
2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 1

File System Native Support of
Zoned Block Devices:
Regular vs Append writes

Naohiro Aota
Western Digital Research, System
Software Group

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 2

Outline

 Zoned Block Device (ZBD) Overview
 Linux ZBD support

 F2FS, zonefs (in the previous talk)
 Btrfs ZBD support

 Overview of btrfs and its IO system
 ZBD support design

 Device Extent and IO submission
 Regular write vs Zone Append write
 Log structured super block updates

 Performance Evaluation Results

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 3

Zoned Block Devices
Random reads but sequential writes

• Standard with
– ZBC & ZAC for SMR hard-disks (Shingled Magnetic

Recording)
– NVMe ZNS for SSDs

• LBA range divided into zones
– Conventional zones

• Accept random writes

– Sequential write required zones
• Writes must be issued sequentially starting from the

“write pointer”
• Zones must be reset before rewriting

– “rewind” write pointer to beginning of the zone

• Users of zoned devices must be aware of the
sequential write rule
– Device fails random writes

Zone 1 Zone 2 Zone 3 Zone 4 Zone X

Write pointer
position

Device LBA range divided in zones

WRITE commands
advance the write pointer

ZONE RESET command
rewinds the write pointer

Zone 0

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 4

Native File System Support
F2FS and zonefs upstream, Btrfs is on-going work

Hardware

Legacy Applications

SCSI Low Level Drivers

SATA Host Adapter / SAS HBA

User
Space

Kernel
Space

ZBC/ZAC SMR Disks

SCSI Mid Layer

Device Mapper (dm-zoned)

Block I/O Layer

SCSI Generic Driver

Legacy File Systemf2fs, btrfs

File access Block access Direct device accessRaw block accessFile access

Block I/O Scheduler

ZBD Compliant Applications

SG_IO / libzbc

Minimal support:
o Device sequential

write constraint
exposed to users

o Zone management
API (ioctl) and write
ordering guarantees

Advanced support:
o User gets POSIX

defined behavior
o No sequential write

constraint

zone ioctl()

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 5

F2FS Support For ZBDs
 F2FS natively support ZBDs since Linux 4.10

 Based on F2FS “lfs” mode
 Pure log-structured operation
 No optimization with update-in-place for metadata blocks

 Sections (group of 2MB segments) aligned to device zones
 Block allocation is sequential within and among segments of a section

 Atomic block allocation and write I/O issuing
 Per section (i.e. per zone)
 Ensures sequential write ordering derived from sequential block allocation

 Requires conventional zones !
 To accommodate updates to fixed location metadata blocks
 ZNS needs multiple devices to work because there are no conventional

zones

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 6

Btrfs Native ZBD Support
 But, btrfs is not zone aware:

 The size of device extents may not necessarily be aligned to zones
 Typical (fixed) SMR disk’s zone size: 256MB
 But data extents may be 1GB, and 256MB for metadata

 Copy on write is not the same as sequential write
 Block allocation not always sequential within a block group

 Reuse of lower addresses of freed blocks within a group
 Not all blocks are CoWed

 Super block at fixed location is overwritten
 Two areas need modifications to solve these problems

 Device extent and block group layout
 Blocks writeback (data and metadata) must be sequential per zone

 Regular write operations vs zone append writes

We need to satisfy ZBD sequential write constraint

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 7

Zone Aware Extents and Block Groups
 Device extent always aligned to device

zones
 One extent == one zone
 256 MB for most SMR disks on the

market today
 As a result, block groups naturally align to

zones
 For all RAID levels

 Sequential use of blocks within a group
implies sequential use within its device
extent(s)
 E.g. sequentially writing to a block

group satisfies the device zone
sequential write constraint

Align extents to device zones

Block Group
(RAID0)

Block Group
(RAID1)

Device Extent

Logical space

Device Extent

Device Extent

Logical space

Device Extent

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 8

Sequential Block Writeback
 Two possibilities

1) Regular write operations (WRITE command) directed at zone write pointer
2) Zone Append Write

 No explicit target LBA specified, only a zone (using its start LBA)
 The device automatically writes data at the zone write pointer
 LBA position of written blocks returned in command reply

 Similar to nameless write
 For regular write operations, we need:

 Sequential block allocation and sequential write BIO issuing
 The same as in F2FS

 For zone append write operations, we need:
 Reserve blocks in a block group and write BIO issuing

 Order does not matter
 Update block allocation information on the write completion, after end_bio()

Regular write operations vs zone append writes

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 9

• Data write IO can take different paths to
the device depending on its type
– Normal or compressed data, pre-allocation

(falloc), Direct IO

• Block allocation and IO submission are
not atomic
– IO submission outside of block group lock

can result in random write sequence for a
zone even with sequential allocation

• Asynchronous block checksum can
reorder write IOs
– Worker context different from allocation and

issuing context

Checksum
workers

Delayed extent allocation

Data Write I/O Submission Overview
Highly asynchronous operations result in random write sequences

compressnormal

submit_bio()

Alloc or find extent

bio_hook

Add page to bio

next
page

queue

async

sync

queu
e
Compres
s
workers

Alloc extent

Add all pages to bios
sync

checksum

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 10

• Compressed data write IO path has a
sequential behavior
– Same context allocation and write IO

submission
– Sync block checksum

• Disabling asynchronous checksum results
in a similar path for normal data writes
– Serialized block allocation and write BIO

issuing in the same order per context

Regular Data Write I/O Submission
Near-ideal IO path exists for sequential writes

Delayed extent allocation

compressnormal

submit_bio()

Alloc or find extent

bio_hook

Add page to bio

Checksum
workers

queue

async

sync

queu
e
Compres
s
workers

Alloc extent

Add all pages to bios
sync

checksum

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 11

Regular Data Write I/O Submission
 Disable asynchronous block checksum
 Add per block group mutex lock

 Serialize different write contexts
 A file extent allocation locks the block

group
 Unlock only when all bios for the extent

are submitted
 Preserves user facing features

 Normal and compressed data support
 Parallel operations still possible

 Granularity: block group (device extent
zones)

 Increased file parallelism can be trivially
added with small changes to block
allocator
 Do not wait for a block group lock and

use an unlocked block group

Atomic block allocation and write IO submission

Delayed extent allocation

compressnormal

submit_bio()

Alloc extent
Lock extent block group

checksum

queue
Compres
s
workers

Add all pages to bios

Unlock block group

Atomic
per

block
group

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 12

Zone Append Data Write I/O Submission
 Using Zone Append Write for Data I/O

 No need for allocation before
submitting bio

 Only choose a block group and
reserve blocks in the block group

 No need to lock the block group
 BIO order does not matter

 Can utilize asynchronous checksum
 Blocks used retrieved from end_bio()

 Update block allocation metadata

Simpler and no additional lock !

queu
e
Compres
s
workers

Checksum
workers

Delayed extent allocation

compressnormal

submit_bio()

Alloc or find extent

bio_hook

Add page to bio

queue

async

sync

Alloc extent

Add all pages to bios
sync

checksum

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 13

 No RAID level supported
 Cannot handle two Zone Append Writes sent to different

zones/devices
 They might return different LBA positions

 Still use dedicated write path
 Always write whole range of delayed allocation

 Normal write path may skip write out data e.g. outside of fdatasync() range
 To use normal write path, we need to split existing file extent

information before submitting bio
 Fragmentation of file extents

 One IO is limited to zone_append_max_bytes (e.g. 512KB)
 Currently, one IO is submitted per one file extent

 Thus, file extent is limited to the max bytes as well
 Increases number of file extents compared to regular btrfs

Current Limitation of Zone Append Data Writing

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 14

Metadata Write I/O Submission

 Similarly to regular data write I/O, all allocations in metadata block
groups are changed to a purely sequential pattern
 No reuse of freed block below current allocation position
 Cannot use Zone Append Write

 Because B-tree root and intermediate nodes need to record the writing
address of underlying nodes

 No need for atomic allocation + write I/O submission under a single lock
 Metadata writes are grouped per transaction, and all meta blocks

added to the active transaction are sequentially allocated
 Cleaned blocks in the active transaction are ignored but a zero-

filled dummy block is written to preserve sequential write pattern

Rely on transaction ordering

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 15

Log Structured Superblock Updates
 Superblock is the only fixed location data structure in btrfs

 In-place updates require a conventional zone
 Limiting superblock location to conventional zone have problems

 Reduced number of superblock copy: only two copies are available per device
 Second copy location (256GB) is on sequential write required zone

 Cannot support device without conventional zones
 Employ superblock log writing

 Use two zones as a ring buffer
 Once the first zone is filled up, write in to the second zone and reset the first one

 Device write pointer tell us where the latest superblock is.

Copy-on-Write superblock

Zone #0 Zone #1

Empty

Write Pointer
(Zone #1)

Write Pointer
(Zone #0)

SB
v2N+1

SB
v2N

SB
vN+1

Zone #0 Zone #1

Write Pointer
(Zone #1)

Write Pointer
(Zone #0)

SB
v0

SB
v2N

SB
vN+1

SB
vN

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 16

Performance Evaluation
 Regular write operation IO path

 Patch series posted on btrfs mailing list
 Hardware

 REGULAR case: Regular 12 TB SATA disk
 ZONED case: 16TB SATA disk with ZBC firmware (host managed model)

 Same mechanics as REGULAR device
 55880 zones of 256 MB
 1% of conventional zones are CMR at LBA 0

 Use dm-linear to create 0 conventional zone 40GB disk
 To show performance of zone append writing which only works on sequential write required zones
 REGAULAR also maps the same LBA range as in ZONED

 REGULAR and ZONED have different sequential write speed
 ZONED is slower than REGULAR by around 10-15%

 Fio: data workload
 Operations: Write, Read, Read-Write
 File size: 1-4MB, 256MB, jobs: 1, 2, 4, …, 64

 Dbench: fsync() heavy workload
 Clients: 1, 2, 4, … , 32

Regular disk vs zoned disk

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 17

fio – Files Read
 ZONED degrades 10-20% from REGULAR

 Due to the SMR disk used is 13% slower (sequential reads)
than REGULAR disk

 ZONED regular write and zone append are competitive

1 to 4 MB random file size and 256 MB fixed file size

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 18

fio – Files Write

 Same degradation as in the read case
 ZONED regular and zone append are competitive

 Both are stable performance

1 to 4 MB random file size and 256 MB fixed file size

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 19

fio – Files Read/Write

 Same degradation
 Zone append is up to 6% better than ZONED

regular

70 % reads / 30 % writes

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 20

dbench
 ZONED degrades 20-50%

from REGULAR
 ZONED failed to scale
 Linux 5.7 improved

btrfs’s fsync()
performance
 ZONED does not catch

up with it
 Same here, ZONED

regular and zone append
are competitive

fsync() heavy workloads

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 21

ZONED regular vs zone append

 Fio: 16 jobs random writing
with 4KB IO size
 Massive competing on the

same zone
 Zone append is better than

ZONED regular by 36%

Zone append writing achieve 36% better in the best case

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 22

Status and On-going Work

 Next patch series targets zone append support in place of regular writes
 Keep asynchronous check-summing (better CPU utilization)
 No additional locking

 But need Zone Append support in SCSI to have a single code base for both SMR
HDDs and ZNS SSDs
 The SCSI disk driver (sd) can emulate it

 Planed optimization
 Remove dedicated path for zoned data writes

 Improve performance on small IO+fsync case
 Opportunistic merging of file extents after end_bio

 Useful also for regular btrfs

Zone append IO path implementation

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 23

Thank you !

Questions ?

© 2020 Western Digital Corporation or its affiliates. All rights reserved. 8/31/2020© 2019 Western Digital Corporation or its affiliates. All rights reserved. 8/31/2020

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 25

Please take a moment
to rate this session.

Your feedback matters to us.

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 26

Disabled Features

 Currently:
 RAID5/6

 Non-full stripe write cause overwriting of parity block
 Rebuilding on high capacity volume (usually SMR) can lead to higher failure rate

 space_cache (v1), NODATACOW
 In-place updates

 Fallocate
 Reserved extent creates a write hole

 MIXED_BG
 Allocated metadata region will be write holes for data writes

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 27

Data Write I/O Submission

 Conventional zones accept random writes
 Do not need block allocation and I/O issuing atomicity

 The code can be simplified by treating conventional zone as sequential
zone
 Maintain allocation pointer
 Per block group mutex lock
 Allows mixing conventional and sequential zones within the same block

group
 Allocation/write state can be inferred on mount from the extent tree

 Act as write pointer position information

Use conventional zones as sequential zones

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 28

Tree-log Block Write I/O Submission
 Use a dedicated metadata block group for tree-log blocks during fsync() processing

 Results in 2 streams of sequentially allocated blocks from two different metadata block
groups
 One stream for tree-log blocks and another for other metadata blocks in transaction

 Sequential writing of both streams is possible in any order
 Each stream in each block group is sequential

 Serializing multiple fsync() transactions is
still necessary
 Blocks allocated in one transaction must be

written before the next transaction allocates
blocks

 Small performance penalty but avoid the
huge performance penalty introduced by
disabling the tree-log

Use a dedicated block group

2020 Storage Developer Conference. © Western Digital Corporation or its affiliates. All Rights Reserved. 29

	File System Native Support of Zoned Block Devices: Regular vs Append writes
	Outline
	Zoned Block Devices
	Native File System Support
	F2FS Support For ZBDs
	Btrfs Native ZBD Support
	Zone Aware Extents and Block Groups
	Sequential Block Writeback
	Data Write I/O Submission Overview
	Regular Data Write I/O Submission
	Regular Data Write I/O Submission
	Zone Append Data Write I/O Submission
	Current Limitation of Zone Append Data Writing
	Metadata Write I/O Submission
	Log Structured Superblock Updates
	Performance Evaluation
	fio – Files Read
	fio – Files Write
	fio – Files Read/Write
	dbench
	ZONED regular vs zone append
	Status and On-going Work
	Thank you !
	Slide Number 24
	Please take a moment �to rate this session. ��Your feedback matters to us. �
	Disabled Features
	Data Write I/O Submission
	Tree-log Block Write I/O Submission
	Slide Number 29

