
2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 1

How can persistent memory
make database faster, and
how could we go ahead?

Takashi Menjo
NTT Software Innovation Center
(Nippon Telegraph and Telephone Corporation)

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 2

Persistent memory and PostgreSQL

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 3

Persistent memory (PMEM)

 Byte-addressable and non-volatile
 Faster-to-access than disk
 Available on major operating systems
 Encouraged by PMDK, a dedicated library
 Application? Database! PostgreSQL!!

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 4

PostgreSQL

 Relational database management system
 Represents data as two-dimensional tables

 Disk-based
 Stores tables and indices on disk

 Open-source
 Developed by many contributors including NTT

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 5

PostgreSQL getting faster with PMEM

How we’ve tried to make it PMEM-aware:

 Use PMEM as an alternative of disk
 Straightforward, but not really “PMEM-aware” yet

 Replace file I/O API with PMDK
 Simple, good for middle step, but less effective

 Re-design its architecture
 Challenging, but more effective

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 6

Outlines

 Persistent memory and PostgreSQL
 PostgreSQL’s architecture and its re-design
 Evaluation setup
 Performance and profile results
 How could we go ahead?

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 7

PostgreSQL’s architecture
and its re-design

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 8

Overall architecture

Shared
buffer

Data files

WAL buffer
Table Index

Client

postgres (server)

Record

...

Disk

DRAM

WAL filesDisk

: :
...

3 2

1

4

5

6

1. Receives a transaction from a client
2. Updates tables etc. to process the

transaction
3. Stores transaction log records (aka

Write-Ahead Log) to the ring buffer
called “WAL buffer”

4. On commit, writes the records out
to WAL files synchronously, that is,
waits until the records hit to disk

5. Sends an acknowledgement to the
client to finish the transaction

6. On checkpoint, writes tables etc.
back to data files

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 9

Logging and checkpointing

Shared
buffer

Data files

WAL buffer
Table Index

Client

postgres (server)

Record

...

Disk

DRAM

WAL filesDisk

: :
...

• Logging is more critical than
checkpointing for transaction
performance
• Logging is synchronous with

transaction processing, while
checkpointing is asynchronous

• We’ve focused to improve
logging by using PMEM

Logging Check-
pointing

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 10

Two-level logging architecture

Shared
buffer

Data files

WAL buffer
Table Index

Client

postgres (server)

Record

...

Disk

DRAM

WAL filesDisk

: :
...

1. Buffers WAL on DRAM; then
2. Writes them out to disk

• Gains much performance when
using disk
• Disk is worse at small and/or

random access than DRAM
• Buffering makes large and

sequential access which is
suitable for disk

1

2

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 11

Using PMEM as an alternative of disk

Shared
buffer

Data files

WAL buffer
Table Index

Client

postgres (server)

Record

...

Disk

DRAM

WAL filesPMEM

: :
...

• Create a PMEM-aware
filesystem on PMEM
• Bypasses page cache

• Use PostgreSQL as is
• Calls the same file API as

before, such as lseek, write,
fdatasync etc.

• Not a PMEM-aware application
yet, and still two-level logging

1

2

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 12

WAL filesPMEM

: :
...

Replacing file I/O API with PMDK

Shared
buffer

Data files

WAL buffer
Table Index

Client

postgres (server)

Record

...

Disk

DRAM

Mapped
WAL file

...

Memory map

(Yoshimi talked in SDC 2018)

• Map WAL files onto memory
• Bypass page cache by using DAX

feature of PMEM-aware filesystem

• Use memory copy, CPU cache
flush, and memory barrier
functions instead of file API

• PMEM-aware application, but still
two-level logging

1

2

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 13

WAL filesPMEM

: :
...

An idea for architecture re-design

Shared
buffer

Data files

WAL buffer
Table Index

Client

postgres (server)

Record

...

Disk

DRAM

Mapped
WAL file

...

Memory map

• Is it necessary to store the same
WAL twice when using PMEM?

• Why not store WAL directly to
PMEM to improve performance
by reducing their copy to one?
• It could be possible because

PMEM is byte-addressable,
non-volatile, and better at
small and random access
than disk

1

2

?

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 14

Single-level logging architecture

Shared
buffer

Data files

Table Index

Client

postgres (server)

...

...

Disk

DRAM

Buffer filePMEM

...

Non-volatile
WAL buffer

Record ...

• Make and map a buffer file as
non-volatile WAL buffer

• Store WAL directly to that buffer
• Need only one copy for each

log record
• On commit, flush CPU cache for

those WAL to let them persist
onto PMEM1

CPU
cache
flush

Memory map

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 15

Evaluation setup

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 16

Purpose and method

 Evaluate our re-design on the following points:
 Transaction performance
 Performance profile

 Use pgbench and VTune Profiler to measure…
 Transaction throughput and average latency
 CPU time of each function, especially logging one

 For a certain amount of transactions
 For a certain benchmark duration (30 minutes)

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 17

Setup (1/3)
pgbench (client)

postgres (server)

Shared buffer

PCIe SSD

NUMA
Node 1
Node 0

For all setups:
• Run server and client processes on the

same machine but distinct NUMA nodes to
get stable performance

• Store logs in a device for log (PCIe SSD or
PMEM), and tables etc. in a separate SSD
to reduce the impact of checkpointing

• Choose several values for the degrees of
parallelism of pgbench (# connections and
threads, reffered to as “c” and “j”) to see
performance variation

Logging
Table Index

Device
for log

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 18

Setup (2/3)

Logging

Device
for log

WAL buffer
Record ...

PCIe SSD

WAL files ...

WAL buffer
Record ...

PMEM

WAL files ...

WAL buffer
Record ...

PMEM

WAL files ...

Mapped
WAL file

Record ...

PMEM

Non-volatile
WAL buffer

Record ...

Buffer file

Original
(SSD)

Original
(PMEM)

Mapped
WAL file

Non-volatile
WAL buffer

CPU
cache
flush

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 19

Setup (3/3)
“No WAL” setup:
• Suppress logging AFAP by using the

following PostgreSQL’s features:
• Unlogged table to store no WAL except

COMMIT records
• Asynchronous commit to send ack. to

the clients before writing WAL
• Used as a reference of “upper-limit

performance”
• Not durable, but probably the fastest of

the five setups

(*NVDIMM-N or Optane PMem)

Logging

Device
for log

WAL buffer
Record ...

PCIe SSD

WAL files ...

No WAL

Async.

COMMIT
only

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 20

Logging functions

WAL buffer
Record ...

PCIe SSD / PMEM

WAL files ...

WAL buffer
Record ...

PMEM

WAL files ...

Mapped
WAL file

Record ...

PMEM

Non-volatile
WAL buffer

Record ...

Buffer file

Original (SSD) /
Original (PMEM) /

No WAL†

Mapped
WAL file

Non-volatile
WAL buffer

CPU
cache
flush

XLogInsert stores
WAL to the buffer

XLogFlush makes
WAL durable onto
persistent device
when committing

(† “No WAL” spends no time for
this function because it uses
asynchronous commit)

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 21

Hardware, software, and configuration
Hardware

System HPE ProLiant DL380 Gen10

CPU Intel Xeon Gold 6240M x2 sockets
(18 cores per socket; HT disabled by BIOS)

DRAM DDR4 2933MHz 192GiB/socket x2 sockets
(32GiB per channel x 6 channels per socket)

Optane PMem DDR4 2666MHz 1.5TiB/socket x2 sockets
(Apache Pass; 256GiB per channel x 6 channels per
socket; interleaving enabled; AppDirect Mode)

PCIe SSD DC P4800X Series SSDPED1K750GA

Software

Distro Ubuntu 20.04.1

C compiler gcc 9.3.0

libc glibc 2.31

Linux kernel 5.7 (vanilla kernel)

Filesystem ext4 (DAX enabled when using Optane PMem)

PMDK 1.9

PostgreSQL 14devel (200f610 on Jul 26, 2020)

VTune Profiler 2020 Update 2 (build 610396)

postgresql.conf Value

max_connections 300

shared_buffers 32GB

checkpoint_timeout 12min

checkpoint_completion_target 0.7

{max,min}_wal_size 80GB

random_page_cost 1.0

effective_cache_size 96GB

autovacuum_max_workers 4

autovacuum_freeze_max_age 2000000000 (2×109)

autovauum_vacuum_cost_limit 400

pgbench

Scale factor (-i -s) 50

Database connection Unix domain socket

Query mode (-M) prepared

Transaction script (-b) tpcb-like (default)

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 22

Performance and profile results

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 23

Performance (Optane PMem)
• “Non-volatile WAL

buffer” achieves better
throughput and latency
than the other durable
setups
• Close to “No WAL” or

even better than that
when (c, j)=(18,18)

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 24

Logging profile (Optane Pmem)

• XLogFlush time
decreases (details in the
next slide)

• In regard to “Non-volatile
WAL buffer,” XLogInsert
time increases while total
logging time decreases
• Probably because

Optane PMem is a little
slower than DRAM

XLog
Insert

XLog
Flush

Better

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 25

XLogFlush profile (Optane Pmem)

• “Non-volatile WAL buffer”
eliminates write and lock
time in XLogFlush
• Needs no write but CPU

cache flush to make log
records durable

• Needs no WAL lock
coming with write

XLog
Insert

XLog
Flush

Better

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 26

Total profile (Optane Pmem)
• Logging (XLogFlush +

XLogInsert) time
decreases

• ReadCommand
(reading transactions
sent by clients) time is
almost equal in each
setup

Better

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 27

30-minues profile (Optane Pmem)

1,800 sec
×

18 core

• More time is spent for
ReadCommand and
other functions, that is,
transaction processing
• Throughput increases

as ReadCommand
time increases

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 28

Evaluation of our re-design

PostgreSQL can use PMEM better than before
by single-level logging architecture!

 Improves both throughput and latency
 Eliminates lock time in addition to write time
 Spends more time for reading and processing

transactions

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 29

How could we go ahead?

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 30

Less flush, better performance
Flushing CPU cache on insertion was
turned out to be a bad idea:
• Simpler to implement, but required more

flush for each transaction
• One transaction may insert multiple log

records while commits at most once

• Got bad performance, even worse than
“Original (PMEM)” when using Optane
PMem

PMEM

Non-volatile
WAL buffer

Record ...

Buffer file

CPU
cache
flush

XLog
Insert

XLog
Flush
(on commit)

CPU
cache
flush

Non-volatile
WAL buffer



2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 31

Less overhead, better performance

PMEM

WAL files ...

Mapped
WAL file

Record ...

PMEM

Non-volatile
WAL buffer

Record ...

Buffer file

WAL file as
WAL buffer

Non-volatile
WAL buffer

CPU
cache
flush

Mapping the existing WAL file as WAL
buffer turned out to be a bad idea:
• Simple to implement, but required to

switch to the next file for every 16 MB
(default size of WAL file)

• Got worse performance than “Non-
volatile WAL buffer” due to …
• Unmapping old file and mapping new one
• Page fault for the newly-mapped file

CPU
cache
flush

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 32

How about tables and indices?

Shared
buffer

Data files

Table Index

Client

postgres (server)

...

...

PMEM

DRAM
Logging

Device
for log

Data files

Table Index
...

...

Data files

...

Table Index
... ...or

Mapped
data files

Non-volatile
tables/indices

?

Original

CPU
cache
flush

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 33

Mapped data files for checkpointing

Data files

Table Index
...

...

...

Mapped
data files

“Impedance mismatch” between file
API and memory-mapped file:
• Data files are extensible while

mapping requires fixed file size
• Cf. each WAL file has fixed size

• No silver bullet
• Pre-allocating large files would waste

PMEM space
• Critical when using small NVDIMM-N

• Remapping on extension would degrade
performance

Data files

Table Index
...

...

Original

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 34

Non-volatile tables/indices

Data files

Table Index
...

...

Original

Data files

...

Table Index
...

Non-volatile
tables/indices

PMEM’s speed and capacity:
• NVDIMM-N is fast but small to store

large tables and indices
• Optane PMem is large but a little

slower than DRAM in both load and
store, so it may even degrade read-
only transaction performance

CPU
cache
flush

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 35

PMEM-aware data structure

Disk-based to memory-based:
 Granularity: Page to byte or cache-line
 Arrangement: Sequential to random
 Referencing: Offset to pointer

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 36

Proposal to PostgreSQL community

Non-volatile WAL buffer:
 https://www.postgresql.org/message-

id/flat/002f01d5d28d%2423c01430%246b403c90%24%4
0hco.ntt.co.jp_1
 Or search the Web with “Non-volatile WAL buffer,” find

the page on www.postgresql.org, and view “Whole
Thread”

 The latest patchset is v3 (or might be v4). Feedbacks are
welcome :)

https://www.postgresql.org/message-id/flat/002f01d5d28d$23c01430$6b403c90$@hco.ntt.co.jp_1

2020 Storage Developer Conference. © Nippon Telegraph and Telephone Corporation. All Rights Reserved. 37

Resources
 “Mapped WAL files” patchset

 https://www.postgresql.org/message-
id/flat/CAOwnP3ONd9uXPXKoc5AAfnpCnCyOna1ru6sU%3
DeY_4WfMjaKG9A%40mail.gmail.com

 Yoshimi’s presentation in SNIA SDC 2018
 https://www.snia.org/sites/default/files/SDC/2018/presentati

ons/PM/Ichiyanagi_Yoshimi_Challenges_for_Implementing
_PMEM_Aware_Application_with_PMDK.pdf

https://www.postgresql.org/message-id/flat/CAOwnP3ONd9uXPXKoc5AAfnpCnCyOna1ru6sU=eY_4WfMjaKG9A@mail.gmail.com
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Ichiyanagi_Yoshimi_Challenges_for_Implementing_PMEM_Aware_Application_with_PMDK.pdf

	How can persistent memory make database faster, and how could we go ahead?
	Persistent memory and PostgreSQL
	Persistent memory (PMEM)
	PostgreSQL
	PostgreSQL getting faster with PMEM
	Outlines
	PostgreSQL’s architecture�and its re-design
	Overall architecture
	Logging and checkpointing
	Two-level logging architecture
	Using PMEM as an alternative of disk
	Replacing file I/O API with PMDK
	An idea for architecture re-design
	Single-level logging architecture
	Evaluation setup
	Purpose and method
	Setup (1/3)
	Setup (2/3)
	Setup (3/3)
	Logging functions
	Hardware, software, and configuration
	Performance and profile results
	Performance (Optane PMem)
	Logging profile (Optane Pmem)
	XLogFlush profile (Optane Pmem)
	Total profile (Optane Pmem)
	30-minues profile (Optane Pmem)
	Evaluation of our re-design
	How could we go ahead?
	Less flush, better performance
	Less overhead, better performance
	How about tables and indices?
	Mapped data files for checkpointing
	Non-volatile tables/indices
	PMEM-aware data structure
	Proposal to PostgreSQL community
	Resources

