
2020 Storage Developer Conference. © Intel. All Rights Reserved. 1
1

RPMP: A Remote Persistent Memory Pool to
accelerate data analytics and AI

Jian Zhang
Intel

2020 Storage Developer Conference. © Intel. All Rights Reserved. 2
2

Agenda

 Persistent Memory Introduction
 Remote Persistent Memory & Usage
 Remote Persistent Memory Pool Design and implementation
 Remote Persistent Memory Pool Performance
 Summary

2020 Storage Developer Conference. © Intel. All Rights Reserved. 3
3

Persistent Memory

2020 Storage Developer Conference. © Intel. All Rights Reserved. 4
4

Persistent Memory - A New Memory Tier

 IDC reports indicated that data is growing very fast
 Global datasphere growth rate (CAGR) 27%*
 But DRAM density scaling is becoming slower: from 4X/3yr

(1997-ish) to 2X/3yr (~1997-2010) to 2X/4yr** (since 2010)
 A new memory system will be needed to met the data

growth needs for new cases
 Persistent Memory (PMem): new category that sits

between memory and storage
 Delivers a unique combination of affordable large capacity

and support for data persistence

**Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018
*Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018
**Source: ”3D NAND Technology – Implications for Enterprise Storage Applications” by J.Yoon (IBM), 2015 Flash Memory Summit
*** https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html

Storage Hierarchy***

https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html

2020 Storage Developer Conference. © Intel. All Rights Reserved. 5
5

Persistent Memory
Operation Mode
 Memory Mode
 Volatile storage. Provides higher memory capacity.

Cache management is handled by processor’s
integrated controller.

 APP Direct Mode
 Non-volatile storage. Application manages its cache

data by itself. Read/write bypass page cache.
 Characteristics:
 DDR4 electrical & physical
 Close to DRAM latency
 Cache line size access
 128/256/512GB for single PMem

* https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Ap
p

Di
re

ct

St
or

ag
e

Memory

DRAM, or
DRAM as

cache

1 MEMORY
mode

APP DIRECT
mode

Storage
over APP DIRECT

● Larger memory at lower cost

● Low latency persistent memory

● Fast direct-attach storage

● Persistent data for rapid recovery

2

DDR4 DRAM

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

2020 Storage Developer Conference. © Intel. All Rights Reserved. 6
6

Remote Persistent Memory

2020 Storage Developer Conference. © Intel. All Rights Reserved. 7
7

Remote Persistent Memory Usage
High Availability
Data Replication

 Replicate Data in local PM
across Fabric and Store in
remote PM

 Improved redundancy

Remote PM

 Extend on-node memory
capacity (w/ or w/o persistency)
in a disaggregated architecture
to enlarge compute node
memory

 Increased capacity

Shared Remote PM

 A PM pool holds sharded
data for distributed
applications

 Improved performance

https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/05_PM_Summit_Grun_PM_%20Final_Post_CORRECTED.pdf

https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/05_PM_Summit_Grun_PM_%20Final_Post_CORRECTED.pdf

2020 Storage Developer Conference. © Intel. All Rights Reserved. 8
8

Remote Persistent Memory over RDMA

 Remote persistence, without losing any of
characteristic of memory

 PM is Fast
 Needs ultra low-latency networking

 PM has very high bandwidth
 Needs ultra efficient protocol, transport offload,

high BW
 Remote access must not add significant latency

 Network switches & adaptors deliver
predictability, fairness, zero packet loss

 Moving data between (zero-copy) two system with Volatile
DRAM, offload data movement from CPU to NIC

 Low latency
 Latency < uses

 High BW
 200Gb/s, 400Gb/s, zero-copy, kernel bypass, HW

offered one side memory to remote memory operations
 Reliable credit base data and control delivered by HW

 Network resiliency, scale-out

Remote Persistent Memory offers RDMA offers

2020 Storage Developer Conference. © Intel. All Rights Reserved. 9
9

RPMem Durability
 RPMem over Fabric additional complexity:

 In order to guarantee written data is durable on the target node,
CPU caches need to be bypassed or flushed to get data into the
ADR power fail safe domain

 When writing to PMEM, need a synchronous acknowledgement
when writes have made it to the durability domain but lacks in
current RDMA Write semantics

 RDMA
 Guarantee that Data has been successfully received and

accepted for execution by the remote HCA
 Doesn’t guarantee data has reached remote host memory

– need ADR
 Doesn’t guarantee the data can be visible/durable for other

consumers accesses (other connections, host processor)
 Using small RDMA read to forces write data to PMem

RDMA
Write

Posted Write
(Non-Allocating)

Posted Write
(Non-Allocating)

APP SW Peer A
RNIC

Peer B
RNIC

Peer B
Memory ControllerRDMA

Write

RDMA
Write RDMA

Write

RDMA Flush RDMA
Flush

Flush
Flush

Flush

Flush

Peer B
PMEM

Flush

 New transport operation – RDMA FLUSH
 Flush all previous writes or specific regions
 Provides memory placement guarantee to the upper layer

software
 RDMA Flush forces previous RDMA Write data to durability

domain
 It makes PM operations with RDMA more efficient!

2020 Storage Developer Conference. © Intel. All Rights Reserved. 10
10

RPMP

2020 Storage Developer Conference. © Intel. All Rights Reserved. 11
11

RPMP motivations

 Challenges in real production analytics and AI cluster
 Memory is a precious resource, always insufficient
 CPU/Memory/Storage unbalanced issue
 Adopt compute storage disaggregation for better scalability and cost saving

 Scale compute & storage independently typically requires:
 High performance, low latency distributed storage w/ rich APIs
 Centralized high-performance distributed cache shared by various applications
 Fault tolerant to avoid stage recompute for long running analytics jobs

 Remote Persistent Memory pool
 A distributed storage solution based on PMem
 Target for high performance storage or accelerate ephemeral data access
 Leveraging RDMA for remote PMem access
 Rich APIs for different usage scenarios

2020 Storage Developer Conference. © Intel. All Rights Reserved. 12
12

RPMP Architecture

 Remote Persistent Memory Pool:
 A persistent memory based distributed storage system
 An RDMA powered network library and an innovative approach to use

persistent memory as both shuffle media as well as RDMA memory
region to reduce additional memory copies and context switches.

 Target as high-performance storage & ephemeral data storage
 Features

 High Performance Storage powered by modern HW like PMem and
RDMA w/ user-level I/O access

 Rich API: Provides memory-like allocate/free/read/write APIs on
pooled PMem resources

 Pluggable modules: A modular architecture makes it can be plugged
into in memory database, Apache Spark (shuffle) & Cache etc.

 Heterogeneous tiered storage backend
 Benefits

 Improved scalability of analytics and AI workloads by disaggregating
ephemeral data from compute node to a high-performance distributed
storage, e.g., Spark shuffle

 Improved performance with high speed persistent memory and low
latency RDMA network

 Improved reliability by providing a manageable and highly available
disaggregated storage supports ephemeral data replication and fault-
tolerant, e.g. shuffle data to avoid recompute.

RPMP

Transactions Streaming Machine LearningSQL

Data Lake

K/V

shuffle

Storage

Compute

data cache

DRAM

Ephemeral Data

Object Block File

Spark Flink Presto

PMem SSD

2020 Storage Developer Conference. © Intel. All Rights Reserved. 13
13

Remote Persistent Memory Pool overview

Client

RPMP Driver

Client

RDMA
Read and Write

RDMA
Read and Write

 Care more about write
performance (latency/bandwidth)

 Combined with high performance
NIC, theoretically 8x PMEM on
single node provide 10GB+ write
bandwidth.

RPMP node 1

RPMP Core

RPMP Proxy

Network layer

Controller layer

Storage layer

Global Memory Address

RPMP node 2

RPMP Core

RPMP Proxy

Network layer

Controller layer

Storage layer

Heartbeat

Replication

 RPMP storage node was
choosen by using
configured distribution
policy to avoid single point
failure.

 A timely ActiveNodeMap
maintained by using
Heartbeat.

 Data will be replicated to a
Secondary node from
primary node over RDMA

 If primary node goes down,
secondary node is still
writable and readable.

Client1 ClientN

RPMP Adaptor
RPMP Driver

RPMP Adaptor

13

2020 Storage Developer Conference. © Intel. All Rights Reserved. 14
14

RPMP architecture details
 RPMP Client

 RPMP client provides transactional
read/write/allocate/free, and obj put/get
interfaces to users

 Both cpp and java API are provided
 Data will be transferred by

HPNL(RDMA) between selected
server nodes and client nodes.

 RPMP Server
 RPMP proxy is used to maintain an

unified ActiveNodeMap and distributes
client request among RPMP nodes.

 Network Layer is based on HPNL to
provide RDMA Data transfer.

 Controller Layer is responsible for
Global Address Management,
TransactionalProcess, etc.

 Storage Layer is responsible for Pmem
management using high performance
user space PMDK libs

RPMP (Server)

PmemAllocatorStorage Layer

Encode/DecodeHPNLNetwork Layer Buffer Mgmt

Controller layer Scheduler TransactionGlobal Address Mgmt

PMem
/dev/dax0.1 /dev/dax1.0 /dev/dax2.0

/dev/dax0.0 /dev/dax1.1 /dev/dax2.1

Checksum

RPMP (Client)

Interface tx_alloc/tx_free/tx_read/tx_write/put/get

Encode/DecodeHPNLNetwork Layer Buffer Mgmt

Storage Proxy

RPMP Proxy

Accelerator

2020 Storage Developer Conference. © Intel. All Rights Reserved. 15
15

RPMP Proxy

 Cluster-level node map
 Heartbeat between RPMP node and proxy nodes

to maintain activenodemap.
 Heartbeat between Primary node and secondary

node to check health status of each RPMP node
 Configurable distribution policy

 Static configuration file for Primary/secondary
pair

 Consistency Hash algorism w/ active nodemap
 Primary/Secondary architecture for Data Replication

 Client contacts proxy for primary node
 Client sends write to Primary, then Primary

replicates to secondary, Client ACK on both
Primary write and replication write finished.

 Lazy failover & recovery
 Do not attempt to launch failed node or recover

data, let admin make the decision

Primary Node

RPMP Core

RPMP Proxy

Network layer

Controller layer

Storage layer

Secondary Node

RPMP Core

RPMP Proxy

Network layer

Controller layer

Storage layer

Client

2020 Storage Developer Conference. © Intel. All Rights Reserved. 16
16

RPMP Read Write Flow

1. Write data to specific address.
2. Server issue RDMA read (client DRAM ->

server DRAM).
3. Flush (DRAM -> PMEM).
4. Request ACK.

client

server

1 2

3

4

1. Read data from specific
address.

2. RDMA write (server PMEM
-> client DRAM).

3. Request ACK.

client

server

1 2 3

Write Read

DRAM

PMem

DRAM

PMem

DRAM DRAM

1. Write data to specific address.
2. RDMA read (client DRAM -> server DRAM),

Secondary Node DRAM -> Primary Node
DRAM)

3. Flush (DRAM -> PMEM).
4. Request ACK.

DRAM

client

server

1 2

3

4

1. Read data from specific address.
2. RDMA write (server PMEM -> client

DRAM).
3. Request ACK.

client

server

1 2 3

Write Read

server
2

server

3

Proxy

DRAM

PMem

DRAM

PMem

DRAM

PMem

DRAM

PMem

DRAM

2020 Storage Developer Conference. © Intel. All Rights Reserved. 17
17

RPMP - Network

 Zero-copy approach
 The HPNL buffer allowed to be directly used by

application without copying data between HPNL buffer
and application buffer.

 Supporting user-space to kernel-space zero-copy.
 Threading model

 Implements the Proactor model.
 Interrupt + polling approach to optimize HPNL thread.
 Supports thread binding to specific core.

 HPNL interface
 C/C++ and Java interface.
 Supports send, receive, remote read, remote write

semantics.
 Pluggable buffer management interface.
 Capable of using Persistent memory as RDMA buffer.

 Open Sourced
 https://github.com/intel-bigdata/hpnl

Server

Demultiplexer

Core

Epoll + fi_wait

Client1 Client2 ClientNClient

Core Core

HPNL interface

CQService CQService CQService EQService

User callback

Buffer mgr.

libfabric

User callback

Buffer mgr.

libfabric

User callback

Buffer mgr.

libfabric

https://github.com/intel-bigdata/hpnl

2020 Storage Developer Conference. © Intel. All Rights Reserved. 18
18

DRAM (circular buffer)

RPMP Storage

 RPMP Storage
 A transactional and atomic Key Value Data Store w/ user-

space access, designed to fully drive PMem capabilities
 Extend: backend adaptor to tier data to different storage media,

e.g. DRAM, PMem, SSD, HDD
 Space Management

 Provision pmem name space in advance
 Leverage a circular buffer to build unidirectional channels for

RDMA primitives
 For Write

 Libpmemobj converts PMem to flexible object store
 Data write to a circular buffer, once hit threshold (4MB by

default), create a block via libpmemobj on pmem device
with memcopy

 Append write, only write once
 Tiering support planned

 For read :
 Use memcopy to read the data
 Read through PMem memory directly from RDMA memory

region that registered on PMem (avoid DRAM to PMem
copies)

 No index file, mapping info stored in pmem object metadata
 Libpmem based, kernel bypass

PMDK(libpmemobj)

JNI

JVM

Persistent Memory Devices
(devdax/fsdax mode)

DRAM (circular buffer)

RPMP client Native

Native

Spark etc.

Shuffle Plugin

Database other…

FE Adaptor FE Adaptor

SSD

RPMP Storage

2020 Storage Developer Conference. © Intel. All Rights Reserved. 19
19

RPMP Data layout
19

Client
CircularBuffer

buffer RmaBuffer
Register bits

PMem
Pool

PMem

Read_
mutex

Write_
mutex

Request
Request
Request

…

CircularBuffer

buffer …

TaskExecutor

RecvWorker ReadWorker FinalizeWorker

RECV
RDMA
READ ACK

Allocateandwrite

PUT

Base

Tail rwlock Bytes_writ
enHead

Block
entry

Block_hdr

Pre addr sizeNext

data Block
entry

Block_hdr

Pre addr sizeNext

data
…

indexmap
Key

(addr)
PMemoid

Block_entry = pmemobj_indirect(Pmemoid data)

2020 Storage Developer Conference. © Intel. All Rights Reserved. 20
20

Other RPMP features

 Optimized RDMA communication
 Leverage HPNL as high performance, protocol agnostic network messenger
 Server handle all the write operations and clients implement read-only operations using one-sided RDMA

reads.
 Controller accelerator layer

 Partition Merge
 Aggregate small partitions to larger blocks to accelerate reduce, reduced number of reducer connections

 Sort
 Sort the shuffle data on the fly, no compute on reduce phase, reduce compute node CPU resource

utilization
 Provided controllable fine granularity control or resource utilization if compute node CPU resources is

limited
 Storage

 Global address space accessible with memory-like APIs
 A Key-value store based on libpmemobj, transactional
 Allocator to manager on PMem, storage proxy directing request to different allocators

2020 Storage Developer Conference. © Intel. All Rights Reserved. 21
21

RPMP Performance

2020 Storage Developer Conference. © Intel. All Rights Reserved. 22
22

RPMP KV Storage Performance

 Configuration
 2 nodes, one as RPMEM client and another as

RPMEM server.
 40 GB RDMA NIC, 4x PMems on RPMEM server.
 Tested remote_allocate, remote_free,

remote_write, remote_read interfaces with single
client.

RPMEM Client

Node 1

RPMEM Server

PMem PMem

PMem PMem

Node 2
Interface Performance

allocate 3.7 GB/s Expect higher performance with more
clients.

remote_write 2.9 GB/s Expect higher performance with more
clients.

remote_read 4.9 GB/s Limited by 40Gb NIC

Performance results are based on testing as of 5/30/2020 and may not reflect all publicly available security updates. See configuration disclosure on slide for details. No product
can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Configurations refer to page 41

 Performance
 Remote read max out NIC BW

http://www.intel.com/benchmarks

2020 Storage Developer Conference. © Intel. All Rights Reserved. 23
23

RPMP for Spark shuffle – Challenges

 Data Center Infrastructure evolution
 Compute and storage disaggregation become a key trend, diskless environment becoming more and more

popular
 Modern datacenter is evolving: high speed network between compute and disaggregated storage and tiered

storage architecture makes local storage less attractive
 New storage technologies are emerging, e.g., storage class memory (or PMem)

 Spark shuffle problems
 Uneven resource utilization of CPU and Memory
 Out of memory issues and GC
 Disk I/O too slow, Data spill degrades performance
 Shuffle I/O grows quadratically with data
 Local SSDs wear out by frequent intermediate data writes
 Unaffordable re-compute cost

 Other related works
 Intel Disaggregated shuffle w/ DAOS1, Facebook cosco2, Baidu DCE shuffle3, JD.com & Memverge RSS 4 and

etc.

1. https://www.slideshare.net/databricks/improving-apache-spark-by-taking-advantage-of-disaggregated-architecture
2. https://databricks.com/session/cosco-an-efficient-facebook-scale-shuffle-service
3. http://apache-spark-developers-list.1001551.n3.nabble.com/Enabling-fully-disaggregated-shuffle-on-Spark-td28329.html
4. https://databricks.com/session/optimizing-performance-and-computing-resource-efficiency-of-in-memory-big-data-analytics-with-disaggregated-persistent-memory

https://www.slideshare.net/databricks/improving-apache-spark-by-taking-advantage-of-disaggregated-architecture
https://databricks.com/session/cosco-an-efficient-facebook-scale-shuffle-service
http://apache-spark-developers-list.1001551.n3.nabble.com/Enabling-fully-disaggregated-shuffle-on-Spark-td28329.html
https://databricks.com/session/optimizing-performance-and-computing-resource-efficiency-of-in-memory-big-data-analytics-with-disaggregated-persistent-memory

2020 Storage Developer Conference. © Intel. All Rights Reserved. 24
24

Re-cap of Shuffle

load

load

Input
A HDFS file

load
sort

Output
A HDFS file

sort

sort

Intermediate Data
Each Map’s output Shuffle (Random Partition)

2
1

9

1

5

8

2
6
5

2
1
1
2

5
6
5

9
8

1
1
2
2

5
5
6

8
9

9
2
1

8
1
5

6
5
2

Decompression Compression Decompression Compression

Local

Local

Local

Write Local, Spill to Disk
Read Remotely via Network

https://github.com/intel-hadoop/HiBench/blob/master/sparkbench/micro/src/main/scala/com/intel/sparkbench/micro/ScalaSort.scala

https://github.com/intel-hadoop/HiBench/blob/master/sparkbench/micro/src/main/scala/com/intel/sparkbench/micro/ScalaSort.scala

2020 Storage Developer Conference. © Intel. All Rights Reserved. 25
25

Re-cap: Remote Persistent Memory Extension for Spark shuffle Design

 1. Serialize obj to off-heap memory
 2. Write to local shuffle dir
 3. Read from local shuffle dir
 4. Send to remote reader through TCP-IP
 Lots of context switch
 POSIX buffered read/write on shuffle disk
 TCP/IP based socket send for remote shuffle read

PMEM

Shuffle file

Spark.Local.dir

Shuffle file

Executor JVM #1

User

Kernel

SSD HDD

3

Shuffle write

Shuffle read

2

4

Worker

1. Serialize obj to off-heap memory
2. Persistent to PMEM
3. Read from remote PMEM through RDMA, PMEM is

used as RDMA memory buffer
 No context switch
 Efficient read/write on PMEM
 RDMA read for remote shuffle read

Executor JVM #1

User

Kernel 3

Worker

PMEM

Shuffle ManagerShuffle Manager

NIC

Shuffle
Writer

RDMA NICPMEM

Drivers

Shuffle
Reader bytebuffer

1 obj Heap

Off-heap

Shuffle
Writer(new)

Shuffle
Reader(new)

obj

bytebuffer

1 Heap

Off-heap2

Spark PMoF: https://github.com/intel-bigdata/spark-pmof
Strata-ca-2019: https://conferences.oreilly.com/strata/strata-ca-2019/public/schedule/detail/72992

https://github.com/intel-bigdata/spark-pmof
https://conferences.oreilly.com/strata/strata-ca-2019/public/schedule/detail/72992

2020 Storage Developer Conference. © Intel. All Rights Reserved. 26
26

End-to-End Time Evaluation – TeraSort Workload

 Terasort
 End-to-end time gains .vs Vanilla Spark: 22.7x
 1.29x speedup over 4x NVMe
 PMoF shorten the remote read latency

extremely
 Readblocked time for HDD, NVMe &

PMem (from Spark UI): 8.3min vs. 11s vs.
7ms

 PMem provides higher write/read bandwidth per
node than HDD & NVMe and higher endurance

 Decision support workload
 is less I/O intensive compared with Terasort
 3.2x speed up for total execution time of 99

queries
 IO intensive workloads can be benefit more

from PMoF performance improvement.

Performance results are based on testing as of 12/06/2019 and may not reflect all publicly available security updates. See configuration disclosure on slide for details. No product
can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Configurations refer to page 39

0

1000

2000

3000

4000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

99 Queries Execution Time - Spark-PMoF vs Vanilla Spark

Spark-PMoF Vanilla Spark

12277.2

695 540.5

1

100

10000

Se
co

nd

Spark 550GB TeraSort End-to-End Time (lower is better)

terasort-hdd terasort-nvme terasort-pmof

http://www.intel.com/benchmarks

2020 Storage Developer Conference. © Intel. All Rights Reserved. 27
27

RPMP as Spark disaggregated shuffle

 RPMP as Spark disaggregated shuffle
 A shuffle plugin build on top of RPMP clients
 Shuffle I/O routes to RPMP
 RPMP brings:

 Decoupled shuffle I/O from a specific network/storage
is capable of delivering dedicated SLA for critical
applications

 Fault tolerant in case on shuffle failure, no need for
recompute

 Reduced compute memory resource requirements
 Offload spill as well, Balanced resource

utilization
 High performance & low latency leveraging state-of-art

storage medium as storage media
 To provide high performance, high endurance

storage backend

RPMP HDFS

RPMP shuffle plugin

Storage

Spark

DRAM

Ephemeral Data

Shuffle

PMem

2020 Storage Developer Conference. © Intel. All Rights Reserved. 28
28

RPMP integration to Spark Shuffle

SortShuffleManager
->registerShuffle()

ShuffleHandler

ShuffleWriter

BaseShuffleHandle

PmemShuffleWriter

getWriter()

PMEM

ShuffleBlockResolver

RDMAShuffleReader

PMDK

RDMA to another Executor

Filesystem

NettyReader

PMoFShuffleManager

getWriter()

PmemShuffleWriter

PmemBlockObjectWriter

PmemOutputStream

PmemBuffer

PmemManagedBuffe
r

PmemInputStream

PmemExternalSorter

PMDK - Persistent Memory Pool

PmemShuffleReader

RDMAReader

java

cpp

RPMP

2020 Storage Developer Conference. © Intel. All Rights Reserved. 29
29

Performance Evaluation

Spark

Node 1

Spark

HDD NVME

Node 2

HDD NVMEHDFS

 Configuration

 Gold 6240 CPU @ 2.60GHz, 384GB Memory (12x
32GB 2666 MT/s)

 1x Mellanox ConnectX-4 40Gb NIC

 Shuffle Devices：

 1x HDD for shuffle

 RPMP w/ 8x 128GB Persistent Memory

 Baseline: Shuffle on HDD

 Workload: Terasort 100GB

HDFS

RPMP

PMem PMem

Node 3

40Gb NIC

2020 Storage Developer Conference. © Intel. All Rights Reserved. 30
30

Performance Evaluation

 RPMP as shuffle delivers 3.5x performance speedup over Vanilla Spark

726

207

0

100

200

300

400

500

600

700

800

HDD RPMP

Ex
ec

ut
io

n
T

im
e(

se
co

nd
s)

Axis Title

Terasort Performance Comparsion

Performance results are based on testing as of 7/30/2020 and may not reflect all publicly available security updates. See configuration disclosure on slide for details. No product
can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Configurations refer to page 40

http://www.intel.com/benchmarks

2020 Storage Developer Conference. © Intel. All Rights Reserved. 31
31

Performance Characteristics
CPU Memory

Vanilla Spark

RPMP

 RPMP improves compute node resolution utilization

2020 Storage Developer Conference. © Intel. All Rights Reserved. 32
32

Performance Characteristics

0

1,000

2,000

3,000

4,000

1 1,001 2,001 3,001 4,001

RPMP read bandwidth (MB/sec)

0
500

1,000
1,500
2,000
2,500
3,000

1 1,001 2,001 3,001 4,001

RPMP Write Bandwidth (MB/s)

 RPMP eliminates Vanilla Spark’s shuffle bottlenecks

0

100

200

300

400
0 14 28 42 56 70 84 98 11
2

12
6

14
0

15
4

16
8

18
2

19
6

21
0

22
4

23
8

25
2

26
6

28
0

re
qu

es
ts

/s
ec

on
d

time(s)

Vanilla Spark Shuffle IOPS

Sum of r/s Sum of w/s

0

50000

100000

150000

0 14 28 42 56 70 84 98 11
2

12
6

14
0

15
4

16
8

18
2

19
6

21
0

22
4

23
8

25
2

26
6

28
0ba

nd
w

id
th

(k
B

/s
)

time(s)

Vanilla Spark Shuffle Bandwidth

Sum of rkB/s Sum of wkB/s

2020 Storage Developer Conference. © Intel. All Rights Reserved. 33
33

Summary

2020 Storage Developer Conference. © Intel. All Rights Reserved. 34
34

Summary

 Persistent Memory introduces a new high performance, cost efficient storage layer between DRAM and
SSD

 Remote Persistent Memory extending PM new usage mode to new scenarios with RDMA being the
most acceptable technology used for remote persistent memory access

 Remote Persistent Memory pool is a PMem based distributed storage system targeting as high-
performance storage and resolve ephemeral data’s performance issue

 It is a distributed storage system build on top of PMem and powered by RDMA

 Delivered rich API w/ user space access

 Prototype in KV storage, disaggregated shuffle for Spark showed promising performance results

2020 Storage Developer Conference. © Intel. All Rights Reserved. 35
35

Credits

 This is a teamwork.
 Thanks contributions of Xue Chendi and Ma Eugene.

2020 Storage Developer Conference. © Intel. All Rights Reserved. 36
36

Please take a moment
to rate this session.

Your feedback matters to us.

2020 Storage Developer Conference. © Intel. All Rights Reserved. 37
37

Legal Information: Benchmark and Performance
Disclaimers

 Performance results are based on testing as of Feb. 2019 & Aug 2020 and may not reflect all
publicly available security updates. See configuration disclosure for details. No product can be
absolutely secure.

 Software and workloads used in performance tests may have been optimized for performance only
on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more information, see
Performance Benchmark Test Disclosure.

 Configurations: see performance benchmark test configurations.

2020 Storage Developer Conference. © Intel. All Rights Reserved. 38
38

Notices and Disclaimers

 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

 Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

 This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to obtain the
latest forecast, schedule, specifications and roadmaps.

 The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

 Intel, the Intel logo, Xeon, Optane, Optane Persistent Memory are trademarks of Intel Corporation in the
U.S. and/or other countries.

 *Other names and brands may be claimed as the property of others

 © Intel Corporation.

2020 Storage Developer Conference. © Intel. All Rights Reserved. 39
39

RPMem shuffle extension Benchmark configuration

Workloads
Terasort 600GB
• hibench.spark.master yarn-client
• hibench.yarn.executor.num 12
• yarn.executor.num 12
• hibench.yarn.executor.cores 8
• yarn.executor.cores 8
• spark.shuffle.compress false
• spark.shuffle.spill.compress false
• spark.executor.memory 60g
• spark.executor.memoryoverhead 10G
• spark.driver.memory 80g
• spark.eventLog.compress = false
• spark.executor.extraJavaOptions=-XX:+UseG1GC
• spark.hadoop.yarn.timeline-service.enabled false
• spark.serializer org.apache.spark.serializer.KryoSerializer
• hibench.default.map.parallelism 200
• hibench.default.shuffle.parallelism 1000

4 Node cluster
Hardware:
• Intel® Xeon™ processor Gold 6240 CPU @ 2.60GHz, 384GB Memory (12x

32GB 2666 MT/s)
• 1x Mellanox ConnectX-4 40Gb NIC
• Shuffle Devices：

• 1x HDD for shuffle
• 4x 128GB Persistent Memory for shuffle

• 4x 1T NVMe for HDFS
Software:
• Hadoop 2.7
• Spark 2.3
• Fedora 27

Hadoop NN
Spark driver

Hadoop DN
Spark worker

Hadoop DN
Spark Worker

Hadoop DN
Spark Worker

1x40Gb NIC

4x NVMe

1x HDD 4x PMem

4x NVMe

1x HDD 4x PMem

4x NVMe

1x HDD 4x PMem

2020 Storage Developer Conference. © Intel. All Rights Reserved. 40
40

RPMP Benchmark configuration

Workloads
Terasort 600GB
• hibench.spark.master yarn-client
• hibench.yarn.executor.num 12
• yarn.executor.num 12
• hibench.yarn.executor.cores 8
• yarn.executor.cores 8
• spark.shuffle.compress false
• spark.shuffle.spill.compress false
• spark.executor.memory 60g
• spark.executor.memoryoverhead 10G
• spark.driver.memory 80g
• spark.eventLog.compress = false
• spark.executor.extraJavaOptions=-XX:+UseG1GC
• spark.hadoop.yarn.timeline-service.enabled false
• spark.serializer org.apache.spark.serializer.KryoSerializer
• hibench.default.map.parallelism 200
• hibench.default.shuffle.parallelism 1000

3 Node cluster
Hardware:
• Intel® Xeon™ processor Gold 6240 CPU @ 2.60GHz, 384GB Memory (12x

32GB 2666 MT/s)
• 1x Mellanox ConnectX-4 40Gb NIC
• Shuffle Devices：

• 1x HDD for shuffle
• 8x 128GB Persistent Memory for shuffle

• 4x 1T NVMe for HDFS
Software:
• Hadoop 2.7
• Spark 2.3
• Fedora 27

Hadoop DN
Spark worker

Hadoop DN
Spark Worker

Hadoop DN
Spark Worker

1x40Gb NIC

4x NVMe

1x HDD 4x PMem

4x NVMe

1x HDD 4x PMem

4x NVMe

1x HDD 4x PMem

	RPMP: A Remote Persistent Memory Pool to accelerate data analytics and AI
	Agenda
	Persistent Memory
	Persistent Memory - A New Memory Tier
	Persistent Memory
	Remote Persistent Memory
	Remote Persistent Memory Usage
	Remote Persistent Memory over RDMA
	RPMem Durability
	RPMP
	RPMP motivations
	RPMP Architecture
	Remote Persistent Memory Pool overview
	RPMP architecture details
	RPMP Proxy
	RPMP Read Write Flow
	RPMP - Network
	RPMP Storage
	RPMP Data layout
	Other RPMP features
	RPMP Performance
	RPMP KV Storage Performance
	RPMP for Spark shuffle – Challenges
	Re-cap of Shuffle
	Re-cap: Remote Persistent Memory Extension for Spark shuffle Design
	End-to-End Time Evaluation – TeraSort Workload
	RPMP as Spark disaggregated shuffle
	RPMP integration to Spark Shuffle
	Performance Evaluation
	Performance Evaluation
	Performance Characteristics
	Performance Characteristics
	Summary
	Summary
	Credits
	Please take a moment �to rate this session. ��Your feedback matters to us. �
	Legal Information: Benchmark and Performance Disclaimers
	Notices and Disclaimers
	RPMem shuffle extension Benchmark configuration
	RPMP Benchmark configuration

