
1 | © SNIA. All Rights Reserved.

AI Storage: The Critical Role of
Storage in Optimizing AI Training
Workloads

Live Webinar
October 30, 2024
10:00 am PT / 1:00 pm ET

2 | © SNIA. All Rights Reserved.

Today’s Presenters

Jayanthi Ramakalanjiyam
Software Engineering Leader

Celestica

Ugur Kaynar, PhD
Technical Staff, Storage Technologist,

Chief Technology Office at Dell

3 | © SNIA. All Rights Reserved.

The SNIA Community

200
Corporations,

universities, startups,
and individuals

2,500
Active

contributing
members

50,000
Worldwide

IT end users and
professionals

4 | © SNIA. All Rights Reserved.

5 | © SNIA. All Rights Reserved.

SNIA Legal Notice

§ The material contained in this presentation is copyrighted by SNIA unless otherwise
noted.

§ Member companies and individual members may use this material in presentations and
literature under the following conditions:

§ Any slide or slides used must be reproduced in their entirety without modification
§ SNIA must be acknowledged as the source of any material used in the body of any document containing

material from these presentations.
§ This presentation is a project of SNIA.
§ Neither the author nor the presenter is an attorney and nothing in this presentation is

intended to be, or should be construed as legal advice or an opinion of counsel. If you
need legal advice or a legal opinion please contact your attorney.

§ The information presented herein represents the author's personal opinion and current
understanding of the relevant issues involved. The author, the presenter, and the SNIA
do not assume any responsibility or liability for damages arising out of any reliance on or
use of this information.
NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

6 | © SNIA. All Rights Reserved.

Today’s Agenda

§Overview of AI Model Training
§Data Loading
§Checkpointing
§ File and Object Based Storage

§ Storage Connectors

7 | © SNIA. All Rights Reserved.

AI workloads interact with storage at every stages of the AI data
pipeline.

Data Ingest
&

Data Preparation

• Ingest: Structure and unstructured raw
data is stored.

• Wrangling: Processing of raw data to
clean, merge, and transform it for use
during model training and inference.

STORAGE

Model Training
Tuning, Validation

(Model Development)

• Feeding GPUs: providing input data to
the model training pipeline

• Checkpointing: saving model state to
resume training after failures or pauses

• Restoring: reloading of model state from
checkpoints to resume training

Model Inference
 (Model Deployment)

• Feeding GPUs: providing input data to
the model inference pipeline

• Read Model: read the model state for
inference

8 | © SNIA. All Rights Reserved.

AI Training Workload Storage I/O

Compute Server

Storage
Training Dataset

(e.g., image, text, video, audio) Model Checkpoints

Data Loading
(read training dataset)

Save Checkpoint
(write model data)

… …

Restore
Checkpoint

(read model data)

Prevent GPUs from idling on storage IO

9 | © SNIA. All Rights Reserved.

• Framework storage connector

AI Framework Stack and Data Flow

Storage

Compute Server

AI Framework
Data Loading Abstraction

(e.g., PyTorch Dataloader)

• Data samples indexing
• Data samples retrieval

• Data samples batching
• Data samples shuffling

• Data loading parallel processing

• Data sample transformation
• Data sample augmentation

AI Framework
Dataset Abstraction

(e.g., PyTorch Dataset)

Host / OS Page Cache

AI Model

• Framework storage connector

• Model copy between CPU/GPU
• Model formatting
• Model serialization/deserialization

AI Framework Checkpoint APIs
(e.g., PyTorch save, load API)

Storage Client Libraries (POSIX, NFS, S3, etc.)

Da
ta

 lo
ad

in
g

M
od

el
 c

he
ck

po
in

tin
g

M
od

el
 re

st
or

in
g

10 | © SNIA. All Rights Reserved.

Dataloading involves storage IO and a pipeline of transformations

Compute ServerStorage
(Disaggregated or

local storage) Built-in DataLoader

tensor representing
a data batch

0

1

2

N

3

Dataset

CPU
0

CPU
1

CPU
2

CPU
N

decode/
transform

Data
augmentation

Read
Samples

11 | © SNIA. All Rights Reserved.

What causes GPUs to experience starvation during data loading?

GPU

Data Loader
CPU

Train batch Train batch

Storage IO

Preprocess
Initial Batch

Storage IO

Read next
batchRead & Prefetch

Storage IO

Preprocess
next batch

Read next
batch

Preprocess
next batch

Train batchGPU IDLE

Time

12 | © SNIA. All Rights Reserved.

What causes GPUs to experience starvation during data loading?

GPU

Read & Prefetch
Data Loader

CPU

Train batch Train batch

Storage IO Storage IO

Preprocess
Initial Batch

Read next
batch

GPU IDLE

Storage IO

Preprocess
next batch

Read next
batch

Preprocess
next batch

Train batch

1 Train Time > Read + Process Time

Ideal Case

2 Train Time < Read + Process Time

Initial State

Train

Read Pre
process

Read Pre
process

Read

Train

Train

Read Preprocess

Train

Read Preprocess

GPU
IDLE

GPU
IDLE

Time

Steady State

Storage IO performance is influenced by
• Sample size and Batch Size
• Number of reader threads
• IO Pattern (protocol, parallelism,

asynchronous ops)
• Caching

13 | © SNIA. All Rights Reserved.

Preprocessing can be very costly, when dealing with images,
video, or audio files.

Power consumption in Meta’s datacenter for 3
different recommendation model[1]

• ImageNet dataset stored in JPEG format.
• ImageFolder refers to the default PyTorch data loader used to load

ImageNet.

Time taken across stages in ImageNet
training[2]

Reference
[1] Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training (arxiv.org)
[2] FFCV: Accelerating Training by Removing Data Bottlenecks
* Storage and online processing pipeline consisting of offline data generation, dataset storage, and online preprocessing services.

Data pre-processing is the major bottleneck of the training. Meta reports that 56% of GPU cycles were spent
stalled waiting for training data, and the trainer’s
CPUs cannot preprocess data fast enough to serve
the GPUs*.

https://arxiv.org/pdf/2108.09373
https://arxiv.org/pdf/2306.12517

14 | © SNIA. All Rights Reserved.

Training workloads generate sequential and random read IO to
storage systems

Per Epoch Data Access Pattern: Read Only
• Sequential IO à The entire sample is read
• Random IO à Samples can be retrieved randomly

Multiple Epoch Data Access Pattern: Repeated Access
• During each epoch, the model goes through the entire dataset once.
• Typically, training involves multiple epochs, which result in repeated reads of data samples.
• The data loader shuffles the data to randomize it, ensuring that samples are shuffled at the start of each epoch.

• 3D-Unet workload from
MLPerf Storage Benchmark.
• Each sample stored
in individual files.
• File size ~/150MB.

Random file (sample) access Each file (sample) is read sequentially

15 | © SNIA. All Rights Reserved.

Training workloads generate sequential and random read IO to
storage systems

of GPU 8x A100
batch size 16 per GPU

Input File 3.8 TB train dataset

Benchmark MLPerf Training DLRMv2

Protocol NFS

Workload access data randomly using a sliding window.

Per Epoch Data Access Pattern: Read Only
• Sequential IO à The entire sample is read
• Random IO à Samples can be retrieved randomly

16 | © SNIA. All Rights Reserved.

Model checkpointing is a periodic process to save current model state
• Checkpoint contains model weights (learned parameters), optimizer state and other states.

• Model checkpointing is done for various reasons:
• Fault tolerance
• Model debugging
• Model evaluation

• Generally, checkpoints are retained for the duration of the training process and sometimes longer.
• Model can be restored to any previous versions, depending on failure reason, not just the most recent checkpoint.

Model Parameters
(B)

Total Checkpoint Size
(TB)

GPT3 175 2.4

Megatron-Turing
NLG (MT-NLG)

530 7.4

Assumptions:
2 bytes per model parameter (BF16)
12 bytes per model parameter for optimizer and other state

The size of a checkpoint is based on the model size
and is not influenced by the data size, GPU memory

size or the number of GPUs.

17 | © SNIA. All Rights Reserved.

The checkpointing process is expensive because training pauses
during checkpointing.

Compute Server Storage
(Disaggregated
or local storage)GPU

Ckpt_0

Ckpt_1

Ckpt_2

Ckpt_N

Ckpt_3

Checkpoints

CPU

Model State

Model state

Checkpoint
Data

Serialize

GPU CPU

Checkpoint
Data

Model state

Model State

Saving
Checkpoint

Restoring
Checkpoint

deserialize

3

3
2

2

1

1

18 | © SNIA. All Rights Reserved.

Checkpoints may be saved as one or more files; depends on
model parallelism and implementation

AI Model

Model Parallelism

Da
ta

 P
ar

al
le

lis
m

When using data parallelism;
§ Every GPU maintains the identical

model state including model
parameters and optimizer state.

§ Single copy of model state needed to
be written

Model Parallelism:
§ Each GPU may write its portion of the

model’s parameters to the checkpoint.

Each checkpoint file is written
sequentially to an independent file by a
single thread.

Storage

Model instance

Model instance

Model instance

Model instance

Model instance

19 | © SNIA. All Rights Reserved.

Model sizes are increasing, and larger models result in larger
checkpoint sizes

 Large models à many GPUs à higher probability of failures

§ Alibaba Group reports the failure rates for LLM
training tasks can skyrocket to 43.4%[2]

Reference
[1] Check-N-Run: a Checkpointing System for Training Deep Learning
[2] Unicron: Economizing Self-Healing LLM Training at Scale
[3] The Llama 3 Herd of Model

Literature indicates that hardware failures are very common:
• LLaMA3 pre-training also reports that 78% of the failures

are hardware issues[3].
In Meta’s datacenter, it was reported that checkpointing can slow down training by up to
43%[1].

Checkpointing related overheads in full recovery can consume an average of 12% of total
training times[1].

https://arxiv.org/pdf/2108.09373
https://www.usenix.org/system/files/nsdi22-paper-eisenman.pdf
Unicron:%20Economizing%20Self-Healing%20LLM%20Training%20at%20Scale
https://arxiv.org/pdf/2401.00134
https://scontent-bos5-1.xx.fbcdn.net/v/t39.2365-6/453304228_1160109801904614_7143520450792086005_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=f0NtWfywyCwQ7kNvgFakEn8&_nc_ht=scontent-bos5-1.xx&_nc_gid=AwlK4KUb_h6uw4Z9kl6F8qK&oh=00_AYDQtbPo6JUx1DOUJbdiL0KOkyQFRQE_1vR0jRv5NjngOA&oe=67126487

20 | © SNIA. All Rights Reserved.

When do GPUs stall during checkpointing?
Training Disk Flush

Time

Device(GPU) to Host Memory Copy TrainingPersistent Checkpointing
torch.save()

Reference
[1] pytorch/torchsnapshot: A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
[2] Gemini: Fast failure recovery in distributed training with in-memory checkpoints
[3] Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models

Storage IO

GPUs IDLE

GPU 0

GPU N Training Training

https://github.com/pytorch/torchsnapshot
https://arxiv.org/pdf/2108.09373
https://www.amazon.science/publications/gemini-fast-failure-recovery-in-distributed-training-with-in-memory-checkpoints
Unicron:%20Economizing%20Self-Healing%20LLM%20Training%20at%20Scale
https://www.usenix.org/conference/nsdi22/presentation/eisenman

21 | © SNIA. All Rights Reserved.

When do GPUs stall during checkpointing?
Training Disk Flush

Time

Device(GPU) to Host Memory Copy TrainingPersistent Checkpointing
torch.save()

Optimizations 1
Parallel Checkpoint Writes
(torchsnapshot()[1]

Pytorch DCP

Reference
[1] pytorch/torchsnapshot: A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
[2] Gemini: Fast failure recovery in distributed training with in-memory checkpoints
[3] Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models

Storage IO

Training Copy Chkp_1
Copy Chkp_2

Copy Chkp_n

Disk Flush
Disk Flush

Disk Flush

GPUs IDLE

GPU 0

GPU N Training Training

GPU 0
GPU 1

GPU N

Storage IO
GPUs IDLE

Training

Training

Training
Training

Training

https://github.com/pytorch/torchsnapshot
https://arxiv.org/pdf/2108.09373
https://www.amazon.science/publications/gemini-fast-failure-recovery-in-distributed-training-with-in-memory-checkpoints
Unicron:%20Economizing%20Self-Healing%20LLM%20Training%20at%20Scale
https://www.usenix.org/conference/nsdi22/presentation/eisenman

22 | © SNIA. All Rights Reserved.

When do GPUs stall during checkpointing?
Training Disk Flush

Time

Device(GPU) to Host Memory Copy TrainingPersistent Checkpointing
torch.save()

Optimizations 1
Parallel Checkpoint Writes
(torchsnapshot()[1]

Pytorch DCP

Optimizations 2
In Memory Checkpointing
Gemini[2], Meta[3],
torchsnapshot()
Pytorch DCP

Reference
[1] pytorch/torchsnapshot: A performant, memory-efficient checkpointing library for PyTorch applications, designed with large, complex distributed workloads in mind.
[2] Gemini: Fast failure recovery in distributed training with in-memory checkpoints
[3] Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models

Storage IO

Training Copy Chkp_1
Copy Chkp_2

Copy Chkp_n

Disk Flush
Disk Flush

Disk Flush

GPUs IDLE

GPU 0

GPU N Training Training

GPU 0
GPU 1

GPU N

Storage IO
GPUs IDLE

Training

Training

Training
Training

Training

Training
Disk Flush

Device(GPU) to Host Memory Copy Training

GPUs IDLE

GPU 0

GPU N Training Training

https://github.com/pytorch/torchsnapshot
https://arxiv.org/pdf/2108.09373
https://www.amazon.science/publications/gemini-fast-failure-recovery-in-distributed-training-with-in-memory-checkpoints
Unicron:%20Economizing%20Self-Healing%20LLM%20Training%20at%20Scale
https://www.usenix.org/conference/nsdi22/presentation/eisenman

23 | © SNIA. All Rights Reserved.

Majority of the AI training workloads today uses file-based
storage solutions

§ Today, most existing AI frameworks supports both file and object storage for data access for data loading,
and checkpointing.

§ File Storage:
§ Typically, file-based storage systems are used for AI model trainings workloads to store and access training data for model training to

ensure expensive GPUs are utilized.
§ PyTorch and other AI frameworks designed for file-like access and expect to work on files.

File-based Faster-Tier,
Local Drives,
Distributed Caches

Object Storage Training Data

Training Data

Copy from
object storage to

faster-tier

GPU GPU GPU GPU§ Object Storage
– For AI training workloads, the high and unpredictable latencies of object

storage prevent it from being directly consumed by AI Frameworks.
– The S3 APIs used during AI training workloads are quite limited.

24 | © SNIA. All Rights Reserved.

Vendor driver

GPU

FUSE
e.g. ,Mountpoint-S3

S3FS

Fuse

VFS

libfuse

NIC

Kernel
Space

User
Space

Hardware

Torch.data
(webdataset)

POSIX
read(), write()

CUDA

DALI
(dataloader)

S3 Connector
for PyTorch

AWS CRT

PyTorch Framework

Drive

KvikIO

cuFile API
(cuFileRead(), cufileWrite())

A Storage connector for AI is a specialized tool or library that enables AI frameworks to
access storage systems for reading and writing the data

HTTP/S

Data
Loading

Only

Data Loading
Only

NFS Vendor FS
Driver

Local FS
 (ext4, xfs)

25 | © SNIA. All Rights Reserved.

Vendor driver

GPU

FUSE
e.g. ,Mountpoint-S3

S3FS

Fuse

VFS

libfuse

NIC

Kernel
Space

User
Space

Hardware

Torch.data
(webdataset)

POSIX
read(), write()

CUDA

DALI
(dataloader)

S3 Connector
for PyTorch

AWS CRT

PyTorch Framework

Drive

KvikIO

cuFile API
(cuFileRead(), cufileWrite())

A Storage connector for AI is a specialized tool or library that enables AI frameworks to
access storage systems for reading and writing the data

HTTP/S

Data
Loading

Only

Data Loading
Only

NFS Vendor FS
Driver

Local FS
 (ext4, xfs)

26 | © SNIA. All Rights Reserved.

Vendor driver

GPU

FUSE
e.g. ,Mountpoint-S3

S3FS

Fuse

VFS

libfuse

NIC

Kernel
Space

User
Space

Hardware

Torch.data
(webdataset)

POSIX
read(), write()

CUDA

DALI
(dataloader)

S3 Connector
for PyTorch

AWS CRT

PyTorch Framework

Drive

KvikIO

cuFile API
(cuFileRead(), cufileWrite())

A Storage connector for AI is a specialized tool or library that enables AI frameworks to
access storage systems for reading and writing the data

HTTP/S

Data
Loading

Only

Data Loading
Only

NFS Vendor FS
Driver

Local FS
 (ext4, xfs)

27 | © SNIA. All Rights Reserved.

File or Object Storage

Compute Server

PyTorch

S3 Connector
For PyTorch

Mountpoint-S3 NFS

NFS
RDMA Access

Read Cache
(Data and Metadata)

Page Cache

Torch.Data
Webdataset

Sync Http Client AWS S3-CRT Client

HTTP

GET request
PUT request

S3 over HTTP

GET à “ranged” GET requests
PUT à Multipart Uploads

8 MB part size, asynchronous IO

High-level comparison of different storage connectors
§ Cache:

– File-based storage benefits from
the OS page-cache.

– S3 connectors need to implement
additional cache to speed up
repeated access.

§ IO Access Pattern:
– AWS CRT based S3 Client

solutions leveraging asynchronous
and parallel I/O

§ Protocol:
– Object protocols have higher

latency.
§ IAM authentication and authorizations

are very expensive.

– File-based storage solutions
benefit from RDMA technology.

28 | © SNIA. All Rights Reserved.

Summary

§ Data Loading:
§ Data loading phase consists of storage IO and data transformations
§ IO Access Patterns depend on the model and dataset
§ The storage system must provide high throughput and low latency to ensure that data is fed to the GPUs as quickly

as possible

§ Checkpointing:
§ Large models need high read and write bandwidth to save and restore checkpoints efficiently.
§ Checkpoint files can be saved as one or more files, and each checkpoint file is written by a single writer.
§ Write accumulated checkpoint storage can be significant for large models and long runs.

§ File and Object Storage:
§ AI frameworks expect file-like interfaces to access the storage.
§ However, in recent years, there has been a noticeable increase in support for accessing object storage solutions.

29 | © SNIA. All Rights Reserved.

Q&A

30 | © SNIA. All Rights Reserved.

After this Webinar

§Please rate this webinar and provide us with your feedback
§This webinar and a copy of the slides are available at the SNIA

Educational Library https://www.snia.org/educational-library
§A Q&A from this webinar, including answers to questions we couldn’t get

to today, will be posted on our blog at https://sniansfblog.org/
§Follow us on X @SNIADNSF

https://www.snia.org/educational-library
https://sniansfblog.org/
https://twitter.com/SNIADNSF

31 | © SNIA. All Rights Reserved.

Thank You

