

Storage Developer Conference September 22-23, 2020

Encrypted FC at Wirespeed

Hannes Reinecke, SUSE Nishant Lodha, Marvell

Encrypted FC at Wirespeed

SD₂₀

- Industry trends driving data protection and security
- Potential Data Center Security Threats
- Data Security vs. Protection
- Implementing FC Encryption
- Marvell-SUSE Collaboration
- Next Steps

Drivers for Storage security

Security and Privacy Sensitive Verticals

SD₂₀

Isn't FC Secure Already?

Trusted Storage Interconnect for Decades

Physical Security	 Data Centers are physically secured 	
Segregation	Fibre Channel SANs are segregated networks	
Partitioning	FC Zoning ensures fabric partitioning	
Masking	LUN masking restricts access to specific LUNs	
	 Out-of-Band Management (IP) is secure, OS Controls 	

SD_@

Yes, But...

SD@

- New Data Center Architectures bring new threats
 - Distributed data centers Remote replication and DR backups may be accessed by different users over Fabrics that span several sites
 - Multi Tenant data centers Need to segregate and protect data traversing the same wire
- Increasing scale of FC SANs
 - Networks can be misconfigured
 - Fabric configuration databases are shared (not restricted to zones), have WKAs
- Existing mechanisms may not be enough
 - Switches are the sole entity that grant/deny access

Authorization based

- "Segmentation" tools being used to implement "Security"
 - Soft zoning, LUN Masking

Data Protection vs. Security

• There is often confusion between storage/data security and protection.

- **Data security** refers specifically to measures taken to protect the integrity of the data itself.
- **Data security** primarily involves keeping private information out of the hands of anyone not authorized to see or modify it.
 - Unauthorized access
 - Intentional or accidental loss/corruption of sensitive data
- **Data Security** measures include encryption of data both at rest and in motion, physical and logical access controls that prevent unauthorized access etc.
- **Data Protection**, refers to the mechanism of making copies of your data to restore in the event of a loss or corruption.

And what about Checksums and T10 PI?

- Modern transports like FC and SAS have CRC
 - Header and Data integrity on the wire
- PI (Protection information) aka DIF (Data integrity field)
 - Capable of providing end-to-end data protection
 - Data consistency can be validated
- No guarantee against unauthorized data access
 - Data is not encrypted
 - Access doesn't modify protection information
 - Protection only against data modification
- Difference comparable to PGP mail handling
 - 'signing' is equivalent to T10 PI
 - 'encrypting' is equivalent to FC-SP

FC-SP-2: What and Why?

- Why? : Need to transition SANs from Authorization and segmentation based FC security to based security!
- What? FC-SP-2 is an ANSI/INCITS standard (2012) that defines protocols to
 - Authenticate Fibre Channel entities
 - Setup session encryption keys
 - Negotiate parameters to ensure per frame integrity and confidentiality
 - Define and distribute security policies over FC
- Designed to protect against several classes of threats

2020 Storage Developer Conference. © Marvell and © SUSE. All Rights Reserved.

SD@

FC-SP-2 Protects FCP and FC-NVMe

SD@

FC encryption: infrastructure

FC-SP-2: The challenges

- Full frame encryption
 - Impossible to run off-card at 32G speeds due to HW bandwidth limitations (PCI Gen3x16 bandwidth 16 GB/s)

- Complex key exchange and key handling
 - implementation within the driver not feasible
 - integration with existing tooling required
- Hard to do it alone
 - much better synergy effects by cooperating between hardware and software vendors
- Marvell-SUSE cooperation to deliver full solution

FC encryption: infrastructure

- FC-encryption is modelled on IPSec encryption
- IPSec encryption provided by Strongswan
- Integration of FC encryption into Strongswan
 - Modifications to Strongswan to handle FC frames
 - Additional module 'auth-els' to handle FC-SP-2

FC encryption: strongswan

SD@

FC encryption: infrastructure

- FC-SP ELS frames are passed via bsg between kernel and userland
- Strongswan auth-els plugin to process FC-SP ELS frames
- Application-specific bsg frames to control encryption offload
- Linux SCSI netlink messages to react on link changes

FC encryption: configuration

- FC initiator and target configuration unchanged
- FC PRLI blocked as ELS frames are passed to userland via bsg
- Strongswan processes ELS frames
 - Creating Security Association
 - Continues with PRLI
- LUNs will be presented to the initiator

FC encryption: configuration

SD₂₀

strongswan status

```
Security Associations (4 up, 0 connecting):
ika sa O
210034800d60a101210034800d60a0c7[107]: ESTABLISHED 25 seconds ago, 0.11.96.0[210034800d60a0c7]...0.96.20.0[210034800d60
child sa 0
210034800d60a101210034800d60a0c7{295}: INSTALLED, TUNNEL, regid 107, ESP SPIs: 4aac726a i 32f9f282 o
210034800d60a101210034800d60a0c7{295}: 0b60..0b60/24[255/0-2551-1] === 60140..60140/24[255/0-2551-1]
ika sa 1
210034800d60a100210034800d60a0c5[106]: ESTABLISHED 50 seconds ago, 0.29.96.0[210034800d60a0c5]...0.96.22.0[210034800d60
child sa 1
210034800d60a100210034800d60a0c5{293}: INSTALLED, TUNNEL, regid 106, ESP SPIs: 66e7bf64 i a09b8989 o
210034800d60a100210034800d60a0c5{293}: 01d60..01d60/24[255/0-2551-1] === 60160..60160/24[255/0-2551-1]
ika sa 2
210034800d60a100210034800d60a0c7[104]: ESTABLISHED 104 seconds ago, 0.11.96.0[210034800d60a0c7]...0.96.22.0[210034800d
child sa 2
210034800d60a100210034800d60a0c7{289}: INSTALLED, TUNNEL, regid 104, ESP SPIs: 54db8c06 i c1661a37 o
                                        0b60..0b60/24[255/0-2551-1] === 60160..60160/24[255/0-2551-1]
210034800d60a100210034800d60a0c7{289}:
```

[..]

FC encryption: configuration

# lsscsi			
[0:0:0:0]	disk	LIO-ORG	NVDIMM1
[0:0:0:1]	disk	LIO-ORG	NVDIMM2
[0:0:0:2]	disk	LIO-ORG	NVDIMM3
[0:0:0:3]	disk	LIO-ORG	NVDIMM4
[0:0:1:0]	disk	LIO-ORG	NVDIMM1
[0:0:1:1]	disk	LIO-ORG	NVDIMM2
[0:0:1:2]	disk	LIO-ORG	NVDIMM3
[0:0:1:3]	disk	LIO-ORG	NVDIMM4
[5:0:0:0]	disk	LIO-ORG	NVDIMM1
[5:0:0:1]	disk	LIO-ORG	NVDIMM2
[5:0:0:2]	disk	LIO-ORG	NVDIMM3
[5:0:0:3]	disk	LIO-ORG	NVDIMM4
[5:0:1:0]	disk	LIO-ORG	NVDIMM1
[5:0:1:1]	disk	LIO-ORG	NVDIMM2
[5:0:1:2]	disk	LIO-ORG	NVDIMM3
[5:0:1:3]	disk	LIO-ORG	NVDIMM4

/dev/sdc 4.0 4.0 /dev/sdf /dev/sde 4.0 4.0 /dev/sdd 4.0 /dev/sdk 4.0 /dev/sdn 4.0 /dev/sdm 4.0 /dev/sdl 4.0 /dev/sdg 4.0 /dev/sdj 4.0 /dev/sdi 4.0 /dev/sdh 4.0 /dev/sdo 4.0 /dev/sdr /dev/sdq 4.0 4.0 /dev/sdp SD@

FC encryption: performance

FC encryption: test setup

20

- Target machine:
 - 48 cores Intel Xeon, 64GB RAM, 512 GB NVDIMM
 - Quad-port Marvell QLogic 32GFC QLE2784 w/ Encryption offload (StorCryption)
- Initiator machine:
 - 40 core/2 socket Intel Xeon, 64 GB RAM
 - Quad-port Marvell QLogic 32GFC QLE2784 w/ Encryption offload (StorCryption)
- Brocade 32GFC switch

FC encryption: performance

- Linux 'fio' tool to test performance
- Bandwidth testing to analyse streaming performance of encryption offload
 - Sequential read and write tests
 - Tests with different I/O block sizes (4k 512k)
 - Tests with different number of LUNs (1 4)

FC encryption: read performance

2020 Storage Developer Conference. © Marvell and © SUSE. All Rights Reserved.

FC encryption: read performance

SD@

FC encryption: write performance

SD@

FC encryption: write performance

SD@

FC encryption: performance results

SD₂₀

- Performance is nearing HW limitations:
 - Dual-port 32G FC; nominally 6.4GB/s
 - Target on NV-DIMM with a bandwidth of about 5-6GB/s
 - NV-DIMM write speed noticeably slower than reads
 - Some minor performance impact on larger blocksizes

FC encryption: next steps

Deployment

- Integrating Proof-of-concept code into SLES distribution
- Base enablement with a standard maintenance update
- EdiF-enabled modules for qla2xxx driver and strongswan distributed separately

Upstream work

- *qla2xxx* kernel driver updates:
 - Additional functionality for EDiF (StorCryption)
 - Upstream enablement
- Strongswan update:
 - FC-Frame handling to be upstreamed
 - EdiF specific handline (auth_els) distributed as separate module

Please take a moment to rate this session.

Your feedback matters to us.