Samba locking architecture

SNIA SDC 2020

Volker Lendecke

Samba Team / SerNet

Sept 2020

Implementing SMB on top of Posix file APls

» SMB and Posix both define file access methods

» SMB is a protocol, Posix defines a local API
» Protocols are understood as “API" these days as well
» Both define files, directories and their metadata

» Superficially similar: You can open/close/read/write, you can create,
list and delete files

» SMB and Posix differ a lot in the details

» Case sensitivity

» Semantics to delete a file

» SMB has FileChangeNotify, Posix does not

» Locking semantics are vastly different: share modes

» SMB as a protocol defines cache coherency with leases

» Samba implements SMB semantics on top of Posix files

Volker Lendecke Samba Status (2 / 20) SerNet

Samba architecture

» For every client Samba forks a new process

» Distinct memory spaces in every process

MS-SMB2 and MS-FSA suggest a lot of shared tables

» Lists of clients, tree connects, open files and others

v

v

Samba can’t use any of those data structures directly
» Samba stores SMB2 and FSA tables in file-backed Key/Value stores

» The lowest layer is tdb (https://tdb.samba.org)

» This is a simple database API. It was inspired by the realisation that in
Samba we have several ad-hoc bits of code that essentially implement
small databases for sharing structures between parts of Samba.

» Shared hash table with hash-chain locking

Volker Lendecke Samba Status (3 / 20) SerNet

Trivial Database tdb

» Long ago Samba used System V shared memory

» Data protection using System V semaphores
» The world settled on mmap and fentl

> TDB is a library for a shared hash table backed by mmap
» tdb_fetch()/tdb_store()/tdb_delete() for data access

» Hash chain locking available for API users: tdb_chainlock()

> Many optimizations and extensions over the years

» Transactions using fsync()/msync()
» Many small and large performance improvements

> Still 32-bit: Good enough for transient locking data
» AD Controller switched to OpenLDAP’s Imdb

Volker Lendecke Samba Status (4 / 20) SerNet

Clustering tdb

» tdb uses a local shared memory segment for performance
» Shared memory not remotely accessible

» Add a dbwrap layer around tdb that covers required usecases

» dbwrap_fetch_locked() locks a record and gives r/w access to its
contents

» All write and delete access needs to happen under such a lock

» dbwrap_parse_record() allows unlocked read

» Flexible implementations for dbwrap:
» Default is local tdb
» dbwrap_file implemented one file per record in a cluster file system,
proved initial scalability
» dbwrap_ctdb implements API through clustered tdb

Volker Lendecke Samba Status (5 / 20) SerNet

dbwrap API excerpt

struct db_record xdbwrap_fetch_locked (
struct db_context xdb,
TALLOC_CTX *mem_ctx,
TDB_DATA key);

TDB_DATA dbwrap_record_get_value(
const struct db_record xrec);

NTSTATUS dbwrap_record_store(
struct db_record xrec,
TDB_DATA data,
int flags);

NTSTATUS dbwrap_record_delete(
struct db_record xrec);

Volker Lendecke Samba Status (6 / 20)

SerNet

Using dbwrap records

» dbwrap_fetch_locked represents both record data and the lock
» dbwrap_record is talloc-based, talloc_free() unlocks the record

» The only way to access and modify the record data is via the
functions acting on struct db_record

» dbwrap_fetch_locked is implemented as a function pointer inside
struct db_context

> Likewise, dbwrap_record_delete is a function pointer inside db_record

» Other K/V store implementations can implement those “methods”

Volker Lendecke Samba Status (7 / 20) SerNet

Opening a file that has a conflicting lease

\4

vVvyVvyVyysey

For cache coherency, SMB implements leases

A lease is a guarantee that the lease holder exclusively has a file open
» This allows extensive caching of reads and writes

» There's more than one type of lease, but for this talk an exclusive lease
should be sufficient

Client A opens a file, gets a lease. smbd “a” updates locking.tdb

Client B wants to open a file, smbd “b" finds the lease being taken

“b"” finds “a" in locking.tdb, asks “a” to give up the lease

a" asks its Client to give up the lease and modifies locking.tdb

Questions:

w_n

> How does “a” tell “b" about the lease state change?
» What does “b" do in the meantime?

Volker Lendecke Samba Status (8 / 20) SerNet

Watching dbwrap records

> smbd “a"” gets a message from “b"” to break a lease

a" could record the source of this message for a later reply

\4

v

What if multiple clients want to break this lease simultaneously?
» Maintaining list of recipients is tedious and error-prone

» In a previous implementation, the lease breakers added their PID (“b
in this case) to the locking.tdb file metadata

> A lease break will eventually manifest by a changed locking.tdb record

» dbwrap_watched_watch_send() abstracts waiting for record changes

Volker Lendecke Samba Status (9 / 20) SerNet

API excerpt for watching records

struct tevent_req xdbwrap_watched _watch_send (
TALLOC_CTX *mem_ctx,
struct tevent_context xev,
struct db_record xrec,
struct server_id blocker);

> Watching a record creates an asynchronous computation

» More fancy languages than C would call tevent_req a promise

» The tevent_req gets fulfilled when “rec” changes

» tevent is LGPL, usable outside of Samba and makes async
programming in C a lot of fun

» “blocker” is a PID that holds the current resource, i.e. “a"

> The tevent_req also fires when the blocker dies

Volker Lendecke Samba Status (10 / 20) SerNet

Implementation of dbwrap_watch

» Layered on top of any dbwrap implementation:

struct db_context xdb_open_watched(
TALLOC_CTX *mem_ctx,
struct db_context =xxbackend,
struct messaging_context xmsg);

» This enables watching records on any lower-level K/V store

> When using such a watched db, transparently a list of watchers is
added to each record

» API users still call dbwrap_fetch_locked() & friends

» dbwrap_record_store() on a watched record will ping all watchers

Volker Lendecke Samba Status (11 / 20) SerNet

Answering oplock questions

» When asking for a lease break, the breaking process “b" watches the
locking.tdb record when it finds a lease being granted, so:

> How does “a” tell “b" about the lease state change?

P The lease break triggers a record_store by “a" on the locking.tdb record
» dbwrap_watch takes care of informing “b"

» What does “b" do in the meantime?

> It serves SMB while dbwrap_watched_watch_send()'s promise gets
fulfilled

Volker Lendecke Samba Status (12 / 20) SerNet

Fixing tdb over-locking

» tdb at its core is a shared hash table

» dbwrap_fetch_locked() locks more than it should: It uses
tdb_chainlock() locking a whole hash chain

» smbd has to do expensive operations under a lock:

> open(), unlink() and even close() can take ages
> Networked and clustered file systems can be very slow

» Clustered Samba has a problem:

» smbd wants to open a file, takes a chainlock

> File system goes to lunch, smbd blocks in open while holding the lock
» ctdb finds out the node is in trouble, needs to expel the node

» Expelling a node means a recovery walking the whole tdb

» tdb is partially blocked, i.e. ctdb can't cleanly expel the node

Volker Lendecke Samba Status (13 / 20) SerNet

Implementing per-record locks, a bit of history

» Samba depends upon crash-resilient, persistent tdb files:

» Workstation password maintained in secrets.tdb
» Configuration in registry.tdb

v

tdb transactions: Lock everything, do the transaction, unlock

v

This needs to be extended to the cluster, however:
» ctdb has no global state, can't do a global lock

\4

Samba implements advisory locks on top of transient g_lock.tdb

v

A global lock is represented by one record

» Lock holders enter themselves into a record
» Conflicting lockers patiently wait using dbwrap_watch

» tdb chain locks only held very briefly
» No blocking operations under the tdb chainlock

> With g_lock.tdb, ctdb transactions are now safe

Volker Lendecke Samba Status (14 / 20) SerNet

Implementing per-record locks

» Requirement: Prevent Samba version mismatch in a cluster

> For this, g_lock was extended to carry the version string
» g lock_write_data and g_lock_parse access the payload

» First smbd takes a shared lock on a version record

P> Try to upgrade to an exclusive lock

» |f that works, we're the first one: Write our version
» |f that fails, someone else exists in the cluster, compare the version

» Downgrade to a shared lock for others to join

» Implementing locking.tdb on top of g_lock now solves the tdb
overlocking problem

» tdb chainlocks not taken while smbd sits in unlink()

Volker Lendecke Samba Status (15 / 20) SerNet

locking.tdb payload

uint32 share_mode_data_len

NDR share_mode_data

share_mode_entry[0]

share_mode_entry[N]

Volker Lendecke Samba Status (16 / 20) SerNet

...wrapped in g_lock data

| server_id exclusive |

| uint64 seqnum |

uint32 num_shared

server_id shared[0]

server_id shared[N]

locking.tdb payload

Volker Lendecke Samba Status (17 / 20) SerNet

...wrapped in dbwrap_watch data

uint32 num_watchers

server_id shared[0]

server_id shared[N]

g_lock payload

Volker Lendecke Samba Status (18 / 20) SerNet

Wrapping up

» Samba implements SMB file semantics using shared memory
» The dbwrap abstraction extends this to a cluster

» Asynchronous monitoring of records is done by an abstract API

» dbwrap_watch hides the complexity of explicitly waiting for leases to be
broken

» Per-record locks are implemented on top of dbwrap_watch

» Implementation efficiency by avoiding memcpy wherever possible

» This hierarchy could be split at any layer for other K/V stores
» g lock utilizes simple primitives
> K/V stores without locks could utilize g_lock for alternatives to ctdb

Volker Lendecke Samba Status (19 / 20) SerNet

vl@samba.org / vl@sernet.de
https://www.samba.org / https://www.sernet.de/

Volker Lendecke Samba Status (20 / 20) SerNet

