
2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 1

File System Native Support of
Zoned Block Devices:
Regular vs Append writes

Naohiro Aota
Western Digital Research, System
Software Group

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 2

Outline

 Zoned Block Device (ZBD) Overview
 Linux ZBD support

 F2FS, zonefs (in the previous talk)
 Btrfs ZBD support

 Overview of btrfs and its IO system
 ZBD support design

 Device Extent and IO submission
 Regular write vs Zone Append write
 Log structured super block updates

 Performance Evaluation Results

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 3

Zoned Block Devices
Random reads but sequential writes

• Standard with
– ZBC & ZAC for SMR hard-disks (Shingled Magnetic

Recording)
– NVMe ZNS for SSDs

• LBA range divided into zones
– Conventional zones

• Accept random writes

– Sequential write required zones
• Writes must be issued sequentially starting from the

“write pointer”
• Zones must be reset before rewriting

– “rewind” write pointer to beginning of the zone

• Users of zoned devices must be aware of the
sequential write rule
– Device fails random writes

Zone 1 Zone 2 Zone 3 Zone 4 Zone X

Write pointer
position

Device LBA range divided in zones

WRITE commands
advance the write pointer

ZONE RESET command
rewinds the write pointer

Zone 0

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 4

Native File System Support
F2FS and zonefs upstream, Btrfs is on-going work

Hardware

Legacy Applications

SCSI Low Level Drivers

SATA Host Adapter / SAS HBA

User
Space

Kernel
Space

ZBC/ZAC SMR Disks

SCSI Mid Layer

Device Mapper (dm-zoned)

Block I/O Layer

SCSI Generic Driver

Legacy File Systemf2fs, btrfs

File access Block access Direct device accessRaw block accessFile access

Block I/O Scheduler

ZBD Compliant Applications

SG_IO / libzbc

Minimal support:
o Device sequential

write constraint
exposed to users

o Zone management
API (ioctl) and write
ordering guarantees

Advanced support:
o User gets POSIX

defined behavior
o No sequential write

constraint

zone ioctl()

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 5

F2FS Support For ZBDs
 F2FS natively support ZBDs since Linux 4.10

 Based on F2FS “lfs” mode
 Pure log-structured operation
 No optimization with update-in-place for metadata blocks

 Sections (group of 2MB segments) aligned to device zones
 Block allocation is sequential within and among segments of a section

 Atomic block allocation and write I/O issuing
 Per section (i.e. per zone)
 Ensures sequential write ordering derived from sequential block allocation

 Requires conventional zones !
 To accommodate updates to fixed location metadata blocks
 ZNS needs multiple devices to work because there are no conventional

zones

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 6

Btrfs Native ZBD Support
 But, btrfs is not zone aware:

 The size of device extents may not necessarily be aligned to zones
 Typical (fixed) SMR disk’s zone size: 256MB
 But data extents may be 1GB, and 256MB for metadata

 Copy on write is not the same as sequential write
 Block allocation not always sequential within a block group

 Reuse of lower addresses of freed blocks within a group
 Not all blocks are CoWed

 Super block at fixed location is overwritten
 Two areas need modifications to solve these problems

 Device extent and block group layout
 Blocks writeback (data and metadata) must be sequential per zone

 Regular write operations vs zone append writes

We need to satisfy ZBD sequential write constraint

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 7

Zone Aware Extents and Block Groups
 Device extent always aligned to device

zones
 One extent == one zone
 256 MB for most SMR disks on the

market today
 As a result, block groups naturally align to

zones
 For all RAID levels

 Sequential use of blocks within a group
implies sequential use within its device
extent(s)
 E.g. sequentially writing to a block

group satisfies the device zone
sequential write constraint

Align extents to device zones

Block Group
(RAID0)

Block Group
(RAID1)

Device Extent

Logical space

Device Extent

Device Extent

Logical space

Device Extent

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 8

Sequential Block Writeback
 Two possibilities

1) Regular write operations (WRITE command) directed at zone write pointer
2) Zone Append Write

 No explicit target LBA specified, only a zone (using its start LBA)
 The device automatically writes data at the zone write pointer
 LBA position of written blocks returned in command reply

 Similar to nameless write
 For regular write operations, we need:

 Sequential block allocation and sequential write BIO issuing
 The same as in F2FS

 For zone append write operations, we need:
 Reserve blocks in a block group and write BIO issuing

 Order does not matter
 Update block allocation information on the write completion, after end_bio()

Regular write operations vs zone append writes

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 9

• Data write IO can take different paths to
the device depending on its type
– Normal or compressed data, pre-allocation

(falloc), Direct IO

• Block allocation and IO submission are
not atomic
– IO submission outside of block group lock

can result in random write sequence for a
zone even with sequential allocation

• Asynchronous block checksum can
reorder write IOs
– Worker context different from allocation and

issuing context

Checksum
workers

Delayed extent allocation

Data Write I/O Submission Overview
Highly asynchronous operations result in random write sequences

compressnormal

submit_bio()

Alloc or find extent

bio_hook

Add page to bio

next
page

queue

async

sync

queu
e
Compres
s
workers

Alloc extent

Add all pages to bios
sync

checksum

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 10

• Compressed data write IO path has a
sequential behavior
– Same context allocation and write IO

submission
– Sync block checksum

• Disabling asynchronous checksum results
in a similar path for normal data writes
– Serialized block allocation and write BIO

issuing in the same order per context

Regular Data Write I/O Submission
Near-ideal IO path exists for sequential writes

Delayed extent allocation

compressnormal

submit_bio()

Alloc or find extent

bio_hook

Add page to bio

Checksum
workers

queue

async

sync

queu
e
Compres
s
workers

Alloc extent

Add all pages to bios
sync

checksum

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 11

Regular Data Write I/O Submission
 Disable asynchronous block checksum
 Add per block group mutex lock

 Serialize different write contexts
 A file extent allocation locks the block

group
 Unlock only when all bios for the extent

are submitted
 Preserves user facing features

 Normal and compressed data support
 Parallel operations still possible

 Granularity: block group (device extent
zones)

 Increased file parallelism can be trivially
added with small changes to block
allocator
 Do not wait for a block group lock and

use an unlocked block group

Atomic block allocation and write IO submission

Delayed extent allocation

compressnormal

submit_bio()

Alloc extent
Lock extent block group

checksum

queue
Compres
s
workers

Add all pages to bios

Unlock block group

Atomic
per

block
group

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 12

Zone Append Data Write I/O Submission
 Using Zone Append Write for Data I/O

 No need for allocation before
submitting bio

 Only choose a block group and
reserve blocks in the block group

 No need to lock the block group
 BIO order does not matter

 Can utilize asynchronous checksum
 Blocks used retrieved from end_bio()

 Update block allocation metadata

Simpler and no additional lock !

queu
e
Compres
s
workers

Checksum
workers

Delayed extent allocation

compressnormal

submit_bio()

Alloc or find extent

bio_hook

Add page to bio

queue

async

sync

Alloc extent

Add all pages to bios
sync

checksum

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 13

 No RAID level supported
 Cannot handle two Zone Append Writes sent to different

zones/devices
 They might return different LBA positions

 Still use dedicated write path
 Always write whole range of delayed allocation

 Normal write path may skip write out data e.g. outside of fdatasync() range
 To use normal write path, we need to split existing file extent

information before submitting bio
 Fragmentation of file extents

 One IO is limited to zone_append_max_bytes (e.g. 512KB)
 Currently, one IO is submitted per one file extent

 Thus, file extent is limited to the max bytes as well
 Increases number of file extents compared to regular btrfs

Current Limitation of Zone Append Data Writing

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 14

Metadata Write I/O Submission

 Similarly to regular data write I/O, all allocations in metadata block
groups are changed to a purely sequential pattern
 No reuse of freed block below current allocation position
 Cannot use Zone Append Write

 Because B-tree root and intermediate nodes need to record the writing
address of underlying nodes

 No need for atomic allocation + write I/O submission under a single lock
 Metadata writes are grouped per transaction, and all meta blocks

added to the active transaction are sequentially allocated
 Cleaned blocks in the active transaction are ignored but a zero-

filled dummy block is written to preserve sequential write pattern

Rely on transaction ordering

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 15

Log Structured Superblock Updates
 Superblock is the only fixed location data structure in btrfs

 In-place updates require a conventional zone
 Limiting superblock location to conventional zone have problems

 Reduced number of superblock copy: only two copies are available per device
 Second copy location (256GB) is on sequential write required zone

 Cannot support device without conventional zones
 Employ superblock log writing

 Use two zones as a ring buffer
 Once the first zone is filled up, write in to the second zone and reset the first one

 Device write pointer tell us where the latest superblock is.

Copy-on-Write superblock

Zone #0 Zone #1

Empty

Write Pointer
(Zone #1)

Write Pointer
(Zone #0)

SB
v2N+1

SB
v2N

SB
vN+1

Zone #0 Zone #1

Write Pointer
(Zone #1)

Write Pointer
(Zone #0)

SB
v0

SB
v2N

SB
vN+1

SB
vN

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 16

Performance Evaluation
 Regular write operation IO path

 Patch series posted on btrfs mailing list
 Hardware

 REGULAR case: Regular 12 TB SATA disk
 ZONED case: 16TB SATA disk with ZBC firmware (host managed model)

 Same mechanics as REGULAR device
 55880 zones of 256 MB
 1% of conventional zones are CMR at LBA 0

 Use dm-linear to create 0 conventional zone 40GB disk
 To show performance of zone append writing which only works on sequential write required zones
 REGAULAR also maps the same LBA range as in ZONED

 REGULAR and ZONED have different sequential write speed
 ZONED is slower than REGULAR by around 10-15%

 Fio: data workload
 Operations: Write, Read, Read-Write
 File size: 1-4MB, 256MB, jobs: 1, 2, 4, …, 64

 Dbench: fsync() heavy workload
 Clients: 1, 2, 4, … , 32

Regular disk vs zoned disk

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 17

fio – Files Read
 ZONED degrades 10-20% from REGULAR

 Due to the SMR disk used is 13% slower (sequential reads)
than REGULAR disk

 ZONED regular write and zone append are competitive

1 to 4 MB random file size and 256 MB fixed file size

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 18

fio – Files Write

 Same degradation as in the read case
 ZONED regular and zone append are competitive

 Both are stable performance

1 to 4 MB random file size and 256 MB fixed file size

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 19

fio – Files Read/Write

 Same degradation
 Zone append is up to 6% better than ZONED

regular

70 % reads / 30 % writes

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 20

dbench
 ZONED degrades 20-50%

from REGULAR
 ZONED failed to scale
 Linux 5.7 improved

btrfs’s fsync()
performance
 ZONED does not catch

up with it
 Same here, ZONED

regular and zone append
are competitive

fsync() heavy workloads

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 21

ZONED regular vs zone append

 Fio: 16 jobs random writing
with 4KB IO size
 Massive competing on the

same zone
 Zone append is better than

ZONED regular by 36%

Zone append writing achieve 36% better in the best case

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 22

Status and On-going Work

 Next patch series targets zone append support in place of regular writes
 Keep asynchronous check-summing (better CPU utilization)
 No additional locking

 But need Zone Append support in SCSI to have a single code base for both SMR
HDDs and ZNS SSDs
 The SCSI disk driver (sd) can emulate it

 Planed optimization
 Remove dedicated path for zoned data writes

 Improve performance on small IO+fsync case
 Opportunistic merging of file extents after end_bio

 Useful also for regular btrfs

Zone append IO path implementation

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 23

Thank you !

Questions ?

© 2020 Western Digital Corporation or its affiliates. All rights reserved. 8/31/2020© 2019 Western Digital Corporation or its affiliates. All rights reserved. 8/31/2020

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 25

Please take a moment
to rate this session.

Your feedback matters to us.

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 26

Disabled Features

 Currently:
 RAID5/6

 Non-full stripe write cause overwriting of parity block
 Rebuilding on high capacity volume (usually SMR) can lead to higher failure rate

 space_cache (v1), NODATACOW
 In-place updates

 Fallocate
 Reserved extent creates a write hole

 MIXED_BG
 Allocated metadata region will be write holes for data writes

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 27

Data Write I/O Submission

 Conventional zones accept random writes
 Do not need block allocation and I/O issuing atomicity

 The code can be simplified by treating conventional zone as sequential
zone
 Maintain allocation pointer
 Per block group mutex lock
 Allows mixing conventional and sequential zones within the same block

group
 Allocation/write state can be inferred on mount from the extent tree

 Act as write pointer position information

Use conventional zones as sequential zones

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 28

Tree-log Block Write I/O Submission
 Use a dedicated metadata block group for tree-log blocks during fsync() processing

 Results in 2 streams of sequentially allocated blocks from two different metadata block
groups
 One stream for tree-log blocks and another for other metadata blocks in transaction

 Sequential writing of both streams is possible in any order
 Each stream in each block group is sequential

 Serializing multiple fsync() transactions is
still necessary
 Blocks allocated in one transaction must be

written before the next transaction allocates
blocks

 Small performance penalty but avoid the
huge performance penalty introduced by
disabling the tree-log

Use a dedicated block group

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 29

	File System Native Support of Zoned Block Devices: Regular vs Append writes
	Outline
	Zoned Block Devices
	Native File System Support
	F2FS Support For ZBDs
	Btrfs Native ZBD Support
	Zone Aware Extents and Block Groups
	Sequential Block Writeback
	Data Write I/O Submission Overview
	Regular Data Write I/O Submission
	Regular Data Write I/O Submission
	Zone Append Data Write I/O Submission
	Current Limitation of Zone Append Data Writing
	Metadata Write I/O Submission
	Log Structured Superblock Updates
	Performance Evaluation
	fio – Files Read
	fio – Files Write
	fio – Files Read/Write
	dbench
	ZONED regular vs zone append
	Status and On-going Work
	Thank you !
	Slide Number 24
	Please take a moment �to rate this session. ��Your feedback matters to us. �
	Disabled Features
	Data Write I/O Submission
	Tree-log Block Write I/O Submission
	Slide Number 29

