S D ‘20 Storage Developer Conference
September 22-23, 2020

BY Developers FOR Developers

/| OO AAAAASSSS

JAN

N/

Data Placement |
> i
dEil i
Marc Acosta, Research Fellow < A 5
Office of the CTO A
>

N/

Western Digital d
P

Data Placement

Imagine this bag is
your storage system
and the different color
beads are your files

= Then imagine the
white beads need to
be moved to
another storage e
system https://www.amazon. com/Pony-Beads-Mult-Color-

1000/dp/B004D9DMMW/ref=psdc 12896121 t1 BO7PC14Q4

9mm 173

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

https://www.amazon.com/Pony-Beads-Multi-Color-1000/dp/B004D9DMMW/ref=psdc_12896121_t1_B07PC14Q4J

= Now Imagine this is

your storage system
and the different color

balls are your files

= Did moving the
white beads just get
more efficient

https://www.amazon.com/Efivs-Arts-Multicolor-Beading-
Container/dp/B07T3HL8T4

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

https://www.amazon.com/Efivs-Arts-Multicolor-Beading-Container/dp/B07T3HL8T4

Data Placement

« Storage is really about two things

= |nitial data placement and changes to
data

« Storage medias tend to like bigger changes
over smaller changes

= Large block writes are more efficient
than small block writes

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Data Placement

Rosenblum and Ousterhout’s Log Structured File System
improved the file system by optimizing for the storage media

« Their filesystem, Sprite LFS, reduced the mechanical
movement of an HDDs heads by placing files sequentially on
the media and placing file metadata close to the files

= Sprite LFS managed updates to the files by sequentially
writing changes to new place

https://web.stanford.edu/~ouster/cgi-bin/papers/Ifs.pdf

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

https://web.stanford.edu/~ouster/cgi-bin/papers/lfs.pdf

Sprite LSF File Placement

Multiple random
writes and reads

Disk ~|

dirl dir2 Unix FFS

Sequential writes
and reads

| Log—>» Disk

Sprite LFS ‘

W\

Block key: Inode l Directory D Data % Inode map filel file2

2

N

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

File Change: Sprite LSF Vs FFS

File updates produce
random
writes to media

7 T
T

Files

File updates
produce sequential
writes to media

v
HIE TN

. . Files
Files With Hol
iles Wi oles Updates

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Sprite Copy and Compact

= Copy and Compact frges up larger Copy and Compact
segments by compacting smaller data Oldlogend New log end
segments together

= Today this is known as garbage
collection

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Small is good but larger is better

Key: Sprite LFS |:] SunOS

LFS C On Clusi On 12f&les/sec (measured) 6I;;lcs/sec (predicted)
160 7 Z// 600
H - 7,
- “works very well for large-file ... = -
in particular ... very large-file 0 % s
: | |
that are created and deleted in @ ;;; % s
their entirety ” o o e
real ea le Sun4 2*Sun4 4*Sund
= i.e. Immutable files 000 e s 10000 1K e creat
T @
Files / Storage with no updates
i e it = 3 = Ratiandid VAALAW ANS VY VAL LALLALLE, VYV UL ALUTAVALD) LAl LV 4 AVI1IT VTOU Vviuvll a

simple policy based on cost and benefit. Although we developed a log-struc-
tured file system to support workloads with many small files, the approach
also works very well for large-file accesses. In particular, there is essentially

no cleaning overhead at all for very large files that are created and deleted in
their entirety. |

https://web.stanford.edu/~ouster/cgi-bin/papers/Ifs.pdf

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

https://web.stanford.edu/~ouster/cgi-bin/papers/lfs.pdf

Log Structured Merge Tree

Patrick O’Neil et al, Log Structured Merge Tree came across a
similar change issue with B-tree indexes

« Small changes to B-trees were inefficient
= Big changes to B-trees were more efficient

The LSMT algorithm defers and batches index changes to
improve efficiency

- Bulk loading of B-trees—

= See https://bigdata.uni-saarland.de/datenbankenlernen/ or Jens

Dittrich’s e-book Patterns. i anagement _

https://link.springer.com/content/pdf/10.1007/s002360050048.pdf ‘

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

https://bigdata.uni-saarland.de/datenbankenlernen/
https://link.springer.com/content/pdf/10.1007/s002360050048.pdf

Log Structured Merge-Tree (LSM-Tree)

CO Tree LO Tree

New Writes Merge Codlo

- LSMT does not modify data files =
- They are all immutable Mermory Disk
« LSMT collects updates and writes i (S_ST e
out changes to a new file e
« To find a piece of data all Fg g m
branches of the tree need to be : :
searched

= LSMT files are large immutable files

Memory Disk
. (Memtables) (SST Tables) |
https:// www.cs.umb.edu/~poneil/lsmtree.pdf
The Log-Structured Merge-Tree (LSM-Tree) O'neil et al

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

http://www.cs.umb.edu/~poneil/lsmtree.pdf

End to End Data Placement

Minimizes GC LSF Minimizes Head
-- Creates and uses Movement for higher B/W
immutable files -- Places data by file

sequentially on media

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Media is more efficient in
sequential accesses

-- Maintains the spatial
locality of the files on
writes

End to End Data Placement

Minimizes GC LSF Minimizes Head
-- Creates and uses Movement for higher B/W
immutable files -- Places data by file

sequentially on media

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Media is more efficient in
sequential accesses

-- Maintains the spatial
locality of the files on
writes

Life with SSDs v

NAND and SSDs

= NAND Flash Memory has an
Interesting property

« NAND needs to be written and
erased in large segments

« LSF writes in large segments and
GC process creates empty
segments

« Add a storage interface and you

have created an SSD Modern SSD

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

LSMTs on SSDs

SSDs do not show the same end to end
efficiency

RocksDB uses LSMT indexing

= As the number of threads increased
there was no scaling of performance

Same workload as HDD but the SSD
LFS introduced unnecessary write
amplification into the system

Performance scaling required
overprovisioning

= Reducing the user capacity of the
drive

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Write Amplification Factor

=

N

Normalized Host B/W

o =
o oL L N U ow

= N w
o vk LN UL wn s

-

[N

[

RocksDB Overwrite Workload

P —

2 3 4 5 6
Number of Background Jobs

—8—2.0TB 3.2TB 3.84T8B

RocksDB Overwrite Workload

3 4 5 6

Number of Background Jobs

—8—20TB 3.2TB 3.84TB

Blktrace of Workload

Bltrace from XFS-RocksDB
(LSMT Application)

= The block addresses of files are
allocated to place data sequentially
on media

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Sprite LSF Change

Spatial Locality of File

Maintains
v i v v

LSMT

Files

4
IRHETIETIE]

Files are stored by Temporal Locality
Spatial Locality of file is lost

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

End to End Data Placement

Places data by file sequentially

Files are immutable
in large blocks

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Uses Temporal data placement
-- Does not place files
sequentially on media

-- Does not take advantage of
large immutable files

Places data by file sequentially

Files are immutable .
in large blocks

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

9mm 172 MORE F e 1

Uses Temporal data placement
-- Does not place files
sequentially on media

-- Does not take advantage of
large immutable files

How to fix

= Make an SSD that uses

a block addressing m
method to place data nE,,...?..

Zoned Namespace

spatially Command set specification

Zoned Namespaces (ZNS) SSDs:
Disrupting the Storage Industry e

Technical input submitted 1o the NVM Express™ Workgroup is subject to the terms of the NVM
Express™ Participant’s agreement. Copyright © 2014-2020 NVMe™ Corporation.

Matias Bjarling

https://nvmexpress.org/developers/nvme-specification/
(Available in the 1.4 TP package)

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

https://nvmexpress.org/developers/nvme-specification/

End to End Data Placement

Optimizes Index Maintains Spatial
Creation locality of data files
Utilizes spatial locality immutable files reduce
of data to improve GC

performance

Utilizes immutable files

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

E- 2 5
rdeed o LN 2ede";

ZNS addressing
maintains spatial

locality of data files
No GC

A look into Cassandra Files

Cassandra is a KV store that uses
LSMT data structures

The data structure for the leaf
nodes is contained in 8 files

= Data.db is the largest

= In this example the sst size
was set to 256MB

Other LSMT implementation use a
single file for each leaf node

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

32K
257M
10
20K
454K
11K
4.6K
92
32K
257M
10
22K
453K
11K
4.6K
92
32K
257M
10
20K
453K
11K
4. 6K
92

fay
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug

—

26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26

21:
21:
21:
21:
21:

21

21

-

57
57
57
57
57

:57
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

57
57
57
57
57
57
57
57
57
57

:59
21:
21:
21:
21:
21:
21:
21:

59
59
59
59
59
59
59

i rava ey e ens
md-4127-big-CompressionInfo.db
md-4127-big-Data.db
md-4127-big-Digest.crc32
md-4127-big-Filter.db
md-4127-big-Index.db
md-4127-big-Statistics.db
md-4127-big-Summary.db
md-4127-big-TOC. txt
md-4152-big-CompressionInfo.db
md-4152-big-Data.db
md-4152-big-Digest.crc32
md-4152-big-Filter.db
md-4152-big-Index.db
md-4152-big-Statistics.db
md-4152-big-Summary.db
md-4152-big-TOC. txt
md-4340-big-CompressionInfo.db
md-4340-big-Data.db
md-4340-big-Digest.crc32
md-4340-big-Filter.db
md-4340-big-Index.db
md-4340-big-Statistics.db
md-4340-big-Summary.db
md-4340-big-TOC. txt

Test Workload

- YCSB test

Thread count = 1

» Run Phase done with Uniform Distribution
« Note: Default setting is for Zipfian Distribution

= Workload

= 15 Million Key loads followed by 60 Million random puts
« Compaction threads set to 8
« SST file size = 160MB

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Data Collection on Data.db files

« A modified version Linux’s inotifywait was
used to track the lifecycle of the files

= The modified version increased the
time resolution to from a second to ns

« Timestamps were collected for open,

close and delete events for each Data.db
file

e e wiavgeavy =
inotifywait --format '%T %f %e' —--timefmt %s -r -m -e create —e close_write -e delete -e attrib /a/cassandra/data/ycsb ‘

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Name

inotifywait - wait for changes to files using inotify
Synopsis
inotifywait [-hcmrq] [-e <event>] [-t <seconc

Description

inotifywait efficiently waits for changes to files
using Linux's inotify(7) interface. It is suitable
for waiting for changes to files from shell
scripts. It can either exit once an event occurs,
or continually execute and output events as
they occur.

Output

inotifywait will output diagnostic information
on standard error and event information on
standard output. The event output can be
configured, but by default it consists of lines of
the following form:

watched_filename EVENT_NAMES event_file

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Man Page

Events
The following events are valid for use with the -e option:

access

A watched file or a file within a watched directory was read from.
modify

A watched file or a file within a watched directory was written to.
attrib

The metadata of a watched file or a file within a watched directory was modified. This includes

timestamps, file permissions, extended attributes etc.
close_write

A watched file or a file within a watched directory was closed, after being opened in writeable mode.

This does not necessarily imply the file was written to.
close_nowrite

A watched file or a file within a watched directory was closed, after being opened in read-only mode.
close

A watched file or a file within a watched directory was closed, regardless of how it was opened. Note

that this is actually implemented simply by listening for both close_write and close_nowrite, hence

all close events received will be output as one of these, not CLOSE.
open

A watched file or a file within a watched directory was opened.
moved_to

A file or directory was moved into a watched directory. This event occurs even if the file is simply

moved from and to the same directory.

Data.db File Lifetimes

= Qverall the File Lifetimes look as

Cassandra Data.db File Lifetimes

expected .
- Each level of the Cassandra o L.

Merge tree is expected to have a - b

longer lifetime than the previous . . .t

level R SRR CT SN I T YR S

- The highest level should have the w0 |, . :i-:;:.":.:;;::“.."'"".
longest life 100 | QL S ines e,

- The Lowest level should change the o% o
most Test Time (s)

» The use of lifetimes of SST files
for data placement and the
reduction in WAF was shown by
Taejin Klm in FaSt 19 https://www.usenix.org/system/files/fast19-kim-taejin.pdf

2020 Storage Developer Conference. © Western Digital. All Rights Reserved. 910120

https://www.usenix.org/system/files/fast19-kim-taejin.pdf

Number of Open Files

. The tOtal number Of Open fileS giveS an Number of Open Data.db Files
indication how segments zones are X
required to support Data Placement by "
SST file(s) -
- If Cassandra SST files were compacted into iz
a single file, ~ 45 zones would be required to i
support Data Placement by SST file v
= Higher put workload increases the number of y=———————
Open Files 0 5000 1000015000 20000 25000 30000 35000

Test Time

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Life is not Perfect

File sizes will vary, there will be no perfect
alignment between files and storage blocks

There are two interesting options that define
the goal posts
= Left goal post
= Maintain spatial locality of immutable files
= Right goal post
= Maintain spatial locality of immutable files

= Utilize file characteristics to assist in data
placement of files

https://www.sportsvideo.org/2018/10/25/nbc-sports-to-debut-new-field-goal-tracer-graphic-on-
sunday-night-football/

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Left Goal Post

Write Amplification

0 0.2 0.4 0.6 0.8 1

Occupancy (p)

Figure 8: Write amplification A as a function of p for ¢ = 4,8,16,32, 64, and 512

Performance of the Greedy Garbage-Collection Scheme
in Flash-Based Solid-State Drives

Tlias Tliadis

IBM Research — Zurich, 8803 Riischlikon, Switzerland . i i
Pho e surich.ibm.com https://dominoweb.draco.res.ibm.com/reports/rz3769.pdf

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

https://dominoweb.draco.res.ibm.com/reports/rz3769.pdf

Spatial Locality of Large Block Write

Without spatial locality maintained by an | Dete Placementiith SparalLoceliy
SSD immutable file’s writes amplification
are the point along the y- axis

If a WA = <2 is required to scale
performance and the immutable file sizes
are ~equal to the Zone Capacity

Without Spatial locality o1
= 3.20 TB user capacity

With ZNS Spatial locality
= 3.84TB of user capacity

Normalized Write Amplfication
o - N w

File Size / Zone Capacity

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Imaginary Generic System

Maintains Spatial locality of

data files Maintains Spatial locality of

data files

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Right Goal Post

= Goal: end-to-end ZNS integration

= Add native support for ZNS as a
RocksDB FileSystem class

= Use as much as possible of RocksDB
data knowledge to do smart data
placement

= Minimize write amplification
= Avoid garbage collection
= Minimize wear
= Maximize write throughput
= Improve read performance

ZenFS, Zones and RocksDB
Who likes to take out the garbage anyway
= Minimize integration effort for users

Hans Holmberg
2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Summary

= File systems and applications that use large immutable files can
see increases in performance and user capacity

« Large immutable files are efficient for both applications and
storage media

= Traditional SSDs using LBA addressing do not maintain spatial
locality on the media for files

= Traditional SSDs require OP to scale performance in large
block immutable files

« ZNS maintains spatial localities and restore the efficiency of
using large immutable files

marc.acosta@wdc.com

2020 Storage Developer Conference. © Western Digital. All Rights Reserved.

Wv AV,
Please take a moment
to rate this session.

Your feedback matters to us.

