **2 Form Factors**
 - FHHL (Full Height) - K200 - Single Slot
 - HHHL (Low Profile) - K200-LP
 - Single or Double Slots

- **Manycore Architecture**
 - 80 VLIW cores @ 1.2 Ghz
 - 5 Clusters x16 cores

- **High Speed Ethernet**
 - 2x100GbE / 8x25 GbE

- **Certified NVMe-of Stack**
 - NVMe-of 1.1 (Target, Initiator)
 - RoCE v1/v2, TCP

- **Advanced SSD interface**
 - PCIe-Gen4
 - NVMe 1.1 to 1.4 SSDs
 - No need for CMB
 - Dual port SSD support

2 Modes

- **Stand-alone**
- **Host CPU co-processor**
 / "host-agnostic" support

Agnostic Host Support

- NVMe Driver

DDR-3200

- 8GB to 32GB

H/W Accelerators

- Encryption / Decryption
- Hashing (SHA-256, SHA-3)
- Erasure Coding

Low Power

- 35W (single slot)
- 65W (double slot)

Key figures (per card)

- Random R/W RoCE: 4-6 MIOPS
- Random R/W TCP: 2-4 MIOPS
- Sequential R/W (RoCE&TCP): 25GB/s
- Latency (RoCE/TCP): 10 /30 usec

Open Software Environment

- Linux / SPDK Control Plane (16 Cores)
- Fully Programmable Data Plane (64 Cores)
- Storage, Network and Compute Services
 (AI,DSP,NVMe,NVMe-of,ROCE,TCP, RAID, de-dup, ...)

Agnostic Host Support

- NVMe Driver

AccessCore®

Open Software & Tools

- **Extra compute available**
 - @ 3MIOPS, 50% cores available!
 - Storage Services (RAID, de-dedup ...)
 - AI
 - Analytics ...

2020 Storage Developer Conference. © Kalray. All Rights Reserved.
An Opened Storage Stack
AccessCore® for Storage & Networking
ACS4.x architecture highlights

PROGRAMMABILITY
- Full programmability on data, control & management planes
 - Control & Management plane: Linux (typical: 1 Cluster - 16 cores)
 - Data plane: Cluster OS (light POSIX OS) (typical: 1 to 4 Clusters – 16 to 64 cores)

EFFICIENCY
- Run to completion full dataplane
 - From network functions to NVMe stack on light OS cores
- True inline processing
 - No need for x86 pre/post processing

STANDARDIZED
- Hardware interfaces
 - NVMe emulation
- Software APIs & tool chain
 - Linux APIs: SPDK, virtio, ibverbs ...
 - Data plane APIs: sockets, SPDK nvme lib, SPDK BDEV, ODP
 - Libraries: ISA-L, Buildroot, binutils
AccessCore®
A fully flexible software environment

Data Plane Cores: 64 Cores
Control Plane Cores: 16 Cores

Linux on control plane cluster (16 cores)
ClusterOS on 4 data plane clusters (64 cores)
AccessCore®
A fully flexible software environment

- A complete & modular software framework
- Based on an optimized SPDK for both data plane **AND** control plane
- Open to partners
Offloads
AccessCore®
NVMe-oF offloading

Data Plane Applications (NVMe-oF Target / Initiator)

Networking Stack(s)
H/W acceleration drivers

OpenDataPlane

Ethernet
PCle EP

Cluster OS (light OS)

Control Plane Cores: 16 Cores

SHMEM / Network on Chip

3rd party optimized network stack (TCP/IP, RoCE)

OpenDataPlane

• Full network termination

Legend
Kalray Drivers & Firmware
Kalray Frameworks
3rd party Stack
Custom / Appli Code

Ethernet 2x100GbE

2020 Storage Developer Conference. © Kalray. All Rights Reserved.
AccessCore®

Other offloads

- Intel ISA-L compatible library
- Kalray (patent pending) optimized code based specific Bit Matrix Multiplication instructions

<table>
<thead>
<tr>
<th>RS configuration</th>
<th>Single core perf.</th>
<th>Single Cluster perf. (limited to 16GB/s cluster bw)</th>
<th>MPPA Perf. (limited by I/Os)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS(10,8)</td>
<td>1.599 GB/s</td>
<td>16 GB/s</td>
<td>1.5 clusters</td>
</tr>
<tr>
<td>RS(9,6)</td>
<td>1.285 GB/s</td>
<td>16 GB/s</td>
<td>1.5 clusters</td>
</tr>
<tr>
<td>RS(14,10)</td>
<td>0.882 GB/s</td>
<td>14 GB/s</td>
<td>1.5 clusters</td>
</tr>
<tr>
<td>RS(12,8)</td>
<td>0.952 GB/s</td>
<td>15 GB/s</td>
<td>1.5 clusters</td>
</tr>
<tr>
<td>RS(20,17)</td>
<td>0.965 GB/s</td>
<td>15 GB/s</td>
<td>1.5 clusters</td>
</tr>
</tbody>
</table>

- Inline or look-aside object/block hashing acceleration

<table>
<thead>
<tr>
<th>Hash core</th>
<th>Perf GBps</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA-1</td>
<td>15,1680</td>
</tr>
<tr>
<td>SHA-2 (224/256)</td>
<td>9,4560</td>
</tr>
<tr>
<td>SHA-2 (384/512)</td>
<td>15,1680</td>
</tr>
<tr>
<td>SHA-3 (224/256/384/512)</td>
<td>18,9600</td>
</tr>
<tr>
<td>MD5</td>
<td>9,4560</td>
</tr>
</tbody>
</table>
In Summary
Toward a true & efficient composable disaggregated Infrastructure

HIGHER PERFORMANCE
- Leverage Kalray cards performance and exploit full NVMe SSD capabilities
- Offload x86 from heavy storage stacks
- Optimize HCI nodes efficiency

LOWER COST
- Switch to a true Composable Disaggregated Infrastructure with commodity components

FULLY FLEXIBLE
- Fully programmable data plane
- Data Plane additional storage services based on SPDK framework (EC, caching...)

FUTURE PROOF
- Leverage standard NVMe-oF protocols
- Compliant with other NVMe-oF appliances
- Ease of in-the-field update
Please take a moment to rate this session.

Your feedback matters to us.