
Is Persistent Memory Persistent?

(or, How to Test Against Power Failures)

Terence Kelly and Haris Volos

tpkelly@eecs.umich.edu
hvolos01@cs.ucy.ac.cy

SNIA Storage Developer Conference

recorded 9 September 2020

Qc2019–2020 Terence Kelly and Haris Volos, all rights reserved.
1

mailto:tpkelly@eecs.umich.edu
mailto:hvolos01@cs.ucy.ac.cy

Topic

Stress-testing hardware & software against power failures

persistent memory
relational database management systems
anything that must survive power failures

How to test

cost-effectively
thoroughly
convincingly

2

Further Reading

Communications of the ACM,
September 2020

hard copy delivered to ACM
members (if USPS still works)
ACM Digital Library (paywall)
dl.acm.org

ACM Queue magazine,
March/April 2020

no paywall
queue.acm.org

3

Data Integrity

Protecting application data is Job One

Threat: crashes

application process crash
OS kernel panic
power failure

Power failure during update

corrupt data
destroy data by corrupting metadata
e.g., bank transfer creates/destroys money

4

Failure-Atomic Update

Applications update data atomically w.r.t. failure

Evolve data from one consistent state to the next

post-crash, restore data to one or the other

application recovers from consistent state

Examples

ACID transactions in RDBMS
transactional key-value stores
new mechanisms for persistent memory

5

Failures of Failure-Atomicity & Persistence

Zheng et al., “Torturing Databases,” OSDI ’14
ACID transactions in RDBMSes aren’t ACID

transactional key-value stores aren’t transactional

they’re all broken

Zheng et al., “SSDs Under Power Fault,” FAST ’13

SSDs lose data

Casts doubt on all hardware & software

especially new stuff

6

Performance Optimization: Threat or Menace?

Fast parachutes

Spectre/Meltdown: fast CPUs
Rowhammer: fast, dense DRAM

Performance benchmarks abound

Integrity benchmarks?

Industry makes bad choices that hurt us

7

What To Do?

Can’t trust software or hardware beneath application

But you can test it

Train as you would fight

test against realistic failures

Sudden whole-system power interruptions

Big picture: reliability & assurance

8

Less Strenuous Tests

$ kill -9 [pid] andraise(SIGABRT);

OS & hardware unaffected

$ shutdown now and injected OS kernel panic

hasty but orderly shutdown
hardware unaffected

Management layer power-off

gentler than genuine power disconnection

Gold standard: sudden whole-system power interruptions

9

Outline

Motivation

Power-fail testbed

Persistent memory tests

RDBMS tests (breaking news / exclusive!)

10

Powerfail Testbed Requirements

Machine hosting h/w & s/w under test cuts its own power

allows precise injection of power outages
e.g., between every pair of semicolons in critical code

Host reboots quickly and automatically

to start next test cycle

Host is rugged

survives many thousands of off/on cycles

Testbed is cheap

every starving student needs one
successful results are more compelling

11

Host Computer: Bad Choices

Rented server (“cloud”)

unreal: mummified in virtualization
customer software can’t cut power to bare metal

High-end servers

management interfaces “power off” too gently
expensive
real power outages might damage the pricey box

Laptops

lack BIOS features to reboot on restoration of AC power

Workstations & PCs

boot slowly
bulky, power-hungry

12

Our Old Testbeds

controller

13

system under test

AC power strip
with network interface

AC wall
outlet

Better Host: Single-Board Computer

E.g., Raspberry Pi

we use model 3B+

Cheap, expendable

Rugged

Runs Linux OS & applications

Boots quickly and automatically when power restored

GPIO pins designed to control external circuitry

Flimsy

tests pass on Pi =⇒ likely pass on fancier host

14

New Testbed

single−board
computer

15

power−interruption
circuit

wee relay
GPIO
pins

USB
storage

power
supply

(AC−DC
converter)

Wee Relay

16

Goldilocks and the Three Power Interruption Circuits

First was too complex

two relays; dedicated second power supply; IC timer chip;

several resistors, capacitors, diodes

Second was too simple

power-off delay too short, not controllable

Third was just right
adjustable power-off delay

low component count

17

Relay-Only Circuit (Too Simple)

_

+_

3.3V
GPIOto Pi to Pi

5.1V
power +

1 Pi’s power thru N.C. contacts

2 Software on Pi sets GPIO pin “HI”

3 Relay coil energized

4 Poles jump away from N.C. contacts

5 Power to Pi cut

6 GPIO pin goes “LO”

7 Poles fall back to N.C. position

8 Power to Pi restored

9 Pi reboots

18

Momentary outage unrealistic?

“PiNap” Circuit

Use same relay & diode

Add two capacitors and a resistor

Route wires thoughtfully

19

“PiNap” Circuit: NormalOperation

Pi’s power

runs thru normally closed contacts

charges capacitors

20

“PiNap” Circuit: Transient

1 Software on Pi sets GPIO pin “HI”

2 Relay poles in flight N.C. to N.O.

3 Capacitor C2 briefly powers Pi

21

“PiNap” Circuit: NapTime

1 Relay poles reach N.O. contacts

2 Capacitor C1 discharges thru coil

(RC constant determines nap

duration)

3 C1 discharged =⇒ coil de-energized

4 Poles fall back to N.C. contacts

5 Pi powers on & reboots

6 Next test cycle begins

Cycle time ≈ 1 min

22

PiNap Circuit Prototype

23

Complete Testbed

24

Tips for Builders

Use supercap instead of electrolytic for C1

Mind the polarity of components

diode, relay coil, capacitors

Avoid GPIO pins that fluctuate during boot

See CACM/Queue article for details

25

Host System Configuration & Test Software

Lots of details

Basic idea:

at boot, cron job runs scripts that start software under test,

wait a while, trigger power-off via GPIO pins

Make sure files don’t pile up in places like /var/tmp

Read the CACM or Queue article

Tarball of code is provided:

everything you need to reproduce my tests or run your own

26

Testing Persistent Memory

Definitions

Implementations

Tests

27

Persistent Memory

/= non-volatile memory

Software abstraction

Implementable on conventional hardware

ACM Queue, Vol. 17, No. 4, July/August 2019
USENIX ;login:, Vol. 44, No. 4, Winter 2019

Basic trick: lay out data structures in mmap()’d file

Crash consistency: failure-atomic msync() (FAMS)

28

Is Failure-Atomic msync() Failure-Atomic?

Let PiNap decide

Test famus snap library

very simple user-space FAMS
leverages file cloning: ioctl(FICLONE)

USENIX ;login:, Vol. 44, No. 4, Winter 2019

29

Test “Application”

Repeatedly

Fill memory with pseudo-random pattern
Call failure-atomic msync()

Cut & restore power with PiNap

Check for corruption in backing file

Three storage devices

$30 64-GiB flash thumbdrive
$90 500-GiB portable SSD
$220 512-GiB flash memory stick

30

Results

Over 58,000 power-off/on tests

All tests pass

not one byte lost or damaged

Caveat: Dijkstra on bugs

31

Second Testbed

32

Second Testbed

33

Using PiNap to Test Databases

Goal: study SQLite relational database under power faults

Methodology: Use cron job to:

load database with known initial data
run transaction workload to stress database and trigger errors
trigger power-off at a random time while running workload

34

Transaction Workloads

Two single-threaded transaction workloads (based on Zheng et al.,

OSDI 2014)

Workload 1: Transaction updates multiple accounts with
known values

tests large transactions

Workload 2: Transaction moves money between accounts

tests multi-row consistency

35

Work in Progress

Student is implementing SQL queries for above workloads

Next step: first test SQLite, then test MariaDB (MySQL) and

mmap()-based LightningDB

36

Summary

Power failures threaten application data integrity

Failure-atomic update mechanisms protect data

or so they claim

Realistic testing is necessary

RPi + novel PiNap circuit = cheap, useful testbed

under $100
10,000 tests per week

famus snap library survives over 50K power failures

it’s either reliable or very lucky

Work in progress: Test SQLite relational database Work

in progress (by others): Optane memory testbeds

37

