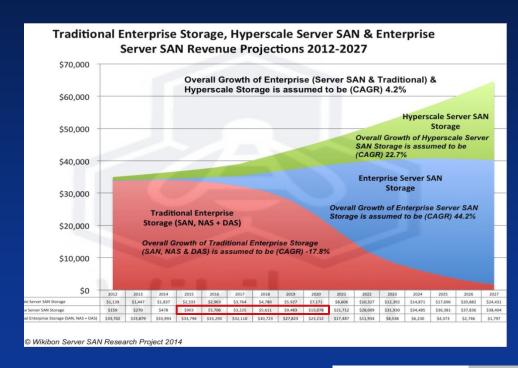


Hyperconverged Infrastructure Use Cases and Buyer's Guide

Ibrahim Rahmani

Director, Product Marketing

DataCore Software


Osdi Agenda

- Introduction
 - Market Trends
 - Use Cases
- Buyer's guide Enterprise Requirements
- DataCore

Sci Hyper-converged is growing quickly

- Strong market forecasts for **Integrated Systems (converged &** hyper-converged)
 - 50% yearly by Gartner
 - 33% yearly by IDC
- 45% of respondents are evaluating the deployment of hyper-converged systems
- Market is rapidly moving away from traditional storage arrays

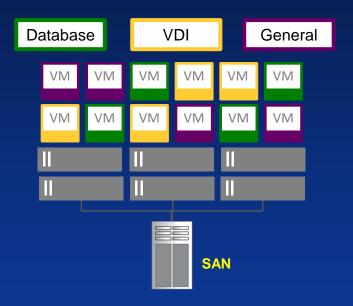
Hyper-converged Use Cases

Infrastructure Efficiency & Consolidation

Latency-sensitive,
Virtualized
Databases /
Applications

Remote Office / Branch Office (ROBO)

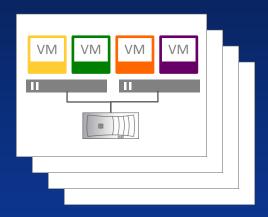
Infrastructure Efficiency & Consolidation



Challenges

- Inadequate performance
- Inefficient usage
- Difficult to manage heterogeneous infrastructure
 - Multiple fabrics (FC, FCoE, iSCSI, Ethernet)
 - Variety of vendors, models and management consoles
 - Multiples "silos" to manage

Scli Virtualized Applications Clusters



Challenges

- Inconsistent performance due to mixed workloads
- Inability to scale I/O performance
- Storage is a single point of failure

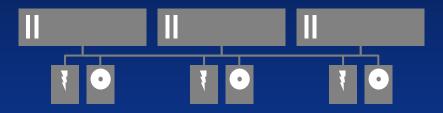
Challenges

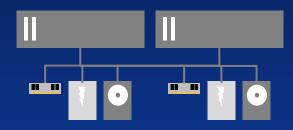
- **Costs need to remain low**
- Availability is a challenge
- Storage is typically low-end; single point of failure

Osdi Agenda

- Introduction
- Buyer's guide Enterprise Requirements
- DataCore

Not all Hyper-converged is Enterprise-class


- Performance
 - Performance and response times not suitable for critical applications
 - Fibre Channel flexibility not supported by hyper-converged
- Availability
 - More and more "boxes" needed
- Total Cost of Ownership
 - Limited options for scaling
 - Restricted Choice
 - Silo'ed Infrastructure



Performance: I/O Acceleration

Cluster Architecture*

Grid Architecture

Better Performance: RAM 10x faster vs Flash Lower Hardware Costs: Flash is optional

Performance Benchmark: SPC is a Database I/O Workload

Criteria	SPC Benchmark
Industry Standard	
Independently Verified & Audited	
Peer Reviewed	
Covers different types & generations of technology	
Maps to "real world" performance (OLTP databases)	
Shows cost for achieving performance level	

1st Hyper-converged product to run SPC 3X or better on price performance!

DATACORE'S SPC-1 PRICE-PERFORMANCE™ WORLD RECORD RESULTS!

PERFORMANCE

459,290.87

SPC-1 IOPS™ in 2U

1

Smallest Footprint

PRICE-PERFORMANCE

\$0.08

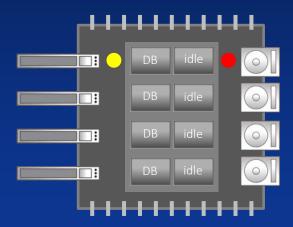
Per SPC-1 IOPS™

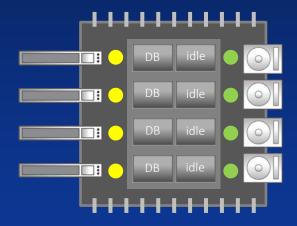
t

Lowest Cost, Maximum I/O **RESPONSE TIME**

0.32

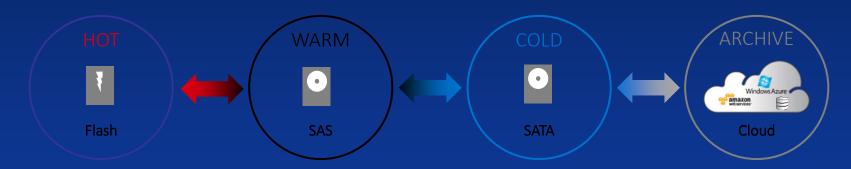
milliseconds


Ultra Fast Applications



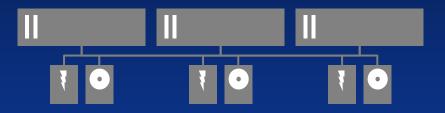
DATACORE PARALLEL I/O TECHNOLOGY

WITHOUT PARALLEL I/O I/O processed sequentially...

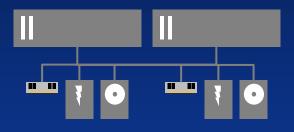

WITH PARALLEL I/O
I/O processed in parallel...

DATA IS CACHED AND TIERED

More Active Data Placed on Faster Storage



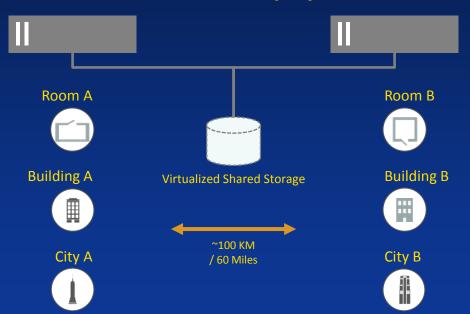
Less Active Data Placed or Slower Storage



High Availability: 3 vs 2 nodes

Cluster Architecture*

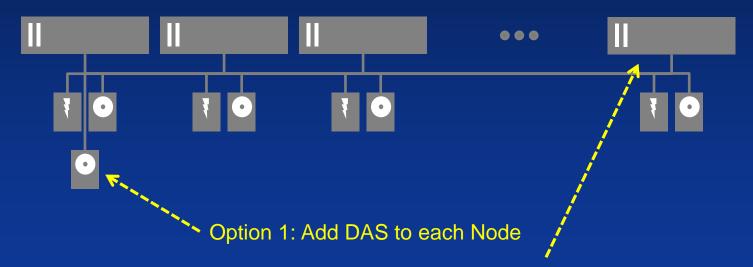
Grid Architecture


Lower Hardware Investment

High Availability: Stretch Clusters

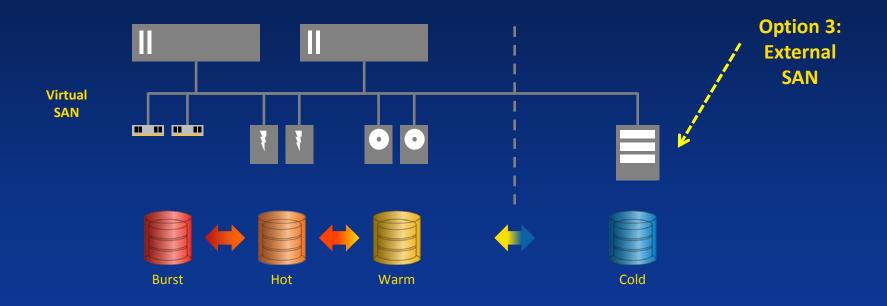
Stretch Cluster Deployment

Lower Hardware Investment


Better Availability & Resiliency

TCO: Growth of Storage Capacity:

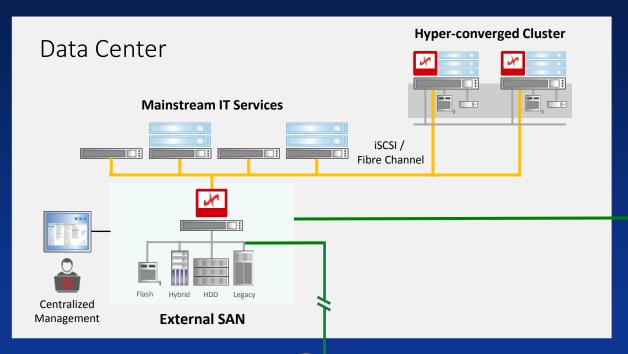
VMware VSAN Cluster

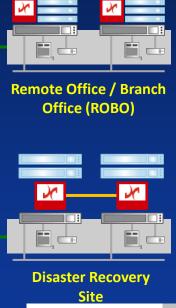


Option 2: Add Nodes (compute & storage)

TCO: Growth of Storage Capacity

Lower Hardware Costs; Capacity added as needed




Schill TCO: Deployment Options

	DataCore Virtual SAN	Nutanix	Simplivity	VMware VSAN
Flexible hardware model				②
Multi-hypervisor Support				
Non-virtualized Support				

TCO: Integrated Enterprise-wide Solution

sdi DataCore TCO Summary

Key Criteria	DataCore Virtual SAN
RAM for I/O Acceleration	✓
2 nodes for High Availability	✓
2 nodes for Stretch Cluster	✓
Scale out storage capacity independent of compute	✓
One management platform across storage infrastructure	✓
One set of services across all storage devices	✓
Support for Multi-hypervisor & Non-virtual environments	✓
Hardware independent	✓

Agenda

- Introduction
- Buyer's guide Enterprise Requirements
- DataCore
 - Virtual SAN
 - Case Study
 - Company

Case Study 1 – ROBO

Background

- Large restaurant chain with over 1,000 locations
- All key applications run locally
 - Point of sale, order scheduling, etc
- Application downtime meant temporary site closure
 - Loss of revenue and poor customer satisfaction

Requirement

Lowest cost infrastructure for high availability

Reasons for Selecting DataCore Virtual SAN

Lowest TCO

- Only 2 servers for HA per location
- RAM provides I/O acceleration so Flash is optional
- Runs natively in Windows Hyper-V, requiring one less Windows license

Easy Management

- Automated deployment with software deployment wizards
- Integrates with Microsoft System Center
- Extensive instrumentation for centralized monitoring

Case Study 2 – Application Cluster

Background

- Mid-sized Hospital
- Virtualizing PBX (voice communications)
 - 12 physical servers -> 12 VMs

Requirements

- Reliable performance, as voice communication is a Tier 1 application
- Physical storage and compute footprint across 2 separate buildings (geographically separated) for high availability

Comparing VMware VSAN and DataCore Virtual SAN

VMware VSAN

- Requires 4 hosts
- Only works at single site
- Requires Flash on servers

DataCore Virtual SAN

- Only requires 2 hosts
- Stretch cluster with only 2 nodes
- Flash is optional RAM is faster

Comparing VMware VSAN and DataCore Virtual SAN

VMware VSAN

- Requires 4 hosts
- Only works at single site
- Requires Flash on servers

DataCore Virtual SAN

- Only requires 2 hosts
- Stretch cluster with only 2 nodes
- Flash is optional RAM is faster

TCO of DataCore Virtual SAN was just 50% of VMware VSAN

DataCore Benefits

DEPLOY FLASH STORAGE

79% improved performance by **3X or more**

BC / DR

60% reduced storagerelated downtime by 90% of more STORAGE EXPANSION

82% reduced storagerelated spending by 25% or more STORAGE REFRESH

100% saw a positive ROI in the first year

Proven. Globally.

30,000+ Deployments Worldwide

10,000+ Customers

10th Gen Product

Companies in all Industries & Sizes

Market: Software-defined Storage

Technology: Storage Virtualization & Parallel I/O

Main Offices

- Australia
- Germany
- France
- Japan
- UK
- USA

Thank You

