Is Persistent Memory Persistent?

(or, How to Test Against Power Failures)

Terence Kelly and Haris Volos

tpkelly@eecs.umich.edu
hvolos0l@cs.ucy.ac.cy

SNIA Storage Developer Conference
recorded 9 September 2020

Q2019-2020 Terence Kelly and Haris Volos, all rights reserved.

mailto:tpkelly@eecs.umich.edu
mailto:hvolos01@cs.ucy.ac.cy

m Stress-testing hardware & software against power failures
m persistent memory
m relational database management systems
m anything that must survive power failures

m How to test
m cost-effectively
m thoroughly
m convincingly

Further Reading

Vome 8 | Issue2

ﬂEﬂ][lUEIJE

Power
to the

IS PERSISTENT = Peor
MEMORY

PERSISTENT?
BncFutnre)

Debugging Incidents in
Google's Distributed Systems

m Communications of the ACM,
September 2020
= hard copy delivered to ACM
members (if USPS still works)
m ACM Digital Library (paywall)

dl.acm.org

m ACM Queue magazine,
March/April 2020

® no paywall
queue.acm.org

Data Integrity

m Protecting application data is Job One
s Threat: crashes
m application process crash

m OS kemel panic
m power failure

m Power failure during update

m corrupt data
m destroy data by corrupting metadata
m e.g., bank transfer creates/destroys money

Failure-Atomic Update

= Applications update data atomically w.r.t. failure
= Evolve data from one consistent state to the next
m post-crash, restore data to one or the other
m application recovers from consistent state
m Examples

m ACID transactions in RDBMS
m transactional key-value stores
m new mechanisms for persistent memory

Failures of Failure-Atomicity & Persistence

m Zheng et al., “Torturing Databases,” OSDI 14
a ACID transactions in RDBMSes aren't ACID
= transactional key-value stores aren't transactional
m they're all broken
m Zheng et al., "SSDs Under Power Fault,” FAST 13
m SSDs lose data
m Casts doubt on all hardware & software
m especially new stuff

Performance Optimization: Threat or Menace?

Fast parachutes

m Spectre/Meltdown: fast CPUs
m Rowhammer: fast, dense DRAM

Performance benchmarks abound
Integrity benchmarks?
Industry makes bad choices that hurt us

What To Do?

» Can't trust software or hardware beneath application
a But you can test it

m Train as you would fight
m test against realistic failures
s Sudden whole-system power interruptions

m Big picture: reliability & assurance

Less Strenuous Tests

m $ kill -9 [pid] andraise (SIGABRT) ;
m OS & hardware unaffected
m $ shutdown now and injected OS kernel panic

m hasty but orderly shutdown
= hardware unaffected

= Management layer power-off
m gentler than genuine power disconnection

® Gold standard: sudden whole-system power interruptions

Outline

Motivation
Power-fail testbed

Persistent memory tests

RDBMS tests (breaking news / exclusive!)

Powerfail Testbed Requirements

m Machine hosting h/w & s/w under test cuts its own power

m allows precise injection of power outages
m e.g., between every pair of semicolons in critical code

= Host reboots quickly and automatically

m to start next test cycle
m Host is rugged

m survives many thousands of off/on cycles
m Testbed is cheap

m every starving student needs one
m successful results are more compelling

Host Computer: Bad Choices

m Rented server (“cloud”)

m unreal: mummified in virtualization
m customer software can't cut power to bare metal

= High-end servers

m management interfaces “power off” too gently

m expensive

m real power outages might damage the pricey box
m Laptops

m Jack BIOS features to reboot on restoration of AC power
= Workstations & PCs

® boot slowly

m bulky, power-hungry

Our Old Testbeds

controller system under test

AC wall
outlet

AC power strip
with network interface

Better Host: Single-Board Computer

E.g., Raspberry Pi
= we use model 3B+
Cheap, expendable
Rugged
Runs Linux OS & applications
Boots quickly and automatically when power restored
GPIO pins designed to control external circuitry
Flimsy
m tests pass on Pi == likely pass on fancier host

New Testbed

single—board
computer

power ower—interruption
(;ge%% POV Gireuit P j:E
converter)

wee relay GPIO
/\ pins

CE]

uUsB
storage

Goldilocks and the Three Power Interruption Circuits

m First was too complex
m tworelays; dedicated second power supply; IC timer chip;
several resistors, capacitors, diodes
= Second was too simple
m power-off delay too short, not controllable
m Third wasjust right
a adjustable power-off delay
m low component count

Relay-Only Circuit (Too Simple)

o1
H
<
=

Pi’s power thru N.C. contacts
Software on Pi sets GPIO pin “HI”
Relay coil energized

21 Poles jump away from N.C. contacts
Power to Pi cut

g GPIO pin goes “LO"

Poles fall back to N.C. position

i Power to Pi restored

2 Pi reboots

[N

=

Y 3.3V Y

toPi GPIO toPi
Momentary outage unrealistic?

“PiNap” Circuit

5.1V

@ power @

Cl1

HHWA
,“&.

1

=

I. @
33V
toPi GPIO toPi

(a)

m Use samerelay & diode
= Add two capacitors and a resistor

a Route wires thoughtfully

“PiNap” Circuit: Normal Operation

e ®
Simitie)
Pi's power
l = runs thru normally closed contacts
J— a charges capacitors
=1\ [
[é@y
M
o o

(b) "

“PiNap” Circuit: Transient

(c)

Software on Pi sets GPIO pin “HI"”
Relay poles in flight N.C. to N.O.
El Capacitor C2 briefly powers Pi

21

“PiNap” Circuit: Nap Time

? ® Relay poles reach N.O. contacts
v l Capacitor C1 discharges thru coll
L (RC constant determines nap

I duration)

. gl C1 discharged == coil de-energized
=t = @ Poles fall back to N.C. contacts
r& B Pi powers on & reboots

M @ Next test cycle begins
b o

Cycle time ~ 1 min

(d)

22

PiNap Circuit Prototype

23

Complete Testbed

24

Tips for Builders

m Use supercap instead of electrolytic for C1
= Mind the polarity of components

m diode, relay coil, capacitors
= Avoid GPIO pins that fluctuate during boot

a See CACM/Queue article for details

25

Host System Configuration & Test Software

= Lots of details

a Basic idea:
at boot, cron job runs scripts that start software under test,
wait a while, trigger power-off via GPIO pins

m Make sure files don't pile up in places like /var/tmp
a Read the CACM or Queue article
s Tarball of code is provided:
everything you need to reproduce my tests or run your own

26

Testing Persistent Memory

a Definitions
a Implementations
m Tests

27

Persistent Memory

m /= non-volatile memory

m Software abstraction

= Implementable on conventional hardware

m ACM Queue, Vol. 17, No. 4, July/August 2019
m USENIX ;login:, Vol. 44, No. 4, Winter 2019

a Basic trick: lay out data structures in mmap () ‘d file
a Crash consistency: failure-atomic msync () (FAMS)

28

Is Failure-Atomic msync() Failure-Atomic?

m Let PiNap decide
m Test famus_snap library

m very simple user-space FAMS
m leveragesfile cloning: ioctl (FICLONE)
m USENIX ;login:, Vol. 44, No. 4, Winter 2019

29

Test “Application”

m Repeatedly

m Fill memory with pseudo-random pattern
m Call failure-atomic msync ()

s Cut & restore power with PiNap
a Check for corruption in backing file
m Three storage devices

m $30 64-GiB flash thumbdrive
m $90 500-GiB portable SSD
m $220 512-GiB flash memory stick

30

Results

= Over 58,000 power-off/on tests
m All tests pass
m not one byte lost or damaged

m Caveat: Dijkstra on bugs

31

Second Testbed

32

Second Testbed

0
09
uo
20
00
00
00
00
00

0HOOO00000
7000000000
OWOONMOOO VOO0
DOO000O000 +00
* §AO22SSDIBDOO
plelelelel Zololel. ToT0)

YOOOO0O0 RO
00000 e

33

Using PiNap to Test Databases

= Goal: study SQLite relational database under power faults
s Methodology: Use cron job to:

m load database with known initial data
m run transaction workload to stress database and trigger errors
m trigger power-off at a random time while running workload

34

Transaction Workloads

Two single-threaded transaction workloads (based on Zheng et al.,
OSDI 2014)

m Workload 1: Transaction updates multiple accounts with
known values

m tests large transactions
= Workload 2: Transaction moves money between accounts
m tests multi-row consistency

35

Work in Progress

s Student is implementing SQL queries for above workloads

» Next step: first test SQLite, then test MariaDB (MySQL) and
mmap () -based LightningDB

36

Summary

Power failures threaten application data integrity
Failure-atomic update mechanisms protect data
m or sothey claim

Realistic testing is necessary
RPi + novel PiNap circuit = cheap, useful testbed

m under $100
m 10,000 tests per week

m famus_snap library survives over 50K power failures
m it's either reliable or very lucky
Work in progress: Test SQLite relational database Work

in progress (by others): Optane memory testbeds

37

