#### PERSISTENT MEMORY + SUMMIT 2021 COMPUTATIONAL STORAGE

FROM DATACENTER TO EDGE : VIRTUAL EVENT APRIL 21-22, 2021



# Dynamic Trends in Nonvolatile Memory Technologies

Tom Coughlin, Coughlin Associates, <u>www.tomcoughlin.com</u> Jim Handy, Objective Analysis, <u>www.Objective-Analysis.com</u>

# Outline



- Why Now?
- Changes to the Computing Model
- Emerging Memories 101
- Who's Producing It?
- Real Life Applications
- Outlook
- Conclusions
- References



# Why Now?



# Why Emerging Persistent Memories are Necessary

- Flash can't scale with process advances
  - NAND flash went 3D at 15nm
  - NOR scaling stops with FinFET
    - 28nm & smaller processes need something new
  - SRAM scaling may stop at 14nm
- In addition, low power high density non-volatile memory is needed for embedded and data center applications

# **NOR Flash Scaling Ends at 28nm**





**Process Geometry** 

### **SRAM's In Trouble Too**







# **Changes to the Computing Model**

Enabling the use of Emerging Memories

# **Key Issue: Pricing!**





# Moving from a von Neumann to a Memory-Centric Compute Model





# **Classical von Neumann Model**

# Moving from a von Neumann to a Memory-Centric Compute Model



| Processor   | Processor   | Processor   | Processor   |
|-------------|-------------|-------------|-------------|
| Near Memory | Near Memory | Near Memory | Near Memory |
| Far Memory  | Far Memory  | Far Memory  | Far Memory  |

# **Divide off some of the memory**

# Moving from a von Neumann to a Memory-Centric Compute Model





# **Memory Interconnect Types**



- CXL for "Far Memory"
  - Pools heterogeneous memories
    - Mixed latencies and data rates
- Gen-Z to connect storage boxes and racks
- The DDR interface will stay with us for "Near Memory"
  - DDR good for smaller systems
  - HBM fast but restrictive and costly
  - OMI for both high speed and large capacities

# **Approaches to Near Memory**







# **Emerging Memories 101**

# **Candidates for Persistent Memory**



### MRAM



#### ReRAM



### PCM



**FRAM** 



#### © 2021 SNIA Persistent Memory + Computation Storage Summit. All Rights Reserved.

#### MRAM

- Everspin
  - Over 120M chips shipped
  - Partnership with Global Foundries
  - Used in IBM's FlashCore modules in Storwise and FlashSystem arrays
- Renesas (Formerly IDT)
  - 8Mb, SPI
- Leading foundries starting to ship
  - GlobalFoundries
  - TSMC
  - Samsung
  - Others







# PCM (3D XPoint)



- The second-oldest emerging memory (1970)
- Intel Optane products
  - NVMe shipped in 2017
  - DIMMs in 2018
- Micron Abandoning 3D XPoint
  - Selling Lehi fab





### ReRAM

- Adesto has shipped CBRAM chips for several years
  - Dialog Semiconductor acquired Adesto June 2020
  - Will license CBRAM technology to GLOBALFOUNDRIES
    - GF will first offer as an embedded, option on its 22FDX platform
    - GF Plans to extend to other platforms.
- Cerfe Labs (Arm spin-out)
  - Correlated electron materials (CeRAM)
  - Licensed from Symetrix.
- Others (Mitsubishi, Fujitsu, Panasonic, Winbond, Honeywell,...)
- Foundry support (GLOBALFOUNDRIES, TSMC, others)







- The oldest emerging memory (1955)
- The highest-shipped emerging memory
- Finding new life with new materials





# Who's Producing It?

### Major Chip Foundries Offer MRAM, FRAM, and ReRAM Options

- TSMC, Samsung, GLOBALFOUNDRIES, UMC, TI, ...
- STT-MRAM, FRAM, & ReRAM today
- SOT-MRAM and other MRAM technologies later on
  - Could compete against lower level cache (faster) SRAM
  - Possible DRAM alternative for higher performance at lower power







# **Real-Life Applications**

It's Here Now!

# **MRAM IoT SoC – Ambiq Apollo**



- SoC for intelligent endpoint IoT devices
- Ultra-low battery power
- Serves as both an application processor and a coprocessor



# **MRAM DNN Accelerator Chip – NuMem**



- Used by NASA
- 1-32 processing engines, 32-1024 ALUs per chip
  - Efficient for matrix multiplication, convolution, etc.
- Radiation hard, high endurance MRAM
  - Nonvolatility reduces energy requirements
- Numerous Applications:
  - Sensor fusion for super resolution
  - Terrain Mapping for Depth and Terrain Classification
  - Navigation systems: Object Detection & Tracking



# **MRAM GPS Receiver – Sony**



- CXD5605 GPS Receiver
- Used in Huawei GT 2 Smartwatch
- 8Mb Embedded MRAM
- Samsung 28 FD-SOI Process



Source: TechInsights



# **Other Emerging Memory Products**



- NXP MRAM MCU
- STMicro PCM MCU
- TI FRAM MCU
- Fujitsu FRAM MCUs





# Outlook

1 1 0 1 1 1 n 

# **Growth in New Memory Shipments**









- NOR flash and SRAM have stopped scaling
- New non-volatile memory types will fill the void
- This will lead to new memory-centric computer architectures
- The storage/memory hierarchy will change
- There are four leading candidates: MRAM, PCM, ReRAM, and FRAM
- Leading foundries already support these new memories
- New memories are in use today
- MRAM and PCM revenues should exceed \$36B by 2030

# New Report: Emerging Memories Find Their Direction







http://www.tomcoughlin.com/techpapers.htm https://Objective-Analysis.com/reports/#Emerging

Now Available!





- <u>Emerging Memories Find Their Direction</u>, Coughlin Associates and Objective Analysis, <u>https://tomcoughlin.com/tech-papers/</u>
- <u>The Future of Low-Latency Memory</u>, White Paper, April 2021
- <u>Computer Express Link 2.0 Specification:</u> <u>Memory Pooling</u>, CXL BrightTalk, March 23, 2021



# Thank you

Please visit <u>www.snia.org/pmsummit</u> for presentations