
Samba locking architecture

SNIA SDC 2020

Volker Lendecke

Samba Team / SerNet

Sept 2020



Implementing SMB on top of Posix file APIs

I SMB and Posix both define file access methods
I SMB is a protocol, Posix defines a local API
I Protocols are understood as “API” these days as well
I Both define files, directories and their metadata

I Superficially similar: You can open/close/read/write, you can create,
list and delete files

I SMB and Posix differ a lot in the details
I Case sensitivity
I Semantics to delete a file
I SMB has FileChangeNotify, Posix does not
I Locking semantics are vastly different: share modes
I SMB as a protocol defines cache coherency with leases

I Samba implements SMB semantics on top of Posix files

Volker Lendecke Samba Status (2 / 20)



Samba architecture

I For every client Samba forks a new process

I Distinct memory spaces in every process

I MS-SMB2 and MS-FSA suggest a lot of shared tables
I Lists of clients, tree connects, open files and others

I Samba can’t use any of those data structures directly

I Samba stores SMB2 and FSA tables in file-backed Key/Value stores

I The lowest layer is tdb (https://tdb.samba.org)
I This is a simple database API. It was inspired by the realisation that in

Samba we have several ad-hoc bits of code that essentially implement
small databases for sharing structures between parts of Samba.

I Shared hash table with hash-chain locking

Volker Lendecke Samba Status (3 / 20)



Trivial Database tdb

I Long ago Samba used System V shared memory
I Data protection using System V semaphores
I The world settled on mmap and fcntl

I TDB is a library for a shared hash table backed by mmap

I tdb fetch()/tdb store()/tdb delete() for data access

I Hash chain locking available for API users: tdb chainlock()

I Many optimizations and extensions over the years
I Transactions using fsync()/msync()
I Many small and large performance improvements

I Still 32-bit: Good enough for transient locking data
I AD Controller switched to OpenLDAP’s lmdb

Volker Lendecke Samba Status (4 / 20)



Clustering tdb

I tdb uses a local shared memory segment for performance
I Shared memory not remotely accessible

I Add a dbwrap layer around tdb that covers required usecases

I dbwrap fetch locked() locks a record and gives r/w access to its
contents
I All write and delete access needs to happen under such a lock

I dbwrap parse record() allows unlocked read

I Flexible implementations for dbwrap:
I Default is local tdb
I dbwrap file implemented one file per record in a cluster file system,

proved initial scalability
I dbwrap ctdb implements API through clustered tdb

Volker Lendecke Samba Status (5 / 20)



dbwrap API excerpt

s t r u c t d b r e c o r d ∗ d b w r a p f e t c h l o c k e d (
s t r u c t d b c o n t e x t ∗db ,
TALLOC CTX ∗mem ctx ,
TDB DATA key ) ;

TDB DATA d b w r a p r e c o r d g e t v a l u e (
c o n s t s t r u c t d b r e c o r d ∗ r e c ) ;

NTSTATUS d b w r a p r e c o r d s t o r e (
s t r u c t d b r e c o r d ∗ rec ,
TDB DATA data ,
i n t f l a g s ) ;

NTSTATUS d b w r a p r e c o r d d e l e t e (
s t r u c t d b r e c o r d ∗ r e c ) ;

Volker Lendecke Samba Status (6 / 20)



Using dbwrap records

I dbwrap fetch locked represents both record data and the lock

I dbwrap record is talloc-based, talloc free() unlocks the record

I The only way to access and modify the record data is via the
functions acting on struct db record

I dbwrap fetch locked is implemented as a function pointer inside
struct db context
I Likewise, dbwrap record delete is a function pointer inside db record

I Other K/V store implementations can implement those “methods”

Volker Lendecke Samba Status (7 / 20)



Opening a file that has a conflicting lease

I For cache coherency, SMB implements leases

I A lease is a guarantee that the lease holder exclusively has a file open
I This allows extensive caching of reads and writes
I There’s more than one type of lease, but for this talk an exclusive lease

should be sufficient

I Client A opens a file, gets a lease. smbd “a” updates locking.tdb

I Client B wants to open a file, smbd “b” finds the lease being taken

I “b” finds “a” in locking.tdb, asks “a” to give up the lease

I “a” asks its Client to give up the lease and modifies locking.tdb

I Questions:
I How does “a” tell “b” about the lease state change?
I What does “b” do in the meantime?

Volker Lendecke Samba Status (8 / 20)



Watching dbwrap records

I smbd “a” gets a message from “b” to break a lease

I “a” could record the source of this message for a later reply

I What if multiple clients want to break this lease simultaneously?
I Maintaining list of recipients is tedious and error-prone

I In a previous implementation, the lease breakers added their PID (“b”
in this case) to the locking.tdb file metadata

I A lease break will eventually manifest by a changed locking.tdb record

I dbwrap watched watch send() abstracts waiting for record changes

Volker Lendecke Samba Status (9 / 20)



API excerpt for watching records

s t r u c t t e v e n t r e q ∗ dbwrap watched watch send (
TALLOC CTX ∗mem ctx ,
s t r u c t t e v e n t c o n t e x t ∗ev ,
s t r u c t d b r e c o r d ∗ rec ,
s t r u c t s e r v e r i d b l o c k e r ) ;

I Watching a record creates an asynchronous computation
I More fancy languages than C would call tevent req a promise
I The tevent req gets fulfilled when “rec” changes
I tevent is LGPL, usable outside of Samba and makes async

programming in C a lot of fun

I “blocker” is a PID that holds the current resource, i.e. “a”

I The tevent req also fires when the blocker dies

Volker Lendecke Samba Status (10 / 20)



Implementation of dbwrap watch

I Layered on top of any dbwrap implementation:

s t r u c t d b c o n t e x t ∗ db open watched (
TALLOC CTX ∗mem ctx ,
s t r u c t d b c o n t e x t ∗∗backend ,
s t r u c t m e s s a g i n g c o n t e x t ∗msg ) ;

I This enables watching records on any lower-level K/V store

I When using such a watched db, transparently a list of watchers is
added to each record

I API users still call dbwrap fetch locked() & friends

I dbwrap record store() on a watched record will ping all watchers

Volker Lendecke Samba Status (11 / 20)



Answering oplock questions

I When asking for a lease break, the breaking process “b” watches the
locking.tdb record when it finds a lease being granted, so:

I How does “a” tell “b” about the lease state change?
I The lease break triggers a record store by “a” on the locking.tdb record
I dbwrap watch takes care of informing “b”

I What does “b” do in the meantime?
I It serves SMB while dbwrap watched watch send()’s promise gets

fulfilled

Volker Lendecke Samba Status (12 / 20)



Fixing tdb over-locking

I tdb at its core is a shared hash table

I dbwrap fetch locked() locks more than it should: It uses
tdb chainlock() locking a whole hash chain

I smbd has to do expensive operations under a lock:
I open(), unlink() and even close() can take ages
I Networked and clustered file systems can be very slow

I Clustered Samba has a problem:
I smbd wants to open a file, takes a chainlock
I File system goes to lunch, smbd blocks in open while holding the lock
I ctdb finds out the node is in trouble, needs to expel the node
I Expelling a node means a recovery walking the whole tdb
I tdb is partially blocked, i.e. ctdb can’t cleanly expel the node

Volker Lendecke Samba Status (13 / 20)



Implementing per-record locks, a bit of history

I Samba depends upon crash-resilient, persistent tdb files:
I Workstation password maintained in secrets.tdb
I Configuration in registry.tdb

I tdb transactions: Lock everything, do the transaction, unlock

I This needs to be extended to the cluster, however:
I ctdb has no global state, can’t do a global lock

I Samba implements advisory locks on top of transient g lock.tdb

I A global lock is represented by one record
I Lock holders enter themselves into a record
I Conflicting lockers patiently wait using dbwrap watch

I tdb chain locks only held very briefly
I No blocking operations under the tdb chainlock

I With g lock.tdb, ctdb transactions are now safe

Volker Lendecke Samba Status (14 / 20)



Implementing per-record locks

I Requirement: Prevent Samba version mismatch in a cluster
I For this, g lock was extended to carry the version string
I g lock write data and g lock parse access the payload

I First smbd takes a shared lock on a version record

I Try to upgrade to an exclusive lock
I If that works, we’re the first one: Write our version
I If that fails, someone else exists in the cluster, compare the version

I Downgrade to a shared lock for others to join

I Implementing locking.tdb on top of g lock now solves the tdb
overlocking problem
I tdb chainlocks not taken while smbd sits in unlink()

Volker Lendecke Samba Status (15 / 20)



locking.tdb payload

uint32 share mode data len

NDR share mode data

share mode entry[0]

. . .

share mode entry[N]

Volker Lendecke Samba Status (16 / 20)



...wrapped in g lock data

server id exclusive

uint64 seqnum

uint32 num shared

server id shared[0]
. . .

server id shared[N]

locking.tdb payload

Volker Lendecke Samba Status (17 / 20)



...wrapped in dbwrap watch data

uint32 num watchers

server id shared[0]
. . .

server id shared[N]

g lock payload

Volker Lendecke Samba Status (18 / 20)



Wrapping up

I Samba implements SMB file semantics using shared memory
I The dbwrap abstraction extends this to a cluster

I Asynchronous monitoring of records is done by an abstract API
I dbwrap watch hides the complexity of explicitly waiting for leases to be

broken

I Per-record locks are implemented on top of dbwrap watch

I Implementation efficiency by avoiding memcpy wherever possible

I This hierarchy could be split at any layer for other K/V stores
I g lock utilizes simple primitives
I K/V stores without locks could utilize g lock for alternatives to ctdb

Volker Lendecke Samba Status (19 / 20)



vl@samba.org / vl@sernet.de
https://www.samba.org / https://www.sernet.de/

Volker Lendecke Samba Status (20 / 20)


