

Storage Developer Conference September 22-23, 2020

Next Generation Datacenters Require Composable Architecture Enablers and Programmable Intelligence

Jean-François MARIE Chief Solution Architect

jfmarie@kalrayinc.com

Kalray at SDC20

Kalray is well represented this year at SDC with 4 sessions! Please have a look.

- A NVMe-oF Storage Diode for Classified Data Storage Jean-Baptiste Riaux, Sr Field Application Engineer
- High-performance RoCE/TCP Solutions for End-to-end NVMe-oF Communication Jean-François Marie, Chief Solution Architect
- Next Generation Datacenters Require Composable Architecture Enablers and Programmable Intelligence Jean-François Marie, Chief Solution Architect
- Smart Storage Adapter for Composable Architectures Rémy Gauguey, Sr Software Architect

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

Abstract

For the past years flash drives have started to push performance boundaries. Storage OS based on x86 architectures even with more and more cores have a hard time to scale. Very few architectures can sustain the coming multi-million IOPS workloads expected from next generation Flash drives and memories. Only a multi-dimension scalable architecture can propose an alternative.

At the heart of it, parallel programming and ease of programming are requested. In this talk we will explain why it is important, what are the key components and how you could achieve such a performance. We will use Kalray's Many Core processor and our SDK as an example to offload storage services such as NVMe-oF.

The Presenter

About the Presenter

Jean-François has more than 30 years of experience in the high tech industry. He started his career dealing with real time systems, before joining Sun Microsystems as a data center architect, then EMC² and finally NetApp in 2006, where he had various roles in a 13-year career. He held various roles, from Chief Technologist and Product Marketing Director for EMEA, to French Expert team manager to handle new technology introduction. He also managed global and regional accounts, alliances and partners.

Jean-François was also an active SNIA member for 10 years and French SNIA President for 2 years. He has a Masters degree in Electronics, specialized in microprocessor design and embedded systems. On a personal note, he has been a Basket Ball player, a coach and head coach for 25 years.

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

Ubiquity Exists

I am delighted to run two sessions for this SDC20.

This one, and "High-performance RoCE/TCP solutions for end-to-end" NVMe-oF communication."

With the magic of running a virtual event those have been scheduled at the same time today.

See you on Slack! Jean-François

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

Why Composable Architectures?

The Data Processing Unit revolution In the Data-Centric Era

Scale-out Data Center & micro-services based applications

Network traffic explosion

East-West traffic, multi-tenant, overlays...

Data Storage Capacity explosion

Storage spread across servers / disaggregation

Multi-tenant and **security** threat Cryptography everywhere (storage, network...)

 $\overline{()}$

More and more **complex** data processing Al, analytics

computation Storage stack, network stack, crypto...

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

General purpose CPUs/OS' inefficiencies

~25% of the servers **power** spent in data centric

General Purpose CPUs inefficient for data centric computation

But Single threaded user applications

The Data Processing Unit revolution In the Data-Centric Era

Scale-out Data Center & micro-services based applications

Network traffic explosion

East-West traffic, multi-tenant, overlays...

Data Storage Capacity explosion

Storage spread across servers / disaggregation

Multi-tenant and **security** threat Cryptography everywhere (storage, network...)

 $\overline{(}$

More and more **complex** data processing Al, analytics

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

~25% of the servers **power** spent in data centric

Storage stack, network stack, crypto...

General Purpose CPUs inefficient for data centric computation But Single threaded user applications

(Hyper Converged Infrastructure)

- Reduce complexity and hardware sprawl
- Reduce costs
- Increase agility and scalability

2 Disaggregation

- Larger and larger datasets generated by Containerized applications and VMs
- Large diversity of application workloads

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

3 Composable

• Any HW can be plugged into the system and expose new services to the others

HCI 2.0 architecture is a solution for HCI/Disaggregation ...

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

3 Composable

• Any HW can be plugged into the system and expose new services to the others

2 Disaggregation Composable 3 (Hyper Converged Infrastructure) • Reduce complexity and hardware sprawl • Any HW can be plugged into the system • Larger and larger datasets generated by and expose new services to the others Containerized applications and VMs • Reduce costs • Increase agility and scalability • Large diversity of application workloads

HCI 2.0 architecture is a solution for HCI/Disaggregation ...

- Additional load on HCI cluster CPU by SW disaggregation
- Additional load on HCI cluster interconnect
- Storage Disaggregation is complex and expensive
- Clusters scalability limitation
- HCI does not enable COMPOSABILITY

2 Disaggregation (Hyper Converged Infrastructure) • Reduce complexity and hardware sprawl • Larger and larger datasets generated by Containerized applications and VMs • Reduce costs • Increase agility and scalability • Large diversity of application workloads

HCI 2.0 architecture is a solution for HCI/Disaggregation ...

- Additional load on HCI cluster CPU by SW disaggregation
- Additional load on HCI cluster interconnect
- Storage Disaggregation is complex and expensive
- Clusters scalability limitation
- HCI does not enable COMPOSABILITY

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

Composable 3

• Any HW can be plugged into the system and expose new services to the others

Composable Components

A new type of IO Processor

Coolidge™: The Ultimate I/O Processor Why Coolidge is a Revolution vs Competition ?

"xPU" Usual Approach

Data Plane	CPU	CPU	CPU	CPU
	core	core	core	core
Control Plane	CPU	CPU	CPU	CPU
	core	core	core	core

- A few power hungry RISC CPU cores CONS
 - CPU flexibility limited to control plane
 - Data plane is "hardwired" No new services / no possible evolution!

PROS

Kalray's MPPA®3 Coolidge™

80 highly efficient VLIW independent **CPU** cores, gathered into 5 clusters, running at **1.2Ghz**, connected to high speed fabrics & high speed interfaces.

</> </> Fully programmable

Control Plane / Mgt Plane – Linux – 16 cores Data Plane - 64 cores

Top Performance Any workload 200KDMIPs, 25TOPS

Functional Isolation & Safety

Secure Islands, Encrypt/Decrypt, Secure Boot

MPPA[®] Coolidge [™] Architecture The I/O Processor for Next Gen Intelligent Systems

3RD GENERATION KALRAY CORE

- •VLIW 64-bit core
- •6-issue VLIW architecture
- •MMU + I&D cache (16KB+16KB)
- •16-bit/32-bit/64-bit IEEE 754-2008 FPU
- •Vision/CNN Co-processor (TCA)

CLUSTER

Architecture

- 16 cores
- 1 safety/security dedicated core
- 600 to 1200 MHz

Memory

- L1 cache coherency (configurable)
- 4MB configurable memory (L2 cache)
- 256 bits / bandwidth up to 614GB/s)

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

MULTI CLUSTER ARCHITECTURE

5 Clusters: 80 cores + 80 co-processors

- •Load Balancer / Packet Parser
- •2x100Gbps Ethernet
- •PCIGen4
- •DDR4 3200

AXI Bus + NoC Bus

- •L2 refill in DDR and direct access to DDR from clusters
- •DMA-based highly efficient data connection

Data Centric Computation MPPA[®]3 Coolidge[™] is the perfect fit

DATA CENTRIC WORKLOAD CHARACTERISTICS	DATA PROCESSING UNIT REQUIREMENTS
High parallelism Many stateless or stateful contexts : TCP/IP, TLS, IPsec sessions , NVMe queues	Manycore (MIMD) architecture
Short temporal data locality Complex memory hierarchy L1/L2/L3 not well suited	Large on chip memory (TCM) - With large bandwidth - Simple and deterministic memory subsystem
I/O intensive High IOPS and GB/s, low latency	 Optimized interconnect High bandwidth, low latency & deterministic on chip High speed interfaces
Computational intensive Inline AI inference, analytics, crypto, erasure coding	 Floating Point Unit Al acceleration Cryptographic acceleration Erasure Coding acceleration
Variability and flexibility Programmability / flexibility (C, C++, standard APIs)	- C / C++ programmable data plane - Standard APIs

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

KALRAY'S MPPA®3 COOLIDGE™

- 5 Clusters x16 cores

C KALRAY

FORGA 1156V

MANYCOR

DATA CENTRIC WORKLOAD CHARACTERISTICS	DATA PROCESSING UNIT REQUIREMENTS
High parallelism Many stateless or stateful contexts : TCP/IP, TLS, IPsec sessions , NVMe queues	Manycore (MIMD) architecture
Short temporal data locality Complex memory hierarchy L1/L2/L3 not well suited	Large on chip memory (TCM) - With large bandwidth - Simple and deterministic memory subsystem
I/O intensive High IOPS and GB/s, low latency	 Optimized interconnect High bandwidth, low latency & deterministic on chip High speed interfaces
Computational intensive Inline AI inference, analytics, crypto, erasure coding	 Floating Point Unit Al acceleration Cryptographic acceleration Erasure Coding acceleration
Variability and flexibility Programmability / flexibility (C, C++, standard APIs)	- C / C++ programmable data plane - Standard APIs

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

KALRAY'S MPPA®3 COOLIDGE™

- 80 VLIW cores @ 1.2 GHz
- 5 Clusters x16 cores
- 20 MBTCM
- 5 isolated clusters with \$L2

C KALRAY

MANYCOR

DATA CENTRIC WORKLOAD CHARACTERISTICS	DATA PROCESSING UNIT REQUIREMENTS
High parallelism Many stateless or stateful contexts : TCP/IP, TLS, IPsec sessions , NVMe queues	Manycore (MIMD) architecture
Short temporal data locality Complex memory hierarchy L1/L2/L3 not well suited	Large on chip memory (TCM) - With large bandwidth - Simple and deterministic memory subsystem
I/O intensive High IOPS and GB/s, low latency	 Optimized interconnect High bandwidth, low latency & deterministic on chip High speed interfaces
Computational intensive Inline AI inference, analytics, crypto, erasure coding	 Floating Point Unit Al acceleration Cryptographic acceleration Erasure Coding acceleration
Variability and flexibility Programmability / flexibility (C, C++, standard APIs)	- C / C++ programmable data plane - Standard APIs

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

KALRAY'S MPPA®3 COOLIDGE™

- 5 Clusters x16 cores
- 20 MBTCM
- 5 isolated clusters with \$L2
- High perf. NoC
- 2x100 Gbps Ethernet
- PCle x16 Gen4 (RC/EP)

C KALRAY

MPPA

DATA CENTRIC WORKLOAD CHARACTERISTICS	DATA PROCESSING UNIT REQUIREMENTS
High parallelism Many stateless or stateful contexts : TCP/IP, TLS, IPsec sessions , NVMe queues	Manycore (MIMD) architecture
Short temporal data locality Complex memory hierarchy L1/L2/L3 not well suited	Large on chip memory (TCM) - With large bandwidth - Simple and deterministic memory subsystem
I/O intensive High IOPS and GB/s, low latency	 Optimized interconnect High bandwidth, low latency & deterministic on chip High speed interfaces
Computational intensive Inline AI inference, analytics, crypto, erasure coding	 Floating Point Unit Al acceleration Cryptographic acceleration Erasure Coding acceleration
Variability and flexibility Programmability / flexibility (C, C++, standard APIs)	- C / C++ programmable data plane - Standard APIs

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

KALRAY'S MPPA®3 COOLIDGE™

- 80 VLIW cores @ 1.2 GHz
- 5 Clusters x16 cores
- 20 MBTCM
- 5 isolated clusters with \$L2
- High perf. NoC
- 2x100 Gbps Ethernet
- PCle x16 Gen4 (RC/EP)
- Up to 1.15TFLOPs (SP)
- Up to 4.2TFLOPS (half precision)
- Up to 25 TOPs (8bits) for AI
- 100Gbps+ Crypto acc.
- Line rate Reed Solomon

C KALRAY

MANYCOR

DATA CENTRIC WORKLOAD CHARACTERISTICS	DATA PROCESSING UNIT REQUIREMENTS
High parallelism Many stateless or stateful contexts : TCP/IP, TLS, IPsec sessions , NVMe queues	Manycore (MIMD) architecture
Short temporal data locality Complex memory hierarchy L1/L2/L3 not well suited	Large on chip memory (TCM) - With large bandwidth - Simple and deterministic memory subsystem
I/O intensive High IOPS and GB/s, low latency	 Optimized interconnect High bandwidth, low latency & deterministic on chip High speed interfaces
Computational intensive Inline AI inference, analytics, crypto, erasure coding	 Floating Point Unit AI acceleration Cryptographic acceleration Erasure Coding acceleration
Variability and flexibility Programmability / flexibility (C, C++, standard APIs)	- C / C++ programmable data plane - Standard APIs

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

KALRAY'S MPPA®3 COOLIDGE™

- 80 VLIW cores @ 1.2 GHz
- 5 Clusters x16 cores
- 20 MBTCM- 5 isolated clusters with \$L2
- High perf. NoC
- 2x100 Gbps Ethernet
- PCle x16 Gen4 (RC/EP)
- Up to 1.15TFLOPs (SP)
- Up to 4.2TFLOPS (half precision)
- Up to 25 TOPs (8bits) for AI
- 100Gbps+ Crypto acc.
- Line rate Reed Solomon
- Linux, OpenDataPlane
- SPDK BDEVs, NVMe
- OpenCL

C KALRAY

MANYCOR

Kalray Smart Storage Adapter

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

K200/ K200-LP & ACS SDK

K200 & K200-LP

manufactured by wistron

2 Form Factors

- FHHL (Full Height) K200 Single Slot
- HHHL (Low Profile) K200-LP Single or Double Slots

Manycore Architecture

- 80 VLIW cores @ 1.2 Ghz
- 5 Clusters x16 cores

High Speed Ethernet

- 2x100GbE / 8x25 GbE

Certified NVMe-oF Stack

- NVMe-oF 1.1 (Target, Intiator)
- RoCE v1/v2, TCP

Advanced SSD interface

- PCIe-Gen4
- NVMe 1.1 to 1.4 SSDs No need for CMB
- Dual port SSD support

2 Modes

- Stand-alone
- Host CPU co-processor
- / "host-agnostic" support

Agnostic Host Support

- NVMe Driver

DDR-3200

- 8GB to 32GB

H/W Accelerators

- Encryption / Decryption
- Hashing (SHA-256, SHA-3)
- Erasure Coding

Low Power

- 35W (single slot)
- 65W (double slot)

K200 Smart Adapter

Key figures (per card)

- -Random R/W RoCE: 4-6 MIOPS
- Random R/W TCP: 2-4 MIOPS
- Sequential R/W (RoCE&TCP):25GB/s
- -Latency (RoCE/TCP): 10 /30 usec

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

AccessCore® Open Software & Tools

Open Software Environment

- Linux / SPDK Control Plane (16 Cores)
- Fully Programmable Data Plane (64 Cores)
- Storage, Network and Compute Services (AI,DSP,NVMe,NVMe-oF,ROCE,TCP, RAID, de-dup,..)

Agnostic Host Support

- NVMe Driver

+ Extra compute available

- @ 3MIOPS, 50% cores available !
- Storage Services (RAID, de-dedup ...)
- Al
- Analytics ...

An Opened Storage Stack

AccessCore[®] for Storage & Networking ACS4.x architecture highlights

AccessCore® Open Software & Tools

PROGRAMMABILITY

- Full programmability on data, control & management planes
 - Control & Management plane : Linux (typical : 1 Cluster - 16 cores)
 - Data plane : Cluster OS (light POSIX OS) (typical: 1 to 4 Clusters – 16 to 64 cores)

- Run to completion full dataplane
 - From network functions to NVMe stack on light OS cores
- True inline processing
 - No need for x86 pre/post processing

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

STANDARDIZED

- Hardware interfaces
 - NVMe emulation
- Software APIs & tool chain
 - Linux APIs: SPDK, virtio, ibverbs ...
 - Data plane APIs: sockets, SPDK nvme lib, SPDK BDEV, ODP
 - Librairies : ISA-L, Buildroot, binutils

AccessCore[®] A fully flexible software environment

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

Linux on control plane cluster (16 cores)

ClusterOS on 4 data plane clusters (64 cores)

AccessCore[®] A fully flexible software environment

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

- Based on an optimized SPDK for both data plane **AND** control plane
- Open to partners

AccessCore® **NVMe-oF** offloading

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

3rd party optimized network stack (TCP/IP, RoCE)

OpenDataPlane

AccessCore[®] **Other offloads**

- Intel ISA-L compatible library ullet
- Kalray (patent pending) optimized code based specific Bit Matrix ullet**Multiplication instructions**

RS configuration	Single core perf.	Single Cluster perf. (limited to 16GB/s cluster <u>bw</u>)	MPPA Perf. (limited by I/Os)
RS(10,8)	1,599 GB/s	16 GB/s	1,5 clusters
RS(9,6)	1,285 GB/s	16 GB/s	1,5 clusters
RS(14,10)	0,882 GB/s	14 GB/s	1,5 clusters
RS(12,8)	0,952 GB/s	15 GB/s	1,5 clusters
RS(20,17)	0,965 GB/s	15 GB/s	1,5 clusters

Inline or look-aside object/block hashing ulletacceleration

Hash core	Perf GBps
SHA-1	15,1680
SHA-2 (224/256)	9, 4560
SHA-2 (384/512)	15, 1680
SHA-3 (224/256/384/512)	18, 9600
MD5	9, 4560

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

In Summary

Toward a true & efficient composable disaggregated Infrastructure

HIGHER PERFORMANCE

- Leverage Kalray cards performance and exploit full NVMe SSD capabilities
- Offload x86 from heavy storage stacks
- Switch to a true **C**omposable Disaggregated Infrastructure with commodity components

LOWER

COST

• Optimize HCI nodes efficiency

FULLY **FLEXIBLE**

- Fully programmable data plane
- Data Plane additional storage services based on SPDK framework (EC, caching...)

2020 Storage Developer Conference. © Kalray. All Rights Reserved.

FUTURE PROOF

- Leverage standard NVMe-oF protocols
- Compliant with other NVMe-oF appliances
- Ease of in-the-field update

Please take a moment to rate this session.

Your feedback matters to us.

