
Cloud Data Management Interface
(CDMI™)

Version 1.1.0d

Publication of this Working Draft for review and comment has been approved by the CDMI TWG. This
draft represents a “best effort” attempt by the CDMI TWG to reach preliminary consensus, and it may
be updated, replaced, or made obsolete at any time. This document should not be used as reference
material or cited as other than a “work in progress.” Suggestion for revision should be directed to http:/
/www.snia.org/feedback/.

Working Draft

September 27, 2013

© SNIA

1

2
3
4

5
6

7
8
9

10
11
12

13
14
15

16
The SNIA hereby grants permission for individuals to use this document for personal use only, and for

corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1 Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2 Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any
excerpt or this entire document, or distribute this document to third parties. All rights not explicitly granted
are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
emailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.

Copyright © 2011, 2012, 2013 Storage Networking Industry Association.
ii Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
Revision History

Version Date Originator Comments

1.0.1 9/15/11 Released as a SNIA Technical Position.

1.1a 3/31/11 Marie
McMinn

Changes as specified in trac tickets 592, 642-645, 647, 653, 659, and 682-
687.

1.1b 4/20/12 Marie
McMinn

Changes as specified in UK NB Comments on SNIA CDMI PAS
Submission - N465. Trac tickets include 690-718, 720-731, 733-737, 742-
743, 750, 758-773, 775-789, 791-797.

1.1c 7/24/12 Marie
McMinn

Changes from trac tickets 734, 738-741, 744, 746-749, 780, 793, 799, 800,
802, 804-806, 816-818, and 821-830; consistency edits from HTML review.
Deleted trailing slashes to the access by object ID line that were incorrectly
applied to data objects, containers, capabilities, and domains.

1.1.0a 11/4/12 Marie
McMinn

Added one vendor extension into body of spec and the rest of the vendor
extensions into Annex B as specified in trac tickets 664, 854, 855, 856,
857, 858, and 859. Split standard into four sections per trac ticket 839.
Updated Introduction with a description of Annex B.

1.1.0b 3/6/13 Marie
McMinn

Made the changes specified in Trac tickets 646, 846, 868, 869, and 879.

1.1.0c 7/21/13 Marie
McMinn

Made the changes specified in Trac tickets 483, 655, 677, 815, 833, 834,
835, 865, 872, 878, 880, 881, 882, 889, 890, 891, 892, 893, and 895.

1.1.0d 9/27/13 Marie
McMinn

Made the changes specified in Trac tickets 440, 504, 508, 517, 522, 525,
651, 847, 850, 869, 871, 899, 901, and 904
Cloud Data Management Interface Working Draft iii
Version 1.1.0d

© SNIA
Contents

SECTION 1 - CDMI Preamble ... 1
Introduction ..2

1 Scope ..4

2 Normative References ...4

3 Terms ..6

4 Conventions ...10

4.1 Interface Format ..10
4.2 Typographical Conventions ...10
4.3 Request and Response Body Requirements ..11
4.4 Key Word Requirements ...11

5 Overview of Cloud Storage ...12

5.1 Introduction ..12
5.2 What is Cloud Storage? ..12
5.3 Data Storage as a Service ..12
5.4 Data Management for Cloud Storage ..14
5.5 Data and Container Management ...15
5.6 Reference Model for Cloud Storage Interfaces ...15
5.7 Cloud Data Management Interface ...16
5.8 Object Model for CDMI ..17
5.9 CDMI Metadata ...18
5.10 Object ID ...19
5.11 CDMI Object ID Format ...19
5.12 Security ...20
5.13 Required HTTP Support ..21

5.13.1 RFC 2616 Support Requirements ..21
5.13.2 Content-Type Negotiation ..21
5.13.3 Range Support ...21
5.13.4 URI Escaping ...21
5.13.5 Use of URIs ..22
5.13.6 Reserved Characters ...23

5.14 Time Representations ...23
5.15 Backwards Compatibility ...23

5.15.1 Value Transfer Encoding ..23
5.15.2 Container Export Capabilities ...23

6 Common Operations ...24

6.1 Overview ...24
6.2 Discover the Capabilities of a Cloud Storage Provider ...24
6.3 Create a New Container ..25
6.4 Create a Data Object in a Container ...25
6.5 List the Contents of a Container ..26
6.6 Read the Contents of a Data Object ...26
6.7 Read Only the Value of a Data Object ..27
6.8 Delete a Data Object ...27

7 Interface Standard ...28

7.1 HTTP Status Codes ..28
7.2 Object References ...28
iv Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
SECTION 2 - CDMI Core ... 30

8 Data Object Resource Operations ...31

8.1 Overview ...31
8.1.1 Data Object Metadata ..32
8.1.2 Data Object Consistency ..32
8.1.3 Data Object Representations ...32

8.2 Create a Data Object Using CDMI Content Type ..33
8.2.1 Synopsis ...33
8.2.2 Delayed Completion of Create ...33
8.2.3 Capabilities ...33
8.2.4 Request Headers ...34
8.2.5 Request Message Body ...35
8.2.6 Response Headers ...37
8.2.7 Response Message Body ..38
8.2.8 Response Status ..39
8.2.9 Examples ..39

8.3 Create a Data Object using a Non-CDMI Content Type ...40
8.3.1 Synopsis ...40
8.3.2 Capability ..40
8.3.3 Request Headers ...41
8.3.4 Request Message Body ...41
8.3.5 Response Headers ...41
8.3.6 Response Message Body ..41
8.3.7 Response Status ..41
8.3.8 Example ...42

8.4 Read a Data Object using CDMI Content Type ..42
8.4.1 Synopsis ...42
8.4.2 Capabilities ...42
8.4.3 Request Headers ...43
8.4.4 Request Message Body ...43
8.4.5 Response Headers ...43
8.4.6 Response Message Body ..43
8.4.7 Response Status ..46
8.4.8 Examples ..46

8.5 Read a Data Object using a Non-CDMI Content Type ..47
8.5.1 Synopsis ...47
8.5.2 Capabilities ...48
8.5.3 Request Header ...48
8.5.4 Request Message Body ...48
8.5.5 Response Headers ...48
8.5.6 Response Message Body ..48
8.5.7 Response Status ..49
8.5.8 Examples ..49

8.6 Update a Data Object using CDMI Content Type ...49
8.6.1 Synopsis ...49
8.6.2 Capabilities ...50
8.6.3 Request Headers ...50
8.6.4 Request Message Body ...51
8.6.5 Response Header ..53
8.6.6 Response Message Body ..53
8.6.7 Response Status ..54
8.6.8 Examples ..54

8.7 Update a Data Object using a Non-CDMI Content Type ...57
8.7.1 Synopsis ...57
8.7.2 Capabilities ...57
8.7.3 Request Headers ...57
8.7.4 Request Message Body ...57
Cloud Data Management Interface Working Draft v
Version 1.1.0d

© SNIA
8.7.5 Response Header ..58
8.7.6 Response Message Body ..58
8.7.7 Response Status ..58
8.7.8 Examples ..58

8.8 Delete a Data Object using CDMI Content Type ...59
8.8.1 Synopsis ...59
8.8.2 Capability ..59
8.8.3 Request Header ...59
8.8.4 Request Message Body ...59
8.8.5 Response Headers ...59
8.8.6 Response Message Body ..59
8.8.7 Response Status ..60
8.8.8 Example ...60

8.9 Delete a Data Object using a Non-CDMI Content Type ..60
8.9.1 Synopsis ...60
8.9.2 Capability ..60
8.9.3 Request Headers ...60
8.9.4 Request Message Body ...61
8.9.5 Response Headers ...61
8.9.6 Response Message Body ..61
8.9.7 Response Status ..61
8.9.8 Example ...61

9 Container Object Resource Operations ..62

9.1 Overview ...62
9.1.1 Container Metadata ..63
9.1.2 Reserved Container Names ...63
9.1.3 Container Object Addressing ...63
9.1.4 Container Object Representations ...64

9.2 Create a Container Object using CDMI Content Type ..64
9.2.1 Synopsis ...64
9.2.2 Delayed Completion of Create ...64
9.2.3 Capabilities ...65
9.2.4 Request Headers ...65
9.2.5 Request Message Body ...66
9.2.6 Response Headers ...68
9.2.7 Response Message Body ..68
9.2.8 Response Status ..69
9.2.9 Example ...70

9.3 Create a Container Object using a Non-CDMI Content Type ...71
9.3.1 Synopsis ...71
9.3.2 Capability ..71
9.3.3 Request Headers ...71
9.3.4 Request Message Body ...71
9.3.5 Response Headers ...71
9.3.6 Response Message Body ..71
9.3.7 Response Status ..72
9.3.8 Example ...72

9.4 Read a Container Object using CDMI Content Type ..72
9.4.1 Synopsis ...72
9.4.2 Capabilities ...73
9.4.3 Request Headers ...73
9.4.4 Request Message Body ...73
9.4.5 Response Headers ...73
9.4.6 Response Message Body ..74
9.4.7 Response Status ..76
9.4.8 Examples ..76

9.5 Update a Container Object using CDMI Content Type ...78
vi Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
9.5.1 Synopsis ...78
9.5.2 Delayed Completion of Snapshot ...78
9.5.3 Capabilities ...79
9.5.4 Request Headers ...79
9.5.5 Request Message Body ...79
9.5.6 Response Header ..82
9.5.7 Response Message Body ..82
9.5.8 Response Status ..82
9.5.9 Examples ..82

9.6 Delete a Container Object using CDMI Content Type ...83
9.6.1 Synopsis ...83
9.6.2 Capability ..83
9.6.3 Request Header ...84
9.6.4 Request Message Body ...84
9.6.5 Response Headers ...84
9.6.6 Response Message Body ..84
9.6.7 Response Status ..84
9.6.8 Example ...84

9.7 Delete a Container Object using a Non-CDMI Content Type ..85
9.7.1 Synopsis ...85
9.7.2 Capability ..85
9.7.3 Request Headers ...85
9.7.4 Request Message Body ...85
9.7.5 Response Headers ...85
9.7.6 Response Message Body ..85
9.7.7 Response Status ..86
9.7.8 Example ...86

9.8 Create (POST) a New Data Object using CDMI Content Type ...86
9.8.1 Synopsis ...86
9.8.2 Delayed Completion of Create ...86
9.8.3 Capabilities ...87
9.8.4 Request Headers ...88
9.8.5 Request Message Body ...89
9.8.6 Response Headers ...91
9.8.7 Response Message Body ..91
9.8.8 Response Status ..92
9.8.9 Examples ..93

9.9 Create (POST) a New Data Object using a Non-CDMI Content Type94
9.9.1 Synopsis ...94
9.9.2 Capability ..94
9.9.3 Request Header ...95
9.9.4 Request Message Body ...95
9.9.5 Response Header ..95
9.9.6 Response Message Body ..95
9.9.7 Response Status ..96
9.9.8 Examples ..96

9.10 Create (POST) a New Queue Object using CDMI Content Type ..96
9.10.1 Synopsis ...96
9.10.2 Delayed Completion of Create ...97
9.10.3 Capabilities ...97
9.10.4 Request Headers ...98
9.10.5 Request Message Body ...99
9.10.6 Response Headers ...100
9.10.7 Response Message Body ..100
9.10.8 Response Status ..102
9.10.9 Example ...102
Cloud Data Management Interface Working Draft vii
Version 1.1.0d

© SNIA
SECTION 3 - CDMI Advanced .. 103

10 Domain Object Resource Operations ..104

10.1 Overview ...104
10.1.1 Domain Object Metadata ..105
10.1.2 Domain Object Summaries ..105
10.1.3 Domain Object Membership ...108
10.1.4 Domain Usage in Access Control ...110
10.1.5 Domain Object Representations ..110

10.2 Create a Domain Object using CDMI Content Type ...110
10.2.1 Synopsis ...110
10.2.2 Capabilities ...111
10.2.3 Request Headers ...111
10.2.4 Request Message Body ...112
10.2.5 Response Headers ...113
10.2.6 Response Message Body ..113
10.2.7 Response Status ..114
10.2.8 Example ...114

10.3 Read a Domain Object using CDMI Content Type ..115
10.3.1 Synopsis ...115
10.3.2 Capabilities ...115
10.3.3 Request Headers ...115
10.3.4 Request Message Body ...115
10.3.5 Response Headers ...116
10.3.6 Response Message Body ..116
10.3.7 Response Status ..117
10.3.8 Examples ..117

10.4 Update a Domain Object using CDMI Content Type ...118
10.4.1 Synopsis ...118
10.4.2 Capability ..119
10.4.3 Request Headers ...119
10.4.4 Request Message Body ...119
10.4.5 Response Header ..120
10.4.6 Response Message Body ..120
10.4.7 Response Status ..121
10.4.8 Example ...121

10.5 Delete a Domain Object using CDMI Content Type ..121
10.5.1 Synopsis ...121
10.5.2 Capability ..122
10.5.3 Request Headers ...122
10.5.4 Request Message Body ...122
10.5.5 Response Headers ...122
10.5.6 Response Message Body ..122
10.5.7 Response Status ..122
10.5.8 Example ...122

11 Queue Object Resource Operations ..124

11.1 Overview ...124
11.1.1 Queue Object Metadata ...125
11.1.2 Queue Object Addressing ..125
11.1.3 Queue Object Representations ..125

11.2 Create a Queue Object using CDMI Content Type ...125
11.2.1 Synopsis ...125
11.2.2 Delayed Completion of Create ...125
11.2.3 Capabilities ...126
11.2.4 Request Headers ...126
11.2.5 Request Message Body ...127
viii Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
11.2.6 Response Headers ...128
11.2.7 Response Message Body ..128
11.2.8 Response Status ..130
11.2.9 Examples ..130

11.3 Read a Queue Object using CDMI Content Type ...131
11.3.1 Synopsis ...131
11.3.2 Capabilities ...132
11.3.3 Request Headers ...132
11.3.4 Request Message Body ...132
11.3.5 Response Headers ...132
11.3.6 Response Message Body ..133
11.3.7 Response Status ..135
11.3.8 Examples ..135

11.4 Update a Queue Object using CDMI Content Type ..137
11.4.1 Synopsis ...137
11.4.2 Capability ..137
11.4.3 Request Headers ...138
11.4.4 Request Message Body ...138
11.4.5 Response Header ..139
11.4.6 Response Message Body ..139
11.4.7 Response Status ..140
11.4.8 Examples ..140

11.5 Delete a Queue Object using CDMI Content Type ...140
11.5.1 Synopsis ...140
11.5.2 Capability ..141
11.5.3 Request Header ...141
11.5.4 Request Message Body ...141
11.5.5 Response Headers ...141
11.5.6 Response Message Body ..141
11.5.7 Response Status ..142
11.5.8 Example ...142

11.6 Enqueue a New Queue Value using CDMI Content Type ..142
11.6.1 Synopsis ...142
11.6.2 Capability ..142
11.6.3 Request Headers ...143
11.6.4 Request Message Body ...143
11.6.5 Response Headers ...144
11.6.6 Response Message Body ..144
11.6.7 Response Status ..145
11.6.8 Examples ..145

11.7 Delete a Queue Object Value using CDMI Content Type ...147
11.7.1 Synopsis ...147
11.7.2 Capability ..147
11.7.3 Request Header ...147
11.7.4 Request Message Body ...147
11.7.5 Response Headers ...148
11.7.6 Response Message Body ..148
11.7.7 Response Status ..148
11.7.8 Example ...148

12 Capability Object Resource Operations ..149

12.1 Overview ...149
12.1.1 Cloud Storage System-Wide Capabilities ..150
12.1.2 Storage System Metadata Capabilities ..153
12.1.3 Data System Metadata Capabilities ...153
12.1.4 Data Object Capabilities ...156
12.1.5 Container Capabilities ..157
12.1.6 Domain Object Capabilities ..159
Cloud Data Management Interface Working Draft ix
Version 1.1.0d

© SNIA
12.1.7 Queue Object Capabilities ..160
12.1.8 Capability Object Representations ...160

12.2 Read a Capabilities Object using CDMI Content Type ...160
12.2.1 Synopsis ...160
12.2.2 Capability ..161
12.2.3 Request Headers ...161
12.2.4 Request Message Body ...161
12.2.5 Response Headers ...161
12.2.6 Response Message Body ..162
12.2.7 Response Status ..162
12.2.8 Examples ..163

13 Exported Protocols ..165

13.1 Overview ...165
13.2 Exported Protocol Structure ..166

13.2.1 Mapping Names from CDMI to Another Protocol ...167
13.2.1.1 Capabilities ...167
13.2.1.2 Domains ...167
13.2.1.3 Caching ..167
13.2.1.4 Groups ...168
13.2.1.5 Synopsis ...168

13.2.2 Administrative Users ..169
13.2.3 User and Groupname Mapping Syntax and Evaluation Rules170

13.3 Discovering and Mounting Containers via Foreign Protocols ..170
13.4 NFS Exported Protocol ..171
13.5 CIFS Exported Protocol ...173
13.6 OCCI Exported Protocol ..174
13.7 iSCSI Export Modifications ..174

13.7.1 Read Container ..175
13.7.2 Create and Update Containers ...175
13.7.3 Modify an Export ..175

13.8 WebDAV Exported Protocol ...176

14 Snapshots ..177

15 Serialization/Deserialization ...178

15.1 Overview ...178
15.2 Exporting Serialized Data ..178
15.3 Importing Serialized Data ..178

15.3.1 Canonical Format ...179
15.3.2 Example JSON Canonical Serialized Format ...179

16 Metadata ...181

16.1 Access Control ..181
16.1.1 ACL and ACE Structure ...181
16.1.2 ACE Types ...181
16.1.3 ACE Who ..181
16.1.4 ACE Flags ..182
16.1.5 ACE Mask Bits ...183
16.1.6 ACL Evaluation ...185
16.1.7 Example ACE Mask Expressions ...187
16.1.8 Canonical Format for ACE Hexadecimal Quantities ..188
16.1.9 JSON Format for ACLs ..188

16.2 Support for User Metadata ..189
16.3 Support for Storage System Metadata ..189
16.4 Support for Data System Metadata ...191
16.5 Support for Provided Data System Metadata ..197
16.6 Metadata Update Operations ..198
x Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
17 Retention and Hold Management ...199

17.1 Introduction ..199
17.2 Retention Management Disciplines ...199
17.3 CDMI Retention ...199
17.4 CDMI Hold ...200
17.5 CDMI Auto-deletion ...202
17.6 Retention Security Considerations ..202

18 Scope Specification ...203

18.1 Introduction ..203
18.2 Examples ...203
18.3 Query Matching Expressions ..206

19 Results Specification ..210

19.1 Introduction ..210
19.2 Examples ...210

20 Logging ...212

20.1 Overview ...212
20.2 Object Logging ..212
20.3 Security Logging ..212
20.4 Data Management Logging ...213
20.5 Logging Queues ..213
20.6 Logging Security Considerations ...215

21 Notification Queues ...216

22 Query Queues ..220

22.1 Overview ...220
22.2 Extending CDMI Query ...222

SECTION 4 - CDMI Annexes ... 223

Annex A
(normative)
Transport Security .. 224

A.1 Introduction ..224
A.2 General Requirements for HTTP Implementations ...224
A.3 Basic HTTP Security ...225
A.4 HTTP over TLS (HTTPS) ..225
A.5 Transport Layer Security (TLS) ...225

A.5.1 Cipher Suites ...226
A.5.2 Digital Certificates ..226

Annex B
(informative)
Extensions ... 230

B.1 Summary Metadata for Bandwidth ..230
B.1.1 Overview ..230
B.1.2 Changes to CDMI 1.1 ..230

B.2 Expiring Access Control Entries (ACEs) ...232
B.2.1 Overview ..232
B.2.2 Changes to CDMI 1.1 ..232

B.3 Group Storage System Metadata ..233
B.3.1 Overview ..233
Cloud Data Management Interface Working Draft xi
Version 1.1.0d

© SNIA
B.3.2 Changes to CDMI 1.1 ..233
B.4 Multi-Part MIME Transfers ..234

B.4.1 Overview ..234
B.4.2 Changes to CDMI 1.1 - Clause 2 "Normative References" ...234
B.4.3 Changes to CDMI 1.1 - Clause 8 "Data Object Resource Operations"234
B.4.4 Changes to CDMI 1.1 - Clause 9 "Container Object Resource Operations"245
B.4.5 Changes to CDMI 1.1 - Clause 11 "Queue Object Resource Operations"251
B.4.6 Changes to CDMI 1.1 - Clause 12 "Capability Object Resource Operations"259

B.5 Versioning ...260
B.5.1 Overview ..260
B.5.2 Changes to CDMI 1.1 ...260

Annex C
(informative)
Bibliography .. 275
xii Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

Cloud Data Management Interface Working Draft xiii
Version 1.1.0d

Figures

Figure 1 – Existing Data Storage Interface Standards ..13
Figure 2 – Storage Interfaces for Object Storage Client Data ...14
Figure 3 – Cloud Storage Reference Model ..15
Figure 4 – CDMI Object Model ..17
Figure 5 – Object Transitions between Named and ID-only ..18
Figure 6 – Object ID Format ..19
Figure 7 – Hierarchy of Capabilities ..149
Figure 8 – CDMI and OCCI in an Integrated Cloud Computing Environment ...165
Figure 9 – Snapshot Container Structure ..177
Figure 10 – Object Retention ...200
Figure 11 – Object Hold ...201
Figure 12 – Object Hold on Object with Retention ..201
Figure 13 – Object with Multiple Holds ..201
Figure 14 – Updates to a Non-Version-Enabled Data Object ..265
Figure 15 – Updates to a Version-Enabled Data Object ...266
Figure 16 – Linkages Between a Version-Enabled Data Object and Data Object Versions267
Figure 17 – Overlapping Concurrent Updates ...268
Figure 18 – Linkages for Overlapping Updates ...268
Figure 19 – Nested Concurrent Updates ...269
Figure 20 – Linkages for Nested Updates ...269
Figure 21 – Version to capabilityURI Relationships ..270

© SNIA
Tables

Table 1 – Interface Format ..10
Table 2 – Key Word Requirements ...11
Table 3 – Types of Resources in the Model ..17
Table 4 – Creation/Consumption of Storage System Metadata ..18
Table 5 – Relative URIs Resolved Against Root URIs ..22
Table 6 – HTTP Status Codes ...28
Table 7 – Request Headers for Creating a CDMI Data Object using CDMI Content Type34
Table 8 – Request Message Body - Create a Data Object using CDMI Content Type35
Table 9 – Response Headers - Create a Data Object using CDMI Content Type37
Table 10 – Response Message Body - Create a Data Object using CDMI Content Type38
Table 11 – HTTP Status Codes - Create a Data Object using CDMI Content Type39
Table 12 – Request Headers - Create a CDMI Data Object using a Non-CDMI Content Type41
Table 13 – HTTP Status Codes - Create a Data Object using a Non-CDMI Content Type41
Table 14 – Request Headers - Read a CDMI Data Object using CDMI Content Type43
Table 15 – Response Headers - Read a CDMI Data Object using CDMI Content Type 43
Table 16 – Response Message Body - Read a Data Object using CDMI Content Type43
Table 17 – HTTP Status Codes - Read a CDMI Data Object using CDMI Content Type46
Table 18 – Request Header - Read a CDMI Data Object using a Non-CDMI Content Type48
Table 19 – Response Headers - Read a CDMI Data Object using a Non-CDMI Content Type 48
Table 20 – HTTP Status Codes - Read a CDMI Data Object using a Non-CDMI Content Type49
Table 21 – Request Headers - Update a CDMI Data Object using CDMI Content Type50
Table 22 – Request Message Body - Update a CDMI Data Object using CDMI Content Type51
Table 23 – Response Header - Update a CDMI Data Object using CDMI Content Type 53
Table 24 – HTTP Status Codes - Update a CDMI Data Object using CDMI Content Type54
Table 25 – Request Headers - Update a CDMI Data Object using a Non-CDMI Content Type57
Table 26 – Response Header - Update a CDMI Data Object using a Non-CDMI Content Type 58
Table 27 – HTTP Status Codes - Update a CDMI Data Object using a Non-CDMI Content Type58
Table 28 – Request Header - Delete a CDMI Data Object using CDMI Content Type59
Table 29 – HTTP Status Codes - Delete a CDMI Data Object using CDMI Content Type60
Table 30 – HTTP Status Codes - Delete a CDMI Data Object using a Non-CDMI Content Type61
Table 31 – Container Metadata ...63
Table 32 – Request Headers - Create a Container Object using CDMI Content Type65
Table 33 – Request Message Body - Create a Container Object using CDMI Content Type66
Table 34 – Response Headers - Create a Container Object using CDMI Content Type68
Table 35 – Response Message Body - Create a Container Object using CDMI Content Type68
Table 36 – HTTP Status Codes - Create a CDMI Container Object using CDMI Content Type69
Table 37 – HTTP Status Codes - Create a Container Object using a Non-CDMI Content Type72
Table 38 – Request Headers - Read a Container Object using CDMI Content Type73
Table 39 – Response Headers - Read a Container Object using CDMI Content Type73
Table 40 – Response Message Body - Read a Container Object using CDMI Content Type74
Table 41 – HTTP Status Codes - Read a Container Object using CDMI Content Type76
Table 42 – Request Headers - Update a Container Object using CDMI Content Type79
Table 43 – Request Message Body - Update a Container Object using CDMI Content Type79
Table 44 – Response Header - Update a Container Object using CDMI Content Type82
Table 45 – HTTP Status Codes - Update a Container Object using CDMI Content Type82
Table 46 – Request Header - Delete a Container Object using CDMI Content Type84
Table 47 – HTTP Status Codes - Delete a Container Object using CDMI Content Type84
Table 48 – HTTP Status Codes - Delete a Container Object using a Non-CDMI Content Type86
Table 49 – Request Headers - Create a New Data Object using CDMI Content Type88
Table 50 – Request Message Body - Create a New Data Object using CDMI Content Type89
Table 51 – Response Headers - Create a New Data Object using CDMI Content Type 91
Table 52 – Response Message Body - Create a New Data Object using CDMI Content Type91
Table 53 – HTTP Status Codes - Create a New Data Object using CDMI Content Type92
Table 54 – Request Header - Create a New Data Object using a Non-CDMI Content Type95
Table 55 – Response Header - Create a New Data Object using a Non-CDMI Content Type95
Table 56 – HTTP Status Codes - Create a New Data Object using a Non-CDMI Content Type96
xiii Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
Table 57 – Request Headers - Create a New Queue Object using CDMI Content Type98
Table 58 – Request Message Body - Create a New Queue Object using CDMI Content Type99
Table 59 – Response Headers - Create a New CDMI Queue Object using CDMI Content Type100
Table 60 – Response Message Body - Create a New Queue Object with CDMI 

Content ..100
Table 61 – HTTP Status Codes - Create a New CDMI Queue Object using CDMI Content Type102
Table 62 – Required Metadata for a Domain Object ...105
Table 63 – Contents of Domain Summary Objects ...106
Table 64 – Required Settings for Domain Member User Objects ...108
Table 65 – Required Settings for Domain Member Delegation Objects ..109
Table 66 – Request Headers - Create a Domain Object using CDMI Content Type111
Table 67 – Request Message Body - Create a Domain Object using CDMI Content Type112
Table 68 – Response Headers - Create a Domain Object using CDMI Content Type113
Table 69 – Response Message Body - Create a Domain Object using CDMI Content Type113
Table 70 – HTTP Status Codes - Create a Domain Object using CDMI Content Type114
Table 71 – Request Headers - Read a Domain Object using CDMI Content Type115
Table 72 – Response Headers - Read a Domain Object using CDMI Content Type116
Table 73 – Response Message Body - Read a Domain Object using CDMI Content Type116
Table 74 – HTTP Status Codes - Read a Domain Object using CDMI Content Type117
Table 75 – Request Headers - Update a Domain Object using CDMI Content Type119
Table 76 – Request Message Body - Update a Domain Object using CDMI Content Type119
Table 77 – Response Header - Update a Domain Object using CDMI Content Type120
Table 78 – HTTP Status Codes - Update a Domain Object using CDMI Content Type121
Table 79 – Request Headers - Delete a Domain Object using CDMI Content Type122
Table 80 – HTTP Status Codes - Delete a Domain Object using CDMI Content Type122
Table 81 – Request Headers - Create a Queue Object using CDMI Content Type126
Table 82 – Request Message Body - Create a Queue Object using CDMI Content Type127
Table 83 – Response Headers - Create a Queue Object using CDMI Content Type128
Table 84 – Response Message Body - Create a Queue Object using CDMI Content Type128
Table 85 – HTTP Status Codes - Create a Queue Object using CDMI Content Type130
Table 86 – Request Headers - Read a Queue Object using CDMI Content Type132
Table 87 – Response Headers - Read a Queue Object using CDMI Content Type132
Table 88 – Response Message Body - Read a Queue Object using CDMI Content Type133
Table 89 – HTTP Status Codes - Read a Queue Object using CDMI Content Type135
Table 90 – Request Headers - Update a Queue Object using CDMI Content Type138
Table 91 – Request Message Body - Update a Queue Object using CDMI Content Type138
Table 92 – Response Header - Update a Queue Object using CDMI Content Type139
Table 93 – HTTP Status Codes - Update a Queue Object using CDMI Content Type140
Table 94 – Request Header - Delete a Queue Object using CDMI Content Type141
Table 95 – HTTP Status Codes - Delete a Queue Object using CDMI Content Type142
Table 96 – Request Headers - Enqueue a New Queue Object Value using CDMI Content Type143
Table 97 – Request Message Body - Enqueue a New Queue Object Value using CDMI Content Type 143
Table 98 – HTTP Status Codes - Enqueue a New Queue Object Value using CDMI Content Type145
Table 99 – Request Header - Delete a Queue Object Value using CDMI Content Type147
Table 100 – HTTP Status Codes - Delete a Queue Object Value using CDMI Content Type148
Table 101 – System-Wide Capabilities ..150
Table 102 – Capabilities for Storage System Metadata ..153
Table 103 – Capabilities for Data System Metadata ...154
Table 104 – Capabilities for Data Objects ...156
Table 105 – Capabilities for Containers ..157
Table 106 – Capabilities for Domain Objects ..159
Table 107 – Capabilities for Queue Objects ..160
Table 108 – Request Headers - Read a Capabilities Object using CDMI Content Type161
Table 109 – Response Headers - Read a Capabilities Object using CDMI Content Type161
Table 110 – Response Message Body - Read a Capabilities Object using CDMI Content Type162
Table 111 – HTTP Status Codes - Read a Capabilities Object using CDMI Content Type162
Table 112 – Required Members of the NFS Protocol Structure ..171
Table 113 – Optional NFS Export Parameters ..172
Cloud Data Management Interface Working Draft xiv
Version 1.1.0d

© SNIA
Table 114 – Required Members of the CIFS Protocol Structure ...173
Table 115 – ACE Types ..181
Table 116 – Who Identifiers ...182
Table 117 – ACE Flags ...182
Table 118 – ACE Bit Masks ...183
Table 119 – Storage System Metadata ...189
Table 120 – Data System Metadata ..191
Table 121 – Provided Values of Data Systems Metadata Items ...197
Table 122 – Query Matching Expressions ...206
Table 123 – Required Metadata for a Logging Queue ..213
Table 124 – Logging Status Metadata ...215
Table 125 – Required Metadata for a Notification Queue ...216
Table 126 – Notification Status Metadata ..219
Table 127 – Required Metadata for a Query Queue ...220
Table 128 – Query Status Metadata ..221
xv Working Draft Cloud Data Management Interface
Version 1.1.0d

Section I

CDMI Preamble

© SNIA

1

2
3
4

5

Introduction

This Cloud Data Management Interface (CDMI™) international standard is intended for application
developers who are implementing or using cloud storage. It documents how to access cloud storage and
to manage the data stored there.

This document is organized as follows:

1 - Scope Defines the scope of this document

2 - References Lists the normative references for this document

3 - Terms Provides terminology used in this document

4 - Conventions Describes the conventions used in presenting the interfaces and
the typographical conventions used in this document

5 - Overview of Cloud Storage Provides a brief overview of cloud storage and details the
philosophy behind this international standard as a model for the
operations

6 - Common Operations Gives an example of the resources that may be accessed and the
representations used to modify them

7 - Interface Standard Provides a description of HTTP status codes, CDMI object types,
object references, and object manipulations

8 - Data Object Resource Operations Provides the normative standard of data object resource
operations

9 - Container Object Resource Operations Provides the normative standard of container object resource
operations

10 - Domain Object Resource Operations Provides the normative standard of domain object resource
operations

11 - Queue Object Resource Operations Provides the normative standard of queue object resource
operations

12 - Capability Object Resource Operations Provides the normative standard of capability object resource
operations

13 - Exported Protocols Discusses how virtual machines in the cloud computing
environment may use the exported protocols from CDMI
containers

14 - Snapshots Discusses how snapshots are accessed under CDMI containers

15 - Serialization/Deserialization Discusses serialization and deserialization, including import and
export of serialized data under CDMI

16 - Metadata Provides the normative standard of the metadata used in the
interface

17 - Retention and Hold Management Describes the optional retention management disciplines to be
implemented into the system management functions

18 - Scope Specification Describes the structure of the scope specification for JSON
objects

19 - Results Specification Provides a standardized mechanism to define subsets of CDMI
object contents

20 - Logging Describes CDMI functional logging for object functions, security
events, data management events, and queues
2 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
21 - Notification Queues Describes how CDMI clients may efficiently discover what
changes have occurred to the system

22 - Query Queues Describes how CDMI clients may efficiently discover what content
matches a given set of metadata query criteria or full-content
search criteria

Annex A - (normative) Transport Security Provides normative text for securing the HTTP communications
protocol for transferring CDMI messages

Annex B - (informative) Extensions Provides informative vendor extensions. Each extension is added
to the standard when at least two vendors implement the
extension.

Annex CB - (informative) Bibliography Provides informative references that may contain additional useful
information
Cloud Data Management Interface Working Draft 3
Version 1.1.0d

© SNIA

1

2
3
4

5

6
7
8

9
10
11
12

13

14

15
16

17
18

19
20

21

22
23

24

25
26

27

28

29

30

31
32

33
34

35

36

37

38

39
40
1 Scope

This CDMI™ international standard specifies the interface to access cloud storage and to manage the data
stored therein. This international standard applies to developers who are implementing or using cloud
storage.

2 Normative References

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

The provisions of the referenced specifications other than ISO/IEC, IEC, ISO, and ITU documents, as
identified in this clause, are valid within the context of this international standard. The reference to such a
specification within this international standard does not give it any further status within ISO/IEC. In
particular, it does not give the referenced specifications the status of an international standard.

ISO 3166, Codes for the representation of names of countries and their subdivisions (Parts 1, 2 and 3)

ISO 4217:2008, Codes for the representation of currencies and funds

ISO 8601:2004, Data elements and interchange formats – Information interchange – Representation of
dates and times

ISO 14701:2012, Space data and information transfer systems -- Open archival information system (OAIS)
-- Reference model

ISO/IEC 9594-8:2008, Information technology -- Open Systems Interconnection -- The Directory: Public-
key and attribute certificate frameworks

ISO/IEC 14776-414, SCSI Architecture Model - 4 (SAM-4)

IEEE Std 1003.1, 2004, POSIX ERE, The Open Group, Base Specifications Issue 6 - http://www.unix.org/
version3/ieee_std.html

RFC 1867, Form-based File Upload in HTML - http://www.ietf.org/rfc/rfc1867.txt

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies -
http://www.ietf.org/rfc/rfc2045.txt

RFC 2119, Key Words for Use in RFCs to Indicate Requirement Levels - http://tools.ietf.org/html/rfc2119

RFC 2246, The TLS Protocol Version 1.0 - http://www.ietf.org/rfc/rfc2246.txt

RFC 2578, Structure of Management Information Version 2 (SMIv2) - http://www.ietf.org/rfc/rfc2578.txt

RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1 - http://www.ietf.org/rfc/rfc2616.txt

RFC 2617, HTTP Authentication: Basic and Digest Access Authentication - http://datatracker.ietf.org/doc/
rfc2617/

RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile - http://www.ietf.org/rfc/rfc3280.txt

RFC 3530, Network File System (NFS) Version 4 Protocol - http://www.ietf.org/rfc/rfc3530.txt

RFC 3720, Internet Small Computer Systems Interface (iSCSI) - http://www.ietf.org/rfc/rfc3720.txt

RFC 3986, Uniform Resource Identifier (URI): Generic Syntax - http://www.ietf.org/rfc/rfc3986.txt

RFC 4346, The Transport Layer Security (TLS) Protocol Version 1.1 - http://www.ietf.org/rfc/rfc4346.txt

RFC 4627, The Application/JSON Media Type for JavaScript Object Notation (JSON) - http://www.ietf.org/
rfc/rfc4627.txt
4 Working Draft Cloud Data Management Interface
Version 1.1.0d

http://tools.ietf.org/html/rfc2119
http://datatracker.ietf.org/doc/rfc2617/
http://www.ietf.org/rfc/rfc3720.txt
http://www.ietf.org/rfc/rfc3720.txt

© SNIA

41

42
43

44

45

46
RFC 4648, The Base16, Base32, and Base64 Data Encodings - http://www.ietf.org/rfc/rfc4648.txt

RFC 4918, HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV) - 
http://www.ietf.org/rfc/rfc4918.txt

RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2 - http://www.ietf.org/rfc/rfc5246.txt

RFC 6208, Cloud Data Management Interface (CDMI) Media Types - http://www.ietf.org/rfc/rfc6208.txt

RFC 6839, Additional Media Type Structured Syntax Suffixes - http://www.ietf.org/rfc/rfc6839.txt
Cloud Data Management Interface Working Draft 5
Version 1.1.0d

http://www.ietf.org/rfc/rfc4648.txt

© SNIA

1

2

3
4
5
6

7
8

9
10

11
12

13

14
15

16

17
18

19

20
21
22

23

24
25

26
27

28

29
30
3 Terms

For the purposes of this document, the following terms and definitions apply.

3.1
Access Control List
ACL
a persistent list, commonly composed of Access Control Entries (ACEs), that enumerates the rights of
principals (users and groups) to access resources

3.2
API
Application Programming Interface

3.3
CDMI™
Cloud Data Management Interface

3.4
CDMI capabilities
an object that describes what operations are supported for a given cloud or cloud object

Note: The mimetype for this object is application/cdmi-capability.

3.5
CDMI container
an object that stores zero or more children objects and associated metadata

Note: The mimetype is for this object is application/cdmi-container.

3.6
CDMI data object
an object that stores an array of bytes (value) and associated metadata

Note: The mimetype is for this object is application/cdmi-object.

3.7
CDMI domain
an object that stores zero or more children domains and associated metadata describing object
administrative ownership

Note: The mimetype is for this object is application/cdmi-domain.

3.8
CDMI object
one of CDMI capabilities, CDMI container, CDMI data object, CDMI domain, or CDMI queue

3.9
CDMI queue
an object that stores a first-in, first-out set of values and associated metadata

Note: The mimetype is for this object is application/cdmi-queue.

3.10
CIFS
Common Internet File System
6 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

31
32

33
34

35
36

37
38
39
40
41

42
43
44

45
46

47
48
49

50
51

52
53

54
55

56
57
58
59

60

61
62

63
64
3.11
cloud storage
see Data storage as a Service

3.12
CRC
cyclic redundancy check

3.13
CRUD
create, retrieve, update, delete

3.14
Data storage as a Service
DaaS
delivery of virtualized storage and data services on demand over a network, based on a request for a given
service level that hides limits to scalability, is either self-provisioned or provisionless, and is billed based on
consumption

3.15
domain
a shared user authorization database that contains users, groups, and their security policies and
associated accounting information

Note: Each CDMI object belongs to a single domain, and each domain provides user mapping and
accounting information.

3.16 eventual consistency
a behavior of transactional systems that does not provide immediate consistency guarantees to provide
enhanced system availability and tolerance to network partitioning

3.17
FC
Fibre Channel

3.18
FCoE
Fibre Channel over Ethernet

3.19
HTTP
HyperText Transfer Protocol

3.20
Infrastructure as a Service
IaaS
delivery over a network of an appropriately configured virtual computing environment, based on a request
for a given service level

Note: Typically, IaaS is either self-provisioned or provisionless and is billed based on consumption.

3.21
iSCSI
Internet Small Computer Systems Interface (see RFC 3720)

3.22
JSON
JavaScript Object Notation
Cloud Data Management Interface Working Draft 7
Version 1.1.0d

© SNIA

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84
85
86

87
88

89
90

91
92
93

94

95
96
3.23
LDAP
Lightweight Directory Access Protocol

3.24
LUN
Logical Unit Number (see ISO/IEC 14776-414)

3.25
metadata
data about other data (see ISO 14701:2012)

3.26
MIME
Multipurpose Internet Mail Extensions (see RFC 2045)

3.27
NFS
Network File System (see RFC 3530)

3.28
object
an entity that has an object ID, has a unique URI, and contains state

Note: Types of CDMI objects include data objects, container objects, capability objects, domain objects,
and queue objects.

3.29
object identifier
a globally-unique value assigned at creation time to identify an object

3.30
OCCI
Open Cloud Computing Interface (see OCCI specification)

3.31
Platform as a Service
PaaS
delivery over a network of a virtualized programming environment, consisting of an application deployment
stack based on a virtual computing environment

Note: Typically, PaaS is based on IaaS, is either self-provisioned or provisionless, and is billed based on
consumption.

3.32
POSIX
Portable Operating System Interface (see IEEE Std 1003.1)

3.33
private cloud
delivery of SaaS, PaaS, IaaS, and/or DaaS to a restricted set of customers, usually within a single
organization

Note: Private clouds are created due to issues of trust.

3.34
public cloud
delivery of SaaS, PaaS, IaaS, and/or DaaS to, in principle, a relatively unrestricted set of customers
8 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

97
98
99

100

101
102

103
104

105
106

107
108

109
110
111

112
113
114

115
116
117

118
119

120
121
122

123
124

125
126
3.35
Representational State Transfer
REST
specific set of principles for defining, addressing, and interacting with resources addressable by URIs (see
REST thesis)

3.36
RPO
recovery point objective

3.37
RTO
recovery time objective

3.38
service level
performance targets for a service

3.39
SNMP
Simple Network Management Protocol

3.40
Software as a Service
SaaS
delivery over a network, on demand, of the use of an application

3.41 thin provisioning
technology that allocates the physical capacity of a volume or file system as applications write data, rather
than pre-allocating all the physical capacity at the time of provisioning

3.42
Uniform Resource Identifier
URI
compact sequence of characters that identifies an abstract or physical resource (see RFC 3986)

3.43
VIM
Vendor Interface Module

3.44
virtualization
presentation of resources as if they are physical, when in fact, they are decoupled from the underlying
physical resources

3.45
WebDAV
Web Distributed Authoring and Versioning (see RFC 4918)

3.46
XAM
eXtensible Access Method (see INCITS 464-2010)
Cloud Data Management Interface Working Draft 9
Version 1.1.0d

© SNIA

1

2

3

4

5

6

7
8
9

10
11

12
13
14
15
16
17
18

19
20
4 Conventions

4.1 Interface Format

Each interface description has nine components, as described in Table 1.

4.2 Typographical Conventions

All code text and HTTP status codes are shown in a fixed-width font, as follows:

EXAMPLE 1

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

EXAMPLE 2 Requesting an optional field that is not present shall result in an HTTP status code of 404 Not
Found.

Table 1 - Interface Format

Component Description

Synopsis The GET, PUT, POST, and DELETE semantics

Delayed Completion of Create For long-running operations, a description of behavior when the operation does
not immediately complete

Capabilities A description of the supported operations

Request Headers The request headers, such as Accept, Authorization, Content-Length, Content-
Type, X-CDMI-Specification-Version

Request Message Body A description of the message body contents

Response Headers The response headers, such as Content-Length, Content-Type

Response Message Body A description of the message body contents

Response Status A list of HTTP status codes

Example An example of the operation
10 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

21

22

23

24
25
26

27

28

29
4.3 Request and Response Body Requirements

In request and response body tables, the Requirement column contains one of the following three values:

• Mandatory. The value specified in this row shall be provided.

• Conditional. If the condition(s) specified in the Description cell of this row (to the left of the
Requirement) is met, the value specified in this row shall be provided. Otherwise it may be
provided unless the Description specifically prohibits it, in which case it shall not be provided.

• Optional. The value specified in this row may be provided.

4.4 Key Word Requirements

In this international standard, the key words in Table 2 shall be interpreted as described in RFC 2119.

Table 2 - Key Word Requirements

Key Words Description

shall
must
required

An action described with any of these key words is unconditionally required.

shall not
must not

An action described with either of these key word phrases is unconditionally prohibited.

should
recommended

Valid reasons may exist in specific circumstances to ignore a particular action described with
either of these key words, but the full implications must be understood and carefully weighed
before choosing a different course.

should not
not recommended

Valid reasons may exist in specific circumstances to accept a particular action described by
either of these key word phrases, but the full implications should be understood and the case
carefully weighed before implementing any action described with these key words.

may
optional

An action described with either of these key words is truly optional. One vendor may choose
to include the option because a particular marketplace requires it or because the vendor
feels that it enhances the product, while another vendor may omit the same option. An
implementation which does not include a particular option must be prepared to interoperate
with another implementation which does include the option, though perhaps with reduced
functionality. Likewise, an implementation which does include a particular option must be
prepared to interoperate with another implementation that does not include the option
(except, of course, for the feature the option provides).
Cloud Data Management Interface Working Draft 11
Version 1.1.0d

© SNIA

1

2

3
4
5
6
7
8

9
10
11
12

13
14
15
16

17

18
19
20
21

22
23
24
25

26
27

28

29
30
31
5 Overview of Cloud Storage

5.1 Introduction

When discussing cloud storage and standards, it is important to distinguish the various resources that are
being offered as services. These resources are exposed to clients as functional interfaces (i.e., data paths)
and are managed by management interfaces (i.e., control paths). This international standard explores the
various types of interfaces that are part of offerings today and shows how they are related. This
international standard defines a model for the interfaces that may be mapped to the various offerings and
a model that forms the basis for cloud storage interfaces into the future.

Another important concept in this international standard is that of metadata. When managing large
amounts of data with differing requirements, metadata is a convenient mechanism to express those
requirements in such a way that underlying data services may differentiate their treatment of the data to
meet those requirements.

The appeal of cloud storage is due to some of the same attributes that define other cloud services: pay as
you go, the illusion of infinite capacity (elasticity), and the simplicity of use/management. It is therefore
important that any interface for cloud storage support these attributes, while allowing for a multitude of
business use cases.

5.2 What is Cloud Storage?

The use of the term cloud in describing these new models arose from architecture drawings that typically
used a cloud as the icon for a network. The cloud represents any-to-any network connectivity in an
abstract way. In this abstraction, the network connectivity in the cloud is represented without concern for
how it is made to happen.

The cloud abstraction of complexity produces a simple base upon which other features can be built. The
general cloud model extends this base by adding a pool of resources. An important part of the cloud model
is the concept of a pool of resources that is drawn from, on demand, in small increments. A relatively
recent innovation that has made this possible is virtualization.

Thus, cloud storage is simply the delivery of virtualized storage on demand. The formal term that is used
for this is Data storage as a Service (DaaS).

5.3 Data Storage as a Service

By abstracting data storage behind a set of service interfaces and delivering it on demand, a wide range of
actual offerings and implementations are possible. The only type of storage that is excluded from this
definition is that which is delivered in fixed-capacity increments instead of based on demand.
12 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

32
33
34

35
36
37
38
39
40
41

42
43
44

45
46
47
48

49
50
An important part of any DaaS offering is the support of legacy clients. Support is accommodated with
existing standard protocols such as iSCSI (and others) for block and CIFS/NFS or WebDAV for file
network storage, as shown in Figure 1.

The difference between the purchase of a dedicated appliance and that of cloud storage is not the
functional interface, but the fact that the storage is delivered on demand. The customer pays for either
what they actually use or what they have allocated for use. In the case of block storage, a Logical Unit
Number (LUN), or virtual volume, is the granularity of allocation. For file protocols, a file system is the unit
of granularity. In either case, the actual storage space may be thin provisioned and billed for based on
actual usage. Data services, such as compression and deduplication, may be used to further reduce the
actual space consumed.

Managing this storage is typically done out of band for these standard data storage interfaces, either
through an API, or more commonly, through an administrative browser-based user interface. This out-of-
band interface may be used to invoke other data services as well (e.g., snapshot and cloning).

In this model, the underlying storage space exposed by the out-of-band interfaces is abstracted and
exposed using the notion of a container. A container is not only a useful abstraction for storage space, but
also serves as a grouping of the data stored in it and a point of control for applying data services in the
aggregate.

Each data object is created, retrieved, updated, and deleted as a separate resource. In this type of
interface, a container, if used, is a simple grouping of data objects for convenience. Nothing prevents the

Figure 1 - Existing Data Storage Interface Standards

Container

POSIX (NFS, CIFS,
WebDAV)

iSCSI LUNs, Targets

Block Storage Client Filesystem Client
Cloud Data Management Interface Working Draft 13
Version 1.1.0d

© SNIA

51
52

53

54
55
56
57

58
59
60
61

62
63
64
65

66
67
68

69
70
71

72
73
74
75
concept of containers from being hierarchical, although any given implementation might support only a
single level"" (see Figure 2).

5.4 Data Management for Cloud Storage

Many of the initial offerings of cloud storage focused on a kind of best effort quality of storage service and
ignored most other types of data services. To address the needs of enterprise applications with cloud
storage, however, there is an increasing need to offer better quality of service and to deploy additional data
services.

Cloud storage may lose its abstraction and simplicity benefits if new data services that require complex
management are added. Cloud storage customers are likely to resist new demands on their time (e.g.,
setting up backup schedules through dedicated interfaces, deploying data services individually for data
elements).

By supporting metadata in a cloud storage interface and prescribing how the storage system and data
system metadata is interpreted to meet the requirements of the data, the simplicity required by the cloud
storage model may be maintained while still addressing the requirements of enterprise applications and
their data.

User metadata is retained by the cloud and may be used to find the data objects and containers by
performing a query for specific metadata values. The schema for this metadata may be determined by
each application, domain, or user. For more information on support for user metadata, see 16.2.

Storage system metadata is produced/interpreted by the cloud offering and basic storage functions (e.g.,
modification and access statistics, access control). For more information on support for storage system
metadata, see 16.3.

Data system metadata is interpreted by the cloud offering as data requirements that control the operation
of underlying data services for that data. It may apply to an aggregation of data objects in a container or to
individual data objects, if the offering supports this level of granularity. For more information on support for
data system metadata, see 16.4.

Figure 2 - Storage Interfaces for Object Storage Client Data

Object Storage Client

CRUD
operations via

HTTP

Container
 Container

Container
14 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

76

77
78
79
80
81
82
83

84
85
86
87
88

89

90

91
92
93
5.5 Data and Container Management

There is no reason that managing data and managing containers should involve different interfaces.
Therefore, the use of metadata is extended from applying to individual data elements to applying to
containers of data as well. Thus, any data placed into a container inherits the data system metadata of the
container into which it was placed. When creating a new container within an existing container, the new
container would similarly inherit the metadata settings of its parent's data system metadata. After a data
element is created, the data system metadata may be overridden at the container or individual data
element level, as desired.

Even if the provided interface does not support setting metadata on individual data elements, metadata
may still be applied to the containers. In such a case, the interface does not provide a mechanism to
override metadata that an individual data element inherits from its parent container. For file-based
interfaces that support extended attributes (e.g., CIFS, NFSv4), these extended attributes may be used to
specify the data system metadata to override that specified for the container.

5.6 Reference Model for Cloud Storage Interfaces

The cloud storage reference model is shown in Figure 3.

This model shows multiple types of cloud data storage interfaces that are able to support both legacy and
new applications. All of the interfaces allow storage to be provided on demand, drawn from a pool of
resources. The storage capacity is drawn from a pool of storage capacity provided by storage services.

Figure 3 - Cloud Storage Reference Model

Data Storage Cloud

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

Storage
Services

Data Services

CDMI

Cloud Data
Management

Ta
b

le
Ta

b
le

Ta
b

le
Ta

b
le

Ta
b

le

Draws resources
on demand

 Container

POSIX (NFS,
CIFS, WebDAV)

iSCSI, FC, FCoE
LUNs, Targets

XAM VIM
for CDMI Database/Table

Client

XAM ClientObject Storage Client

Block Storage Client File System Client

CDMI Multiple, vendor-
specific interfaces

Container
 Container

Container

Data/Storage
Management Client

Management of the cloud
storage can be standalone
or part of the overall cloud
computing management.

Clients acting in the role of using a data storage interface

Clients acting in the
role of managing data/
storage

Clients can be inside the
storage cloud (i.e.,
providing storage
resources to the cloud as
well as consuming them)
or outside the storage
cloud (i.e., only consuming
resources).

Information
Services
(future)
Information

Services
(future)
Information

Services
(future)

Exports to cloud
computing
Cloud Data Management Interface Working Draft 15
Version 1.1.0d

© SNIA

94
95
96

97

98
99

100

101

102

103
104
105

106
107
108
109

110
111

112

113
114
115

116
117

118
119
120
121
122

123
124

125

126

127

128
129
130

131
132
133
134
135

136
137
138
The data services are applied to individual data elements, as determined by the data system metadata.
Metadata specifies the data requirements on the basis of individual data elements or on groups of data
elements (containers).

5.7 Cloud Data Management Interface

The Cloud Data Management Interface (CDMI™) shown in Figure 3 may be used to create, retrieve,
update, and delete objects in a cloud. The features of the CDMI include functions that:

• allow clients to discover the capabilities available in the cloud storage offering,

• manage containers and the data that is placed in them, and

• allow metadata to be associated with containers and the objects they contain.

This international standard divides operations into two types: those that use a CDMI content type in the
HTTP body and those that do not. While much of the same data is available via both types, providing both
allows for CDMI-aware clients and non-CDMI-aware clients to interact with a CDMI provider.

CDMI may also be used by administrative and management applications to manage containers, domains,
security access, and monitoring/billing information, even for storage that is functionally accessible by
legacy or proprietary protocols. The capabilities of the underlying storage and data services are exposed
so that clients may understand the offering.

Conformant cloud offerings may support a subset of the CDMI, as long as they expose the limitations in
the capabilities reported via the interface.

This international standard uses RESTful principles in the interface design where possible (see REST).

CDMI defines both a means to manage the data as well as a means to store and retrieve the data. The
means by which the storage and retrieval of data is achieved is termed a data path. The means by which
the data is managed is termed a control path. CDMI specifies both a data path and control path interface.

CDMI does not need to be used as the only data path and is able to manage cloud storage properties for
any data path interface (e.g., standardized or vendor specific).

Container metadata is used to configure the data requirements of the storage provided through the
exported protocol (e.g., block protocol or file protocol) that the container exposes. When an
implementation is based on an underlying file system to store data for a block protocol (e.g., iSCSI), the
CDMI container provides a useful abstraction for representing the data system metadata for the data and
the structures that govern the exported protocols.

A cloud offering may also support domains that allow administrative ownership to be associated with
stored objects. Domains allow this international standard to (among other things):

• determine how user credentials are mapped to principals used in an Access Control List (ACL),

• allow granting of special cloud-related privileges, and

• allow delegation to external user authorization systems (e.g., LDAP or Active Directory).

Domains may also be hierarchical, allowing for corporate domains with multiple children domains for
departments or individuals. The domain concept is also used to aggregate usage data that is used to bill,
meter, and monitor cloud use.

Finally, capabilities allow a client to discover the capabilities of a CDMI implementation. Requirements
throughout this international standard shall be understood in the context of CDMI capabilities. Mandatory
requirements on functionality that is conditioned on a CDMI capability shall not be interpreted to require
implementation of that capability, but rather shall be interpreted to apply only to implementations that
support the functionality required by that capability.

For example, in 5.10, this international standard states, "Every cloud storage system shall allow object ID-
based access to stored objects." This requirement shall be understood in the context that access by object
ID is predicated on the presence of the cdmi_object_access_by_ID capability.
16 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

139

140

141
142

143
144
145
146
147
148
149

150
151

152
153
154
155
156

157
158
5.8 Object Model for CDMI

The model for CDMI is shown in Figure 4.

The five types of resources defined are shown in Table 3. The content type in any given operation is
specific to each type of resource.

For data storage operations, the client of the interface only needs to know about container objects and
data objects. All data path implementations are required to support at least one level of containers (see
5.5). Using the CDMI object model (see Figure 4), the client may send a PUT via CDMI (see 5.6) to the
new container URI and create a new container with the specified name. Container metadata are optional
and are expressed as a series of name-value pairs. After a container is created, a client may send a PUT
to create a data object within the newly created container. A subsequent GET will fetch the data object,
including the value field.

Queue objects are also defined (see Figure 4) and provide in-order-first in-first-out access to enqueued
objects. More information on queues may be found in Clause 11.

CDMI defines two namespaces that can be used to access stored objects, a flat object ID namespace and
a hierarchical path-based namespace. Support for objects accessed by object ID is indicated by the
system-wide capability cdmi_object_access_by_ID, and support for objects accessed by hierarchical path
is indicated by the container capability cdmi_create_dataobject found on the root container (and any
subcontainers).

Objects are created by ID by performing an HTTP POST against a special URI, designated as 
/cdmi_objectid/ (see 9.8). Subsequent to creation, objects are modified by performing PUTs using the

Figure 4 - CDMI Object Model

Table 3 - Types of Resources in the Model

Resource Type Description Reference

Data objects Data objects are used to store values and provide functionality similar to
files in a file system.

See Clause 8.

Container objects Container objects have zero or more children, but do not store values. They
provide functionality similar to directories in a file system.

See Clause 9.

Domain objects Domain objects represent administrative groupings for user authentication
and accounting purposes.

See Clause 10.

Queue objects Queue objects store zero or move values and are accessed in a first-in-first-
out manner.

See Clause 11.

Capability objects Capability objects describe the functionality implemented by a CDMI server
and are used by a client to discover supported functionality.

See Clause 12.

Key/Vale Metadata
Children

Root Container

Key/Value Metadata
Children

Container

Key/Value Metadata
Values

Queue Object

Capability Entries
Children

Capability Objects

Summary
Membership
Children

Domain Objects

Key/Value Metadata
Value

Data Object

0..*
child

0..*
child

Child

capabilitiesURI

0..* 0..* 0..*

domainURI 1

1

capabilitiesURI

1

Cloud Data Management Interface Working Draft 17
Version 1.1.0d

© SNIA

159
160

161
162
163

164
165
166
167

168

169
170

171
172
173

174
175
176

177
178
179

180
181
182

183
184

185
object ID assigned by the CDMI server, using the /cdmi_objectid/ URI (see 8.6). The same URI is used to
retrieve and delete objects by ID.

Objects are created by name by performing an HTTP PUT to the desired path URI (see 8.2). Subsequent
to creation, objects are modified by performing PUTs using the object path specified by the client (see 8.6).
The same URI is used to retrieve and delete objects by path.

CDMI defines mechanisms so that objects having only an object ID can be assigned a path location within
the hierarchical namespace, and so that objects having both an object ID and path can have their path
dropped, such that the object only has an object ID. This function is accomplished by using a "move"
modifier to a PUT or POST operation, as shown in Figure 5.

5.9 CDMI Metadata

CDMI uses many different types of metadata, including HTTP metadata, data system metadata, user
metadata, and storage system metadata.

HTTP metadata is metadata that is related to the use of the HTTP protocol (e.g., Content-Length, Content-
Type, etc.). HTTP metadata is not specifically related to this international standard but needs to be
discussed to explain how CDMI uses the HTTP standard.

CDMI data system metadata, user metadata, and storage system metadata is defined in the form of name-
value pairs. Vendor-defined data system metadata and storage system metadata names shall begin with
the reverse domain name of the vendor.

Data system metadata is metadata that is specified by a CDMI client and is a component of objects. Data
system metadata abstractly specifies the data requirements associated with data services that are
deployed in the cloud storage system.

User metadata consists of client-defined JSON strings, arrays, and objects that are stored in the metadata
field. The namespace used for user metadata names is self-administered (e.g., using the reverse domain
name), and user metadata names shall not begin with the prefix "cdmi_."

Storage system metadata is metadata that is generated by the storage services in the system (e.g.,
creation time, size) to provide useful information to a CDMI client.

The matrix of the creation and consumption of storage system metadata is shown in Table 4.

Figure 5 - Object Transitions between Named and ID-only

Table 4 - Creation/Consumption of Storage System Metadata

Created by User Created By System

Consumed by User User metadata Storage system metadata

Consumed by System Data system metadata N/A

Object with
Name and ID

Object with ID
only

PUT /name, {“move” : “/cdmi_objectid/<object ID>/"}

POST /cdmi_objectID/, {“move” : “/name"}
18 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

186

187
188
189
190

191
192
193
194

195

196

197
198
199

200

201

202

203
204

205

206
207
208
209
210

211

212

213
214
215

216

217
218
5.10 Object ID

Every object stored within a CDMI-compliant system shall have a globally unique object identifier (ID)
assigned at creation time. The CDMI object ID is a string with requirements for how it is generated and how
it obtains its uniqueness. Each offering that implements CDMI is able to produce these identifiers without
conflicting with other offerings.

Every cloud storage system shall allow object ID-based access to stored objects by allowing the object's ID
to be appended to the root container URI. If the data object "MyDataObject.txt", located in the root
container, has an object ID of "00006FFD001001CCE3B2B4F602032653", the following pair of URIs
access the same data object:

http://cloud.example.com/root/MyDataObject.txt

http://cloud.example.com/root/cdmi_objectid/00006FFD001001CCE3B2B4F602032653

If containers are supported, they shall also be accessible by object ID. If the container "MyContainer",
located in the root container, has an object ID of "00006FFD0010AA33D8CEF9711E0835CA", the
following pairs of URIs access the same object:

http://cloud.example.com/root/MyContainer/

http://cloud.example.com/root/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA/

http://cloud.example.com/root/MyContainer/MyDataObject.txt

http://cloud.example.com/root/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA/MyDataOb-
ject.txt

5.11 CDMI Object ID Format

The offering shall create the object ID, which identifies an object. The object ID shall be globally unique
and shall conform to the format defined in Figure 6. The native format of an object ID is a variable-length
byte sequence and shall be a maximum length of 40 bytes. An application should treat object IDs as
opaque byte strings. However, the object ID format is defined such that its integrity may be validated, and
independent offerings may assign unique object ID values independently.

The fields shown in Figure 6 are defined as follows:

• The reserved bytes shall be set to zero.

• The Enterprise Number field shall be the SNMP enterprise number of the offering organization that
created the object ID, in network byte order. See RFC 2578 and http://www.iana.org/assignments/
enterprise-numbers. 0 is a reserved value.

• The byte at offset 5 shall contain the full length of the object ID, in bytes.

• The CRC field shall contain a 2-byte (16-bit) CRC in network byte order. The CRC field enables
the object ID to be validated for integrity. The CRC field shall be generated by running the

0 1 2 3 4 5 6 7 8 9 10 ... 38 39

Reserved
(zero)

Enterprise Number Reserved
(zero)

Length CRC Opaque Data

Figure 6 - Object ID Format
Cloud Data Management Interface Working Draft 19
Version 1.1.0d

http://www.iana.org/assignments/enterprise-numbers

© SNIA

219
220

221

222

223

224

225

226

227

228

229
230

231

232
233
234

235

236
237

238
239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
257

258
259
260
261
algorithm (see CRC) across all bytes of the object ID, as defined by the Length field, with the CRC
field set to zero. The CRC function shall have the following fields:

— Name : "CRC-16",

— Width : 16,

— Poly : 0x8005,

— Init : 0x0000,

— RefIn : True,

— RefOut : True,

— XorOut : 0x0000, and

— Check : 0xBB3D.

This function defines a 16-bit CRC with polynomial 0x8005, reflected input, and reflected output.
This CRC-16 is specified in CRC.

• Opaque data in each object ID shall be unique for a given Enterprise Number.

The native format for an object ID is binary. When necessary, such as when included in URIs and JSON
strings, the object ID textual representation shall be encoded using Base16 encoding rules described in
RFC 4648 and shall be case insensitive.

5.12 Security

Security, in the context of CDMI, refers to the protective measures employed in managing and accessing
data and storage. The specific objectives to be addressed by security include providing a mechanism that:

• assures that the communications between a CDMI client and server may not be read or modified
by a third party;

• allows CDMI clients and servers to assure their identity;

• allows control of the actions a CDMI client is permitted to perform on a CDMI server;

• allows records to be generated for actions performed by a CDMI client on a CDMI server;

• protects data at rest;

• eliminates data in a controlled manner; and

• discovers the security capabilities of of a particular implementation.

Security measures within CDMI may be summarized as

• transport security,

• user and entity authentication,

• authorization and access controls,

• data integrity,

• data and media sanitization,

• data retention,

• protections against malware,

• data at-rest encryption, and

• security capabilities.

With the exception of both the transport security and the security capabilities, which are mandatory to
implement, the security measures may vary significantly from implementation to implementation.

When security is a concern, the CDMI client should begin with a series of security capability lookups (see
12.1.1) to determine the exact nature of the security features that are available. Based on the values of
these capabilities, a risk-based decision should be made as to whether the CDMI server should be used.
This is particularly true when the data to be stored in the cloud storage is sensitive or regulated in a way
20 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

262
263

264
265
266
267

268
269
270
271

272

273

274
275
276

277

278
279
280

281
282
283
284

285
286
287
288

289

290
291

292

293
294

295
296

297

298
299
300
301
that requires stored data to be protected (e.g., encrypted) or handled in a particular manner (e.g., full
accountability and traceability of management and access).

HTTP is the mandatory transport mechanism, and HTTP over Transport Layer Security (TLS) (i.e.,
HTTPS) is the mechanism used to secure the communications between CDMI clients and servers. To
ensure both security and interoperability, all CDMI implementations shall implement the TLS protocol as
described in Annex A, but its use by CDMI clients and servers is optional.

As CDMI is built on top of HTTP, any HTTP compatible authentication standard may be used to
authenticate CDMI clients. As with HTTP basic and HTTP digest, once authenticated, the provided
principal name shall be mapped by the domain to an ACL name (or used directly as an ACL name if
domains are not supported), which is then used to determine authorization.

5.13 Required HTTP Support

5.13.1 RFC 2616 Support Requirements

A conformant implementation of CDMI shall also be a conformant implementation of RFC2616 (see RFC
2616) (i.e., HTTP 1.1). The subclauses below list the sections of RFC 2616 that shall be supported;
however, this list is not comprehensive.

5.13.2 Content-Type Negotiation

For CDMI operations, media types for CDMI objects are used as defined in RFC 6208. All CDMI
representations follow the rules established for "application/json" as defined in RFC 4627. The use of the
CDMI media types with the "+json" suffix shall be supported as defined in RFC 6839.

A client may optionally supply an HTTP Accept header, as per section 14.1 of RFC 2616. If a client is
restricting the response to a specific CDMI media type, the corresponding media type shall be specified in
the Accept header. Otherwise, the Accept header may contain "*/*" or a list of media types, or it may be
omitted.

If a request body is present, the client shall include a Content-Type header, as per section 14.17 of RFC
2616. If the client does not provide a Content-Type header when required or provides a media type in the
Content-Type header that does not match with the existing resource media type, the server shall return an
HTTP status code of 400 Bad Request.

If a response body is present, the server shall provide a Content-Type header.

This international standard may further qualify content negotiation (e.g., in 9.3, the absence of a Content-
Type header has a specific meaning).

5.13.3 Range Support

The server shall support HTTP Range headers and partial content responses (see Section 14.16 of RFC
2616).

The values of the childrange, valuerange and queuerange fields are formatted based on the HTTP byte-
range-resp-spec, as defined in clause 14.16 of RFC 2616.

5.13.4 URI Escaping

Percent escaping of reserved characters specified in RFC 3986 shall be applied to all text strings used in
HTTP request URIs and HTTP header URIs. This includes user-supplied field names, metadata names,
data object names, container object names, queue object names, and domain object names when used in
HTTP request URIs and HTTP header URIs.
Cloud Data Management Interface Working Draft 21
Version 1.1.0d

© SNIA

302
303

304
305

306
307
308
309

310

311
312
313

314
315
316
317
318
319

320

321

322
323
324

325
326
327

328

329
330
331

332
333

334
335
Field names and values shall not be escaped when stored and when sent in request body and response
bodies.

EXAMPLE A client retrieving a metadata item named "@user" from a container object with the name of
"@MyContainer" would perform the following request:

GET /%40MyContainer/?objectName;metadata:%40user HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The response shall be:

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "objectName": "@MyContainer/",
 "metadata": {
 "@user": "test"
 }
}

5.13.5 Use of URIs

The format and syntax of URIs are defined by RFC 3986.

Every CDMI client shall maintain one or more root URIs that each correspond to a root container on the
CDMI server. Since all URIs to CDMI containers end in a trailing slash, all root URIs will end in a trailing
slash.

All URIs in this international standard are relative to the root URI unless otherwise noted. As a
consequence, the algorithm used for calculating the resolved URI is as described in Section 5.2 of RFC
3986.

Table 5 shows how relative URIs are resolved against root URIs.

This international standard places no restrictions on root and relative URIs. All of the examples in this
specification use a root URI of http://cloud.example.com/ and return absolute path references as shown in
the second line of Table 5.

• If the root URI is "/", the container located at the root URI shall omit the parentID field and shall
return an empty string ("") for the value of the parentURI field.

• If the root URI is not "/" and the parent is a CDMI container, the container located at the root URI
shall populate parentID field with the CDMI object ID of the CDMI container corresponding to the

Table 5 - Relative URIs Resolved Against Root URIs

Root URI + Relative URI => Resolved URI

http://cloud.example.com/ cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject

http://cloud.example.com/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject

http://cloud.example.com/p1/ cdmi_object/testObject http://cloud.example.com/p1/cdmi_object/testObject

http://cloud.example.com/p1/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject

http://cloud.example.com/p1/p2/ cdmi_object/testObject http://cloud.example.com/p1/p2/cdmi_object/
testObject

http://cloud.example.com/p1/p2/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject
22 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

336
337

338
339
340

341
342

343

344
345

346

347
348
349
350
351

352
353
354
355
356
357

358

359

360
361
362
363

364
365
366
367

368

369
370

371

372

373

374
parent path component, and populate the parentURI field with the URI of the parent path
component.

• If the root URI is not "/" and the parent is not a CDMI container, the container located at the root
URI shall omit the parentID field, and populate the parentURI field with the URI of the parent path
component.

• If the root URI is not "/" and the parent is not accessible, the server may omit the parentID field and
return an empty string ("") for the value of the parentURI field.

5.13.6 Reserved Characters

The name of CDMI data objects, container objects, queue objects, domain objects and capability objects
shall not contain the "/" or "?" characters, as these characters are reserved for delimiters.

5.14 Time Representations

Unless otherwise specified, all date/time values are in the ISO 8601:2004 extended representation (YYYY-
MM-DDThh:mm:ss.ssssssZ). The full precision shall be specified, the sub-second separator shall be a ".",
the Z UTC zone indicator shall be included, and all timestamps shall be in UTC time zone. The YYYY-MM-
DDT24:00:00.000000Z hour shall not be used, and instead, it shall be represented as YYYY-MM-
DDT00:00:00.000000Z.

Unless otherwise specified, all date/time intervals are in the ISO 8601:2004 start date/end date
representation (YYYY-MM-DDThh:mm:ss.ssssssZ/YYYY-MM-DDThh:mm:ss.ssssssZ). The end date shall
be equal to or later than the start date. The full precision shall be specified, the sub-second separator shall
be a ".", the Z UTC zone indicator shall be included, and all timestamps shall be in UTC time zone. The
YYYY-MM-DDT24:00:00.000000Z hour shall not be used, and instead, it shall be represented as YYYY-
MM-DDT00:00:00.000000Z.

5.15 Backwards Compatibility

5.15.1 Value Transfer Encoding

CDMI version 1.0.1 introduces the concept of value transfer encoding to enable the storage and retrieval of
arbitrary binary data via CDMI content-type operations. Data objects created by CDMI 1.0 clients through
CDMI content-type operations shall have a value transfer encoding of "utf-8", and data objects created
through non-CDMI content-type operations shall have a value transfer encoding of "base64".

Data objects with a value transfer encoding of base 64 shall not have their value field accessible to CDMI
1.0 clients through CDMI content-type operations. Attempts to read the value of these objects shall return
an empty value field ("") to these clients. CDMI 1.0 clients can detect this condition when the cdmi_size
metadata is not 0 and the value field is empty.

5.15.2 Container Export Capabilities

CDMI version 1.0.2 normalizes the names of capabilities used by a client to discover if a container can be
exported via various protocols and deprecates the following container export capability names:

• cdmi_cifs_export,

• cdmi_nfs_export,

• cdmi_iscsi_export, and

• cdmi_occi_export.
Cloud Data Management Interface Working Draft 23
Version 1.1.0d

© SNIA

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15
16
17

18

19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
6 Common Operations

6.1 Overview

All examples included in this international standard are informative.

This clause includes examples for the following CDMI content-type operations:

• discovering the capabilities of a cloud storage provider (see 6.2),

• creating a new container (see 6.3),

• creating a new data object (see 6.4),

• listing the contents of a container (see 6.5),

• reading the contents of a data object (see 6.6),

• reading only the value of a data object (see 6.7), and

• deleting a data object (see 6.8).

6.2 Discover the Capabilities of a Cloud Storage Provider

EXAMPLE Perform a GET to the capabilities URI:

GET /cdmi_capabilities/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-capability",
 "objectID" : "00007E7F0010CEC234AD9E3EBFE9531D",
 "objectName" : "cdmi_capabilities/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010DCECC805FB6D195DDBCB",
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_webdav" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024",
 "cdmi_size" : "true",
 "cdmi_list_children" : "true",
 "cdmi_read_metadata" : "true",
 "cdmi_modify_metadata" : "true",
 "cdmi_create_container" : "true",
 "cdmi_delete_container" : "true"
 },
 "childrenrange" : "0-3",
 "children" : [
 "domain/",
 "container/",
 "dataobject/",
 "queue/"
]
}

24 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

53

54

55
56
57
58
59

60
61
62
63
64

65

66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86

87

88
89
90
91
92

93
94
95
96
97
98
99

100

101
102
103

104
105
106
6.3 Create a New Container

EXAMPLE Perform a PUT to the new container URI:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {

 }
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-container",
 "objectID" : "00007E7F00102E230ED82694DAA975D2",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : {
 "cdmi_size" : "0"
 },
 "childrenrange" : "",
 "children" : [

]
}

6.4 Create a Data Object in a Container

EXAMPLE Perform a PUT to the new data object URI:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "Hello CDMI World!"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007E7F0010BD1CB8FF1823CF05BEE4",
Cloud Data Management Interface Working Draft 25
Version 1.1.0d

© SNIA

107
108
109
110
111
112
113
114
115
116
117

118

119

120
121
122
123

124

125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145

146

147
148
149
150

151

152
153
154

155
156
157
158
159
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "17"
 }
}

6.5 List the Contents of a Container

EXAMPLE Perform a GET to the data object URI to read all fields of the data object:

GET /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: */*
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-container",
 "objectID" : "00007E7F00102E230ED82694DAA975D2",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : {
 "cdmi_size" : "83"
 },
 "childrenrange" : "0-0",
 "children" : [
 "MyDataObject.txt"
]
}

6.6 Read the Contents of a Data Object

EXAMPLE GET from the data object URI:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "objectType": "application/cdmi-object",
 "objectID": "00007E7F0010BD1CB8FF1823CF05BEE4",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
26 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

160
161
162
163
164
165
166
167
168
169
170
171

172

173

174
175

176

177
178

179

180

181

182
183
184

185

186
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "17"
 },
 "valuetransferencoding": "utf-8",
 "valuerange": "0-16",
 "value": "Hello CDMI World!"
}

6.7 Read Only the Value of a Data Object

EXAMPLE Perform a GET to the data object URI:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 200 OK
Content-Type: text/plain

Hello CDMI World!

6.8 Delete a Data Object

EXAMPLE Perform a DELETE to the data object URI:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content
Cloud Data Management Interface Working Draft 27
Version 1.1.0d

© SNIA

1

2

3
4
5

6
7

8

9
10
11

12
13
14
15
16
17

18
19

20
21
22

23

24
7 Interface Standard

7.1 HTTP Status Codes

HTTP status codes (see Table 6) are used to convey the results of the RESTful operations and to follow
the basic semantics of HTTP with minimal overloading. Other HTTP status codes are not part of this
international standard and retain their original semantics from HTTP 1.1.

For enhanced security, a vendor may substitute an HTTP status code of 404 Not Found when an HTTP
status code of 403 Forbidden would otherwise be returned.

7.2 Object References

Object references are URIs within the cloud storage namespace that redirect to another URI within the
same or another cloud storage namespace. References are similar to soft links in a file system. The cloud
does not guarantee that the referenced URI will be valid after the time of creation.

References are visible as children in a container and are distinguished from non-references in container
children listings by the presence of a trailing "?" character added to the reference name. Performing an
operation (with the exception of create or delete) to a reference URI will result in an HTTP status code of
302 Found, with the HTTP Location header containing the redirect destination URI that was specified at
the time the reference was created. The reference’s destination URI shall not be changed after a reference
has been created.

To continue, when CDMI clients receive an HTTP status code of 302 Found, they should retry the
operation using the URI contained within the Location header.

A delete operation on a reference URI shall delete the reference. References cannot be updated. To
update the destination of a redirect, the client shall first delete the reference and then create a new
reference to the desired destination.

EXAMPLE 1 GET to a URI, where the URI is a reference:

GET /MyContainer/MyDataObject.txt HTTP/1.1

Table 6 - HTTP Status Codes

Status Code HTTP Name Description

200 OK The request has succeeded.

201 Created The resource was created successfully.

202 Accepted The long-running operation was accepted for processing

204 No Content The operation was successful; no data was returned.

302 Found The resource is a reference to another resource.

400 Bad Request The request contents are missing or invalid.

401 Unauthorized The authentication/authorization credentials are invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable No content can be produced at this URI that matches the request.

409 Conflict The operation conflicts with a non-CDMI™ access protocol lock or may
cause a state transition error on the server.
28 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

25
26
27

28

29
30

31
32

33

34
35
36
37

38

39
40

41

42
43
44
45

46
47
48

49

50

51

52
53
54
55

56
57
58

59

60
61

62

63
64
65

66

67
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 302 Found
Location: http://cloud.example.com/MyContainer/MyOtherDataObject.txt

References by object ID shall always redirect to a URI that ends with the same object ID as the request
URI.

EXAMPLE 2 GET to an object ID URI, where the URI is a reference:

GET /cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 302 Found
Location: http://archive.example.com/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA

EXAMPLE 3 PUT to create a reference:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "reference": "http://cloud.example.com/MyContainer/MyOtherDataObject.txt"
}

The following shows the response.

HTTP/1.1 201 Created

EXAMPLE 4 POST to create a reference:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "reference": "http://cloud.example.com/MyContainer/MyOtherDataObject.txt"
}

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/00007ED90010DF417BAD70A0C7F5CDDA

EXAMPLE 5 DELETE to delete a reference:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content
Cloud Data Management Interface Working Draft 29
Version 1.1.0d

Section II

CDMI Core

© SNIA

1

2

3
4

5
6

7

8

9

10

11
12

13
14

15
16

17
18

19

20
21

22

23

24
25

26
27

28
29
30

31
32

33

34

35
36
37
38

39
8 Data Object Resource Operations

8.1 Overview

Data objects are the fundamental storage component within CDMI™ and are analogous to files within a file
system. Each data object has a set of well-defined fields that include:

Data objects are the fundamental storage component within CDMI™ and are analogous to files within a file
system. Each data object has a set of well-defined fields that include:

• a single value; and

• optional metadata that is generated by the cloud storage system and specified by the cloud user.

Data objects are addressed in CDMI in two ways:

• by name (e.g., http://cloud.example.com/dataobject); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
00007ED90010D891022876A8DE0BC0FD).

Every data object has a single, globally-unique object identifier (ID) that remains constant for the life of the
object. Each data object shall have one or more URI addresses that allow the object to be accessed.

Every data object has a parent object from which the data object inherits data system metadata that is not
explicitly specified in the data object itself.

EXAMPLE 1 The "budget.xls" data object stored at the following URI would inherit data system metadata from its
parent container, "finance":

http://cloud.example.com/finance/budget.xls

Individual fields within a data object may be accessed by specifying the field name after a question mark
"?" that is appended to the end of the data object URI.

EXAMPLE 2 The following URI returns the value field in the response body:

http://cloud.example.com/dataobject?value

The encoding of the data transported in the data object value field depends on the data object
valuetransferencoding field.

• If the value transfer encoding of the object is set to "utf-8", the data stored in the value of the data
object shall be a valid UTF-8 string and shall be transported as a UTF-8 string in the value field.

• If the value transfer encoding of the object is set to "base64", the data stored in the value of the
data object can contain arbitrary binary sequences, and it shall be transported as a base
64-encoded string in the value field.

Specific ranges of the value of a data object may be accessed by specifying a byte range after the value
field name.

EXAMPLE 3 The following URI returns the first thousand bytes in the value field:

http://cloud.example.com/dataobject?value:0-999

Because a byte range of a UTF-8 string is often not a valid UTF-8 string, the response to a range request
shall always be transported in the value field as a base 64-encoded string. Likewise, when updating a
range of bytes within the value of a data object, the contents of the value field shall be transported as a
base 64-encoded string.

Byte ranges are specified as single inclusive byte ranges as per Section 14.35.1 of RFC 2616.
Cloud Data Management Interface Working Draft 31
Version 1.1.0d

© SNIA

40
41

42

43

44
45
46

47
48

49
50
51

52

53
54
55
56

57

58

59
60

61
62

63
64
65
66

67
68

69
70
71

72

73
74
75
76
A list of unique fields, separated by a semicolon ";" may be specified, allowing multiple fields to be
accessed in a single request.

EXAMPLE 4 The following URI returns the value and metadata fields in the response body:

http://cloud.example.com/dataobject?value;metadata

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields
shall be returned. If no requested fields are permitted to be read, an HTTP status code of 403
Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be
performed, and an HTTP status code of 403 Forbidden shall be returned to the client.

When a client provides fields that are not defined in this international standard or deserializes an object
containing fields that are not defined in this international standard, these fields shall be stored as part of
the object but shall not be interpreted.

8.1.1 Data Object Metadata

Data object metadata may also include arbitrary user-supplied metadata, storage system metadata, and
data system metadata, as specified in Clause 16. Metadata shall be stored as a valid UTF-8 string. Binary
data stored in user metadata shall be first encoded such that it can be contained in a UTF-8 string, with the
use of base 64 encoding recommended.

8.1.2 Data Object Consistency

Writing to a data object is an atomic operation.

• If a client reads a data object simultaneously with a write to that same data object, the reading
client shall get either the old version or the new version, but not a mixture of both.

• If a write is terminated due to errors, the contents of the data object shall be as if the write never
occurred (i.e., writes are atomic in the face of errors).

Create and update timestamps that are returned in response to multiple client writes to a given object may
indicate that a specific write is the newest (i.e., the write whose data is expected to be returned to
subsequent reads until another write is processed). However, there is no guarantee that the write with the
latest timestamp is the one whose data is returned on subsequent reads.

Range writes can result in a gap in an object value that have had no data written to them. Reading from a
gap in a data object value shall return zero for each byte read.

Implementations of this international standard shall provide the atomicity features described in this
subclause for data objects that are accessed via CDMI. The atomicity properties of data objects that are
accessed by protocols other than CDMI are outside the scope of this international standard.

8.1.3 Data Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in
any order, with the exception that, if present, for data objects, the valuerange and value fields shall appear
last and in that order.
32 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

77

78

79

80

81

82

83

84
85

86

87

88

89
90
91
92

93
94

95
96

97

98
99

100
101

102
103

104
105

106
107

108
109

110
111
112

113

114
115

116
117
8.2 Create a Data Object Using CDMI Content Type

8.2.1 Synopsis

To create a new data object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<DataObjectName>

To create a new data object by ID, see 9.9.

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e.,
"/") between each pair of container names.

• <DataObjectName> is the name specified for the data object to be created.

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.2.2 Delayed Completion of Create

In response to a create operation for a data object, the server may return an HTTP status code of 202
Accepted to indicate that the object is in the process of being created. This response is useful for long-
running operations (e.g., copying a large data object from a source URI). Such a response has the
following implications.

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With an HTTP status code of 202 Accepted, the server implies that the following checks have
passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error
string starting with the value "Error".

• An optional percentComplete field contains the percentage of the operation that has completed
(0 to 100).

GET shall not return any value for the data object when completionStatus is not "Complete". If the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

8.2.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
data object:

• Support for the ability to create a new data object is indicated by the presence of the
cdmi_create_dataobject capability in the parent container.
Cloud Data Management Interface Working Draft 33
Version 1.1.0d

© SNIA

118
119

120
121

122
123

124
125
126

127
128
129
130

131

132
• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the cdmi_create_reference capability in the parent container.

• If the new data object is a copy of an existing data object, support for the ability to copy is indicated
by the presence of the cdmi_copy_dataobject capability in the parent container.

• If the new data object is the destination of a move, support for the ability to move the data object is
indicated by the presence of the cdmi_move_dataobject capability in the parent container.

• If the new data object is the destination of a deserialize operation, support for the ability to
deserialize the source data object is indicated by the presence of the cdmi_deserialize_dataobject
capability in the parent container.

• If the new data object is the destination of a serialize operation, support for the ability to serialize
the source data object is indicated by the presence of the cdmi_serialize_dataobject,
cdmi_serialize_container, cdmi_serialize_domain, or cdmi_serialize_queue capability in the parent
container.

8.2.4 Request Headers

The HTTP request headers for creating a CDMI data object using CDMI content type are shown in Table 7.

Table 7 - Request Headers for Creating a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-object" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the newly created object is part of a
series of writes and the value has not yet been fully
populated. If X-CDMI-Partial is present, the
completionStatus field in the response body shall be set to
"Processing". X-CDMI-Partial works across CDMI and non-
CDMI operations.

Optional
34 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

133

134
8.2.5 Request Message Body

The request message body fields for creating a data object using CDMI content type are shown in Table 8.

Table 8 - Request Message Body - Create a Data Object using CDMI Content Type (Sheet 1 of 3)

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field
of the data object

• This field may be included when creating by value or
when deserializing, serializing, copying, and moving
a data object.

• This field shall be stored as part of the data object.

• If this field is not specified, the value of "text/
plain" shall be assigned as the field value.

• This field shall not be included when creating a
reference.

• This MIME type value shall be converted to lower
case before being stored.

Optional

metadata JSON
Object

Metadata for the data object

• If this field is included when deserializing, serializing,
copying, or moving a data object, the value provided
in this field shall replace the metadata from the
source URI.

• If this field is not included when deserializing,
serializing, copying, or moving a data object, the
metadata from the source URI shall be used.

• If this field is included when creating a new data
object by specifying a value, the value provided in
this field shall be used as the metadata.

• If this field is not included when creating a new data
object by specifying a value, an empty JSON object
(i.e., "{}") shall be assigned as the field value.

• This field shall not be included when referencing a
data object.

Optional

domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall
have the "cross-domain" privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the domain of the parent container
shall be used.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new data object

Optionala

serialize JSON
String

URI of a CDMI object that shall be serialized into the
new data object

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 35
Version 1.1.0d

© SNIA
copy JSON
String

URI of a source CDMI data object or queue object that
shall be copied into the new destination data object.

• If the destination data object URI and the copy
source object URI both do not specify individual
fields, the destination data object shall be a
complete copy of the source data object.

• If the destination data object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to create the destination data
object. If specified fields are not present in the
source, default field values shall be used.

• If the destination data object URI and the copy
source object URI both specify fields, an HTTP
status code of 400 Bad Request shall be returned
to the client.

• If the copy source object URI points to a queue
object, as part of the copy operation, multiple queue
values shall be concatenated into a single data
object value.

• If the copy source object URI points to one or more
queue object values, as part of the copy operation,
the specified queue values shall be concatenated
into a single data object value.

• If there are insufficient permissions to read the data
object at the source URI or create the data object at
the destination URI, or if the read operation fails, the
copy shall return an HTTP status code of 400 Bad
Request, and the destination object shall not be
created.

Optionala

move JSON
String

URI of an existing local or remote CDMI data object
(source URI) that shall be relocated to the URI
specified in the PUT. The contents of the object,
including the object ID, shall be preserved by a move,
and the data object at the source URI shall be
removed after the data object at the destination has
been successfully created.

If there are insufficient permissions to read the data
object at the source URI, write the data object at the
destination URI, or delete the data object at the source
URI, or if any of these operations fail, the move shall
return an HTTP status code of 400 Bad Request,
and the source and destination are left unchanged.

Optionala

reference JSON
String

URI of a CDMI data object that shall be redirected to
by a reference. If any other fields are supplied when
creating a reference, the server shall respond with an
HTTP status code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described
in RFC 4648.

Optionala

Table 8 - Request Message Body - Create a Data Object using CDMI Content Type (Sheet 2 of 3)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
36 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

135

136
8.2.6 Response Headers

The HTTP response headers for creating a data object using CDMI content type are shown in Table 9.

valuetransferencoding JSON
String

The value transfer encoding used for the data object
value. Two value transfer encodings are defined.

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the
value field. Setting the contents of the data object
value field to any value other than a valid base 64
string shall result in an HTTP status code of 400
Bad Request being returned to the client.

This field shall only be included when creating a data
object by value. If not specified by the client, the server
shall set the valuetransferencoding field to "utf-8".

This field shall be stored as part of the object.

Optional

value JSON
String

The data object value

• If this field is not included, an empty JSON String
(i.e., "") shall be assigned as the field value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC
4627.

• If the valuetransferencoding field indicates base 64
encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648.

Optionala

Table 9 - Response Headers - Create a Data Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Table 8 - Request Message Body - Create a Data Object using CDMI Content Type (Sheet 3 of 3)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 37
Version 1.1.0d

© SNIA

137

138
139

140
8.2.7 Response Message Body

The response message body fields for creating a data object using CDMI content type are shown in
Table 10.

Table 10 - Response Message Body - Create a Data Object using CDMI Content Type

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-object" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully
created or updated or if an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value "Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field, if
provided, may contain any integer value from 0 through
100.

Optional

mimetype JSON
String

MIME type of the value of the data object Mandatory

metadata JSON
Object

Metadata for the data object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for
a further description of metadata.

Mandatory
38 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

141

142
143

144

145

146
147
148
149
150

151
152
153
154
155
156
157

158

159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
8.2.8 Response Status

The HTTP status codes that occur when creating a data object using CDMI content type are described in
Table 11.

8.2.9 Examples

EXAMPLE 1 PUT to the container URI the data object name and contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED90010D891022876A8DE0BC0FD",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 }
}

Table 11 - HTTP Status Codes - Create a Data Object using CDMI Content Type

HTTP Status Description

201 Created The new data object was created.

202 Accepted The data object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine the
current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.
Cloud Data Management Interface Working Draft 39
Version 1.1.0d

© SNIA

176

177
178
179
180
181
182
183
184
185
186
187
188

189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208

209

210

211

212

213

214
215

216

217

218

219
220

221
222
EXAMPLE 2 PUT to the container URI the data object name and binary contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : "text/plain",
 "metadata" : { },
 "valuetransferencoding" : "base64"
 "value" : "VGhpcyBpcyB0aGUgVmFsdWUgb2YgdGhpcyBEYXRhIE9iamVjdA=="
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "objectType": "application/cdmi-object",
 "objectID": "00007ED9001008C174ABCE6AC3287E5F",
 "objectName": "MyDataObject.txt",
 "parentURI": "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
 "cdmi_size": "37"
 }
}

8.3 Create a Data Object using a Non-CDMI Content Type

8.3.1 Synopsis

The following HTTP PUT creates a new data object at the specified URI:

PUT <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e.,
"/") between each pair of container names.

• <DataObjectName> is the name specified for the data object to be created.

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.3.2 Capability

The following capability describes the supported operations that may be performed when creating a new
data object:

• Support for the ability to create a new data object is indicated by the presence of the
cdmi_create_dataobject capability in the parent container.
40 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

223

224

225

226

227

228

229

230

231

232

233
234
8.3.3 Request Headers

The HTTP request headers for creating a CDMI data object using a non-CDMI content type are shown in
Table 12.

8.3.4 Request Message Body

The request message body contains the data to be stored in the value of the data object.

8.3.5 Response Headers

No response headers are specified.

8.3.6 Response Message Body

No response message body fields are specified.

8.3.7 Response Status

The HTTP status codes that occur when creating a data object using a non-CDMI content type are
described in Table 13.

Table 12 - Request Headers - Create a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

The content type of the data to be stored as a data object.
The value specified here shall be used as the mimetype
field of the CDMI data object. If the content type includes
the charset parameter as defined in RFC 2046 of "utf-8"
(e.g., ";charset=utf-8"), the valuetransferencoding field of
the CDMI data object shall be set to "utf-8". Otherwise, the
valuetransferencoding field of the CDMI data object shall be
set to "base64".

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the newly created object is part of a
series of writes and has not yet been fully created. When
set, the completionStatus field shall be set to "Processing".
X-CDMI-Partial works across CDMI and non-CDMI
operations.

Optional

Table 13 - HTTP Status Codes - Create a Data Object using a Non-CDMI Content Type

HTTP Status Description

201 Created The new data object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.
Cloud Data Management Interface Working Draft 41
Version 1.1.0d

© SNIA

235

236

237
238
239
240

241

242

243

244

245

246

247
248
249
250

251

252

253

254

255

256
257

258

259

260
261

262
263

264
265

266
267
8.3.8 Example

EXAMPLE PUT to the container URI the data object name and contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain;charset=utf-8
Content-Length: 37

This is the Value of this Data Object

The following shows the response.

HTTP/1.1 201 Created

8.4 Read a Data Object using CDMI Content Type

8.4.1 Synopsis

The following HTTP GET reads from an existing data object at the specified URI:

GET <root URI>/<ContainerName>/<DataObjectName>
GET <root URI>/<ContainerName>/<DataObjectName>?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<DataObjectName>?value:<range>;...
GET <root URI>/<ContainerName>/<DataObjectName>?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be read from.

• <fieldname> is the name of a field.

• <range> is a byte range of the data object value to be returned in the value field.<prefix> is a
matching prefix that returns all metadata items that start with the prefix value.

The object shall also also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.4.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing data object:

• Support for the ability to read the metadata of an existing data object is indicated by the presence
of the cdmi_read_metadata capability in the specified object.

• Support for the ability to read the value of an existing data object is indicated by the presence of
the cdmi_read_value capability in the specified object.

• Support for the ability to read the value of an existing data object in specific byte ranges is
indicated by the presence of the cdmi_read_value_range capability in the specified object. .
42 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

268

269

270

271

272

273

274

275

276

277
8.4.3 Request Headers

The HTTP request headers for reading a CDMI data object using CDMI content type are shown in
Table 14.

8.4.4 Request Message Body

A request body shall not be provided.

8.4.5 Response Headers

The HTTP response headers for reading a data object using CDMI content type are shown in Table 15.

8.4.6 Response Message Body

The response message body fields for reading a CDMI data object using CDMI content type are shown in
Table 16.

Table 14 - Request Headers - Read a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-object" or a consistent value as per clause
5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 15 - Response Headers - Read a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Content-Type Header
String

"application/cdmi-object" Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 16 - Response Message Body - Read a Data Object using CDMI Content Type (Sheet 1 of 3)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-object" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional
Cloud Data Management Interface Working Draft 43
Version 1.1.0d

© SNIA
parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist
and shall not be returned.

Appending the objectName to the parentURI shall
always produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist
and shall not be returned.

Conditional

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of
being created or updated by another operation, and
after that operation is complete, indicates if it was
successfully created or updated or if an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value
"Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing",
this field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete",
this field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this
field, if provided, may contain any integer value from 0
through 100.

Optional

mimetype JSON
String

MIME type of the value of the data object Mandatory

metadata JSON
Object

Metadata for the data object

This field includes any user and data system metadata
specified in the request body metadata field, along with
storage system metadata generated by the cloud
storage system.

See Clause 16 for a further description of metadata.

Mandatory

Table 16 - Response Message Body - Read a Data Object using CDMI Content Type (Sheet 2 of 3)

Field Name Type Description Requirement
44 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

278
279
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

valuerange JSON
String

The range of bytes of the data object to be returned in
the value field

• If a specific value range has been requested, the
valuerange field shall correspond to the bytes
requested. If the request extends beyond the end of
the value, the valuerange field shall indicate the
smaller byte range returned.

• If the object value has gaps (due to PUTs with non-
contiguous value ranges), the value range will
indicate the range to the first gap in the object value.

• The cdmi_size storage system metadata of the data
object shall always indicate the complete size of the
object, including zero-filled gaps.

Mandatory

valuetransferencoding JSON
String

The value transfer encoding used for the data object
value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64-encoded string in the value field.

Mandatory

value JSON
String

The data object value

• If the valuetransferencoding field indicates UTF-8
encoding, the value field shall contain a UTF-8 string
using JSON escaping rules described in RFC 4627.

• If the valuetransferencoding field indicates base 64
encoding, the value field shall contain a base 64-
encoded string as described in RFC 4648.

• The value field shall only be provided when the
completionStatus field contains "Complete".

• When reading a value, zeros shall be returned for any
gaps resulting from non-contiguous writes.

Conditional

Table 16 - Response Message Body - Read a Data Object using CDMI Content Type (Sheet 3 of 3)

Field Name Type Description Requirement
Cloud Data Management Interface Working Draft 45
Version 1.1.0d

© SNIA

280

281
282

283

284

285
286
287
288

289

290
291
292

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310

311
312
313
314
8.4.7 Response Status

The HTTP status codes that occur when reading a data object using CDMI content type are described in
Table 17.

8.4.8 Examples

EXAMPLE 1 GET to the data object URI to read all fields of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
X-CDMI-Specification-Version: 1.1
Content-Type: application/cdmi-object

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED90010D891022876A8DE0BC0FD",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 },
 "valuerange" : "0-36",
 "valuetransferencoding" : "utf-8",
 "value" : "This is the Value of this Data Object"
}

EXAMPLE 2 GET to the data object URI by ID to read all fields of the data object:

GET /cdmi_objectid/00007ED90010D891022876A8DE0BC0FD HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

Table 17 - HTTP Status Codes - Read a CDMI Data Object using CDMI Content Type

HTTP Status Description

200 OK The data object content was returned in the response.

202 Accepted The data object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine the
current status of the operation.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.
46 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

315

316
317
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

336

337
338
339
340

341

342
343
344

345
346
347
348

349

350
351
352
353

354

355
356
357

358
359
360
361

362

363

364
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED90010D891022876A8DE0BC0FD",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "37"
 },
 "valuetransferencoding" : "utf-8",
 "valuerange" : "0-36",
 "value" : "This is the Value of this Data Object"
}

EXAMPLE 3 GET to the data object URI to read the value and mimetype fields of the data object:

GET /MyContainer/MyDataObject.txt?value;mimetype HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "value" : "This is the Value of this Data Object",
 "mimetype" : "text/plain"
}

EXAMPLE 4 GET to the data object URI to read the first 11 bytes of the value of the data object:

GET /MyContainer/MyDataObject.txt?valuerange;value:0-10 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "valuerange" : "0-10",
 "value" : "VGhpcyBpcyB0aGU="
}

8.5 Read a Data Object using a Non-CDMI Content Type

8.5.1 Synopsis

The following HTTP GET reads from an existing data object at the specified URI:
Cloud Data Management Interface Working Draft 47
Version 1.1.0d

© SNIA

365

366

367

368

369

370

371

372
373

374
375
376

377
378
379
380

381

382

383

384

385

386

387
388

389

390

391

392
GET <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be read from.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.5.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing data object:

• Support for the ability to read the value of an existing data object is indicated by the presence of
the cdmi_read_value capability in the specified object. Any read from a specific byte location not
previously written to by a create or update operation shall return zero for the byte value.

• Support for the ability to read the value of an existing data object in specific byte ranges is
indicated by the presence of the cdmi_read_value_range capability in the specified object. Any
read from a specific byte location within the value range specified not previously written to by a
create or update operation shall return zero for the byte value.

8.5.3 Request Header

The HTTP request header for reading a CDMI data object using a non-CDMI content type is shown in
Table 18.

8.5.4 Request Message Body

A request body shall not be provided.

8.5.5 Response Headers

The HTTP response headers for reading a data object using a non-CDMI content type are shown in
Table 19.

8.5.6 Response Message Body

When reading a data object using a non-CDMI content type, the following applies:

• The response message body shall be the contents of the data object's value field.

• When reading a value, zeros shall be returned for any gaps resulting from non-contiguous writes.

Table 18 - Request Header - Read a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Range Header
String

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

Table 19 - Response Headers - Read a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

The content type returned shall be the mimetype field in the
data object.

Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional
48 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

393

394
395

396

397

398
399

400

401
402
403

404

405

406
407
408

409

410
411
412
413

414

415

416

417

418
419
420
8.5.7 Response Status

The HTTP status codes that occur when reading a data object using a non-CDMI content type are
described in Table 20.

8.5.8 Examples

EXAMPLE 1 GET to the data object URI to read the value of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 37

This is the Value of this Data Object

EXAMPLE 2 GET to the data object URI to read the first 11 bytes of the value of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Range: bytes=0-10

The following shows the response.

HTTP/1.1 206 Partial Content
Content-Type: text/plain
Content-Range: bytes 0-10/37
Content-Length: 11

This is the

8.6 Update a Data Object using CDMI Content Type

8.6.1 Synopsis

The following HTTP PUT updates an existing data object at the specified URI:

PUT <root URI>/<ContainerName>/<DataObjectName>
PUT <root URI>/<ContainerName>/<DataObjectName>?value:<range>
PUT <root URI>/<ContainerName>/<DataObjectName>?metadata:<metadataname>;....

Table 20 - HTTP Status Codes - Read a CDMI Data Object using a Non-CDMI Content Type

HTTP Status Description

200 OK The data object content was returned in the response.

206 Partial Content A requested range of the data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI, or a requested field within
the resource was not found.
Cloud Data Management Interface Working Draft 49
Version 1.1.0d

© SNIA

421

422

423

424

425

426
427

428

429
430

431
432

433
434

435
436

437

438
439
Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be updated.

• <range> is a byte range for the data object value to be updated.

The data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>, and an update shall not
result in a change to the object ID.

8.6.2 Capabilities

The following capabilities describe the supported operations that may be performed when updating an
existing data object:

• Support for the ability to modify the metadata of an existing data object is indicated by the
presence of the cdmi_modify_metadata capability in the specified object.

• Support for the ability to modify the value of an existing data object and/or MIME type is indicated
by the presence of the cdmi_modify_value capability in the specified object.

• Support for the ability to modify the value of an existing data object in specified byte ranges is
indicated by the presence of the cdmi_modify_value_range capability in the specified object.

8.6.3 Request Headers

The HTTP request headers for updating a CDMI data object using CDMI content type are shown in
Table 21.

Table 21 - Request Headers - Update a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the object is in the process of being
updated and has not yet been fully updated. When set, the
completionStatus field shall be set to "Processing".

If the completionStatus field had previously been set to
"Processing" by including this header in a create or update,
the next update without this field shall change the
completionStatus field back to "Complete". X-CDMI-Partial
works across CDMI and non-CDMI operations.

Optional
50 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

440

441
442
8.6.4 Request Message Body

The request message body fields for updating a data object using CDMI content type are shown in
Table 22.

Table 22 - Request Message Body - Update a CDMI Data Object using CDMI Content Type (Sheet 1 of 3)

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of
the data object. If present, this value replaces the
existing mimetype field value.

• This field may be included when updating by value,
deserializing, and copying a data object.

• This field shall be stored as part of the data object.

• If this field is not specified, the existing value of the
mimetype field shall be left unchanged.

• This field shall not be included when creating a
reference.

• This mimetype field value shall be converted to lower
case before being stored.

Optional

metadata JSON
Object

Metadata for the data object. If present, the new
metadata specified replaces the existing object
metadata. If individual metadata items are specified in
the URI, only those items are replaced; other items are
preserved.

See Clause 16 for a further description of metadata.

Optional

domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall have
the "cross-domain" privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the existing domain shall be
preserved.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to update an existing data object. The
object ID of the serialized data object shall match the
object ID of the destination data object.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 51
Version 1.1.0d

© SNIA
copy JSON
String

URI of a source CDMI data object or queue object that
shall be copied into an existing destination data object.

• If the destination data object URI and the copy source
object URI both do not specify individual fields, the
destination data object shall be replaced with the
source data object.

• If the destination data object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to update the destination data
object. If specified fields are not present in the source,
these fields shall be ignored.

• If the destination data object URI and the copy source
object URI both specify fields, an HTTP status code of
400 Bad Request shall be returned to the client.

If the copy source object URI points to a queue object,
as part of the copy operation, multiple queue values
shall be concatenated into a single data object value.

If there are insufficient permissions to read the data
object at the source URI, update the data object at the
destination URI, or if the read operation fails, the copy
shall return an HTTP status code of 400 Bad
Request, and the destination shall be left unchanged.

Optionala

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in
RFC 4648. The object ID of the serialized data object
shall match the object ID of the destination data object.

Optionala

valuetransferencoding JSON
String

The value transfer encoding used for the data object
value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid
UTF-8 string and shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequence and shall be transported as
a base 64 encoded string in the value field. Setting
the contents of the data object value field to any value
other than a valid base 64 string shall result in an
HTTP status code of 400 Bad Request being
returned to the client.

This field shall only be included when updating a data
object by value. If this field is not specified, the existing
value of the valuetransferencoding field shall be left
unchanged.

This field shall be stored as part of the object.

Optional

Table 22 - Request Message Body - Update a CDMI Data Object using CDMI Content Type (Sheet 2 of 3)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
52 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

443

444

445

446
8.6.5 Response Header

The HTTP response header for updating a data object using CDMI content type is shown in Table 23.

8.6.6 Response Message Body

A response body may be provided as per RFC 2616.

value JSON
String

This field contains the new data for the object. If present,
this value replaces the existing value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC
4627.

• If the valuetransferencoding field indicates base 64
encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648.

• If a value range was specified in the request, the new
data shall be inserted at the location specified by the
range. Any resulting gaps between ranges shall be
treated as if zeros had been written and shall be
included when calculating the size of the value. When
storing a range, the value shall be encoded using
base 64, and the valuetransferencoding field shall be
set to "base64".

Optional

Table 23 - Response Header - Update a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 22 - Request Message Body - Update a CDMI Data Object using CDMI Content Type (Sheet 3 of 3)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 53
Version 1.1.0d

© SNIA

447

448

449

450

451

452
453
454
455

456
457
458
459
460
461
462
463

464

465

466

467
468
469
470

471
472
473

474

475

476

477
478
479
480
8.6.7 Response Status

The HTTP status codes that occur when updating a data object using CDMI content type are described in
Table 24.

8.6.8 Examples

EXAMPLE 1 PUT to the data object URI to set new field values:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : "text/plain",
 "metadata" : {
 "colour" : "blue",
 "length" : "10"
 },
 "value" : "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the data object URI to set a new MIME type:

PUT /MyContainer/MyDataObject.txt?mimetype HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : "text/plain"
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 3 PUT to the data object URI to update a range of the value:

PUT /MyContainer/MyDataObject.txt?value:21-24 HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

Table 24 - HTTP Status Codes - Update a CDMI Data Object using CDMI Content Type

HTTP Status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.
54 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

481
482
483

484

485

486
487

488
489

490
491
492
493

494

495
496
497
498

499
500
501
502
503
504

505

506

507

508
509
510
511

512
513
514
515
516

517

518
{
 "value" : "dGhhdA=="
}

The following shows the response.

HTTP/1.1 204 No Content

When updating a value without specifying a value transfer encoding, the client must be aware of the
current value transfer encoding of the object.

• If a client sends a value containing a UTF-8 string that is not a valid base 64 string to update an
existing object with a value transfer encoding of "base64", the server shall return an error.

• If a client sends a value containing a base 64 string to update an existing object with a value
transfer encoding of "utf-8", the server shall not return an error. Instead, the server shall store the
literal base 64 character sequence in the data object instead of the data encoded in the base 64
string.

EXAMPLE 4 PUT to the data object URI to replace all metadata with new metadata:

PUT /MyContainer/MyDataObject.txt?metadata HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {
 "colour" : "red",
 "number" : "7"
 }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 5 PUT to the data object URI to add a new metadata item while preserving existing metadata:

PUT /MyContainer/MyDataObject.txt?metadata:shape HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {
 "shape" : "round"
 }
}

The following shows the response.

HTTP/1.1 204 No Content
Cloud Data Management Interface Working Draft 55
Version 1.1.0d

© SNIA

519

520
521
522
523

524
525
526
527
528

529

530

531

532
533
534
535

536
537
538

539

540

541
542
543
544

545
546

547
548
549

550
551
552
553
554
555

556

557
EXAMPLE 6 PUT to the data object URI to replace just one metadata item with a new value:

PUT /MyContainer/MyDataObject.txt?metadata:colour HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {
 "colour" : "green"
 }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 7 Delete a single metadata item:

PUT /MyContainer/MyDataObject.txt?metadata:colour HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "metadata": {}
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 8 Add, update, and delete metadata items. Assume a starting condition where the object has a
metadata item "colour" with value "green" and a metadata item "shape" with value "round" and does
not have a metadata item "size". After the update, "colour" has value "red", "shape" is deleted, and
"size" has been added with value "10".

PUT /MyContainer/MyDataObject.txt?metadata:colour;metadata:shape;metadata:size
HTTP/1.1

Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "metadata": {
 "colour": "red",
 "size": "10"
 }
}

The following shows the response.

HTTP/1.1 204 No Content
56 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

558

559

560

561

562

563

564

565

566
567

568

569
570

571
572

573
574

575

576
577

578

579
8.7 Update a Data Object using a Non-CDMI Content Type

8.7.1 Synopsis

The following HTTP PUT updates an existing data object at the specified URI:

PUT <root URI>/<ContainerName>/<DataObjectName>.

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>. An update shall not result in a
change to the object ID.

8.7.2 Capabilities

The following capabilities describe the supported operations that may be performed when updating an
existing data object:

• Support for the ability to modify the value of an existing data object and/or MIME type is indicated
by the presence of the cdmi_modify_value capability in the specified object.

• Support for the ability to modify the value of an existing data object in specified byte ranges is
indicated by the presence of the cdmi_modify_value_range capability in the specified object.

8.7.3 Request Headers

The HTTP request headers for updating a CDMI data object using a non-CDMI content type are shown in
Table 25.

8.7.4 Request Message Body

The request message body contains the data to be stored in the value of the data object.

Table 25 - Request Headers - Update a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

The content type of the data to be stored as a data object. The
value specified here shall be used in the mimetype field of the
CDMI data object.

Mandatory

Content-
Range

Header
String

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

X-CDMI-
Partial

Header
String

"true". Indicates that the object is in the process of being
updated and has not yet been fully updated. When set, the
completionStatus field shall be set to "Processing".

If the completionStatus field had previously been set to
"Processing" by including this header in a create or update, the
next update without this field shall change the completionStatus
field back to "Complete". X-CDMI-Partial works across CDMI
and non-CDMI operations.

Optional
Cloud Data Management Interface Working Draft 57
Version 1.1.0d

© SNIA

580

581
582

583

584

585

586
587

588

589

590
591
592
593

594

595

596

597

598
599
600
601
602

603
8.7.5 Response Header

The HTTP response header for updating a data object using a non-CDMI content type is shown in
Table 26.

8.7.6 Response Message Body

A response body may be provided as per RFC 2616.

8.7.7 Response Status

The HTTP status codes that occur when updating a data object using a non-CDMI content type are
described in Table 27.

8.7.8 Examples

EXAMPLE 1 PUT to the data object URI to update the value of the data object:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain
Content-Length: 37

This is the value of this data object

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the data object URI to update four bytes within the value of the data object:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Range: bytes 21-24/37
Content-Type: text/plain
Content-Length: 4

that

Table 26 - Response Header - Update a CDMI Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 27 - HTTP Status Codes - Update a CDMI Data Object using a Non-CDMI Content Type

HTTP Status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.
58 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

604

605

606

607

608

609

610

611

612

613

614

615

616
617

618
619

620

621

622

623

624

625

626

627
The following shows the response.

HTTP/1.1 204 No Content

8.8 Delete a Data Object using CDMI Content Type

8.8.1 Synopsis

The following HTTP DELETE deletes an existing data object at the specified URI:

DELETE <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.8.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to delete an existing data object is indicated by the presence of the
cdmi_delete_dataobject capability in the specified object.

8.8.3 Request Header

The HTTP request header for deleting a CDMI data object using CDMI content type is shown in Table 28.

8.8.4 Request Message Body

A request body may be provided as per RFC 2616.

8.8.5 Response Headers

Response headers may be provided as per RFC 2616.

8.8.6 Response Message Body

A response body may be provided as per RFC 2616.

Table 28 - Request Header - Delete a CDMI Data Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory
Cloud Data Management Interface Working Draft 59
Version 1.1.0d

© SNIA

628

629
630

631

632

633
634
635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

650
651

652

653
8.8.7 Response Status

Table 29 describes the HTTP status codes that occur when deleting a data object using CDMI content
type.

8.8.8 Example

EXAMPLE DELETE to the data object URI:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

8.9 Delete a Data Object using a Non-CDMI Content Type

8.9.1 Synopsis

The following HTTP DELETE deletes an existing data object at the specified URI:

DELETE <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.9.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing data object:

• Support for the ability to delete an existing data object is indicated by the presence of the
cdmi_delete_dataobject capability in the specified object.

8.9.3 Request Headers

Request headers may be provided as per RFC 2616.

Table 29 - HTTP Status Codes - Delete a CDMI Data Object using CDMI Content Type

HTTP Status Description

204 No Content The data object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server or the data object may not be deleted.
60 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

654

655

656

657

658

659

660

661
662

663

664

665
666

667

668
8.9.4 Request Message Body

A request body may be provided as per RFC 2616.

8.9.5 Response Headers

Response headers may be provided as per RFC 2616.

8.9.6 Response Message Body

A response body may be provided as per RFC 2616.

8.9.7 Response Status

Table 30 describes the HTTP status codes that occur when deleting a data object using a non-CDMI
content type.

8.9.8 Example

EXAMPLE DELETE to the data object URI:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 204 No Content

Table 30 - HTTP Status Codes - Delete a CDMI Data Object using a Non-CDMI Content Type

HTTP Status Description

204 No Content The data object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server or the data object may not be deleted.
Cloud Data Management Interface Working Draft 61
Version 1.1.0d

© SNIA

1

2

3
4
5
6

7

8

9
10

11
12
13
14

15
16
17

18
19

20
21

22

23

24

25
26

27
28
29
30
31
32

33
34

35

36

37

38

39
9 Container Object Resource Operations

9.1 Overview

Container objects are the fundamental grouping of stored data within CDMI™ and are analogous to
directories within a file system. Each container object has zero or more child objects and a set of well-
defined fields that include standardized and optional metadata. The metadata is generated by the cloud
storage system and specified by the cloud user.

Containers are addressed in CDMI in two ways:

• by name (e.g., http://cloud.example.com/container/); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
00007ED900104E1D14771DC67C27BF8B/).

Every container object has a single, globally-unique object ID that remains constant for the life of the
object. Each container object may also have one or more URI addresses that allow the container object to
be accessed. Following the URI conventions for hierarchical paths, container URIs shall consist of one or
more container names that are separated by forward slashes ("/") and that end with a forward slash ("/").

If a request is performed against an existing container resource and the trailing slash at the end of the URI
is omitted, the server shall respond with an HTTP status code of 301 Moved Permanently, and a
Location header containing the URI with the trailing slash will be added.

If a CDMI request is performed to create a new container resource and the trailing slash at the end of the
URI is omitted, the server shall respond with an HTTP status code of 400 Bad Request.

Non-CDMI requests to create a container resource shall include the trailing slash at the end of the URI;
otherwise, the request shall be considered a request to create a data object.

Containers may also be nested.

EXAMPLE 1 The following URI represents a nested container:

http://cloud.example.com/container/subcontainer/

A nested container has a parent container object, shall be included in the children field of the parent
container object, and shall inherit data system metadata and ACLs from its parent container.

This model allows direct mapping between CDMI-managed cloud storage and file systems (e.g., NFSv4 or
WebDAV). If a CDMI container object is exported as a file system, then the file system may make the
CDMI metadata accessible via file system-specific mechanisms. As files and directories are created by the
file system, they become visible through the CDMI interface acting as a data path. The mapping between
file system constructs and CDMI data objects, container objects, and metadata is outside the scope of this
international standard.

Individual fields within a container object may be accessed by specifying the field name after a question
mark "?" appended to the end of the container object URI.

EXAMPLE 2 The following URI returns just the children field in the response body:

http://cloud.example.com/container/?children

By specifying a range after the children field name, specific ranges of the children field may be accessed.

EXAMPLE 3 The following URI returns the first three children from the children field:

http://cloud.example.com/container/?children:0-2
62 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

40
41
42

43
44

45

46

47
48
49

50
51

52
53

54

55

56
57

58

59
60
61

62

63

64

65

66

67

68
69
70

71

72
73
74
Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616. A
client can determine the number of children present by requesting the childrenrange field without
requesting a range of children.

A list of fields, separated by a semicolon ";" may be specified, allowing multiple fields to be accessed in a
single request.

EXAMPLE 4 The following URI would return the children and metadata fields in the response body:

http://cloud.example.com/container/?children;metadata

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields
shall be returned. If no requested fields are permitted to be read, an HTTP status code of 403
Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be
performed, and an HTTP status code of 403 Forbidden shall be returned to the client.

When a client includes deserialized fields that are not defined in this international standard, these fields
shall be stored as part of the object.

9.1.1 Container Metadata

The following optional data system metadata may be provided (see Table 31).

Container metadata may also include arbitrary user-supplied metadata, storage system metadata, and
data system metadata as described in Clause 16.

9.1.2 Reserved Container Names

This international standard defines reserved container names that shall not be used when creating new
containers. These container names are reserved for use by this international standard, and if an attempt is
made to create or delete them, an HTTP status code of 400 Bad Request shall be returned to the client.

The reserved container names include:

• cdmi_objectid,

• cdmi_domains,

• cdmi_capabilities,

• cdmi_snapshots, and

• cdmi_versions.

As additional names may be added in future versions of this international standard, server
implementations shall prevent the creation of user-defined containers if the container name starts with
"cdmi_".

9.1.3 Container Object Addressing

Each container object is addressed via one or more unique URIs, and all operations may be performed
through any of these URIs. For example, a container object may be accessible via multiple virtual hosting
paths, where http://cloud.example.com/users/snia/cdmi/ is also accessible through http://

Table 31 - Container Metadata

Metadata Name Type Description Requirement

cdmi_assignedsize JSON
String

The number of bytes that is reported via exported
protocols (e.g., the device may be thin provisioned). This
number may limit cdmi_size.

Optional
Cloud Data Management Interface Working Draft 63
Version 1.1.0d

© SNIA

75
76

77

78
79
80
81

82

83

84

85

86

87

88
89

90

91

92

93
94
95
96

97
98

99
100

101

102
103

104
105

106
107

108
109

110
111

112
113
114

115
116
snia.example.com/cdmi/. Conflicting writes via different paths shall be managed the same way that
conflicting writes via one path are managed, via the principle of eventual consistency (see 9.2).

9.1.4 Container Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in
any order, with the exception that, if present, for container objects, the childrenrange and children fields
shall appear last and in that order.

9.2 Create a Container Object using CDMI Content Type

9.2.1 Synopsis

To create a new container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<NewContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

• <NewContainerName> is the name specified for the container object to be created.

After it is created, the container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.2.2 Delayed Completion of Create

In response to a create operation for a container object, the server may return an HTTP status code of 202
Accepted to indicate that the object is in the process of being created. This response is useful for long-
running operations (e.g., deserializing a source data object to create a large container object hierarchy).
Such a response has the following implications.

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With an HTTP status code of 202 Accepted, the server implies that the following checks have
passed:

— user authorization for creating the container object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the container object or at least enough space to create a URI to
report an error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed
(0 to 100). GET does not return any children for the container object when completionStatus is not
"Complete".

When the final result of the create operation is an error, the URI is created with the completionStatus field
set to the error message. It is the client's responsibility to delete the URI after the error has been noted.
64 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

117

118
119

120
121

122
123

124
125

126
127
128

129
130
131

132

133
134
9.2.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
container object:

• Support for the ability to create a new container object is indicated by the presence of the
cdmi_create_container capability in the parent container object.

• If the object being created in the parent container object is a reference, support for that ability is
indicated by the presence of the cdmi_create_reference capability in the parent container object.

• If the new container object is a copy of an existing container object, support for the ability to copy is
indicated by the presence of the cdmi_copy_container capability in the parent container object.

• If the new container object is the destination of a move, support for the ability to move the
container object is indicated by the presence of the cdmi_move_container capability in the parent
container object.

• If the new container object is the destination of a deserialize operation, support for the ability to
deserialize the source data object serialization of a container object is indicated by the presence of
the cdmi_deserialize_container capability in the parent container object.

9.2.4 Request Headers

The HTTP request headers for creating a CDMI container object using CDMI content type are shown in
Table 32.

Table 32 - Request Headers - Create a Container Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-container" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client
supports, for example, "1.1, 1.5, 2.0"

Mandatory
Cloud Data Management Interface Working Draft 65
Version 1.1.0d

© SNIA

135

136
137
9.2.5 Request Message Body

The request message body fields for creating a container object using CDMI content type are shown in
Table 33.

Table 33 - Request Message Body - Create a Container Object using CDMI Content Type
 (Sheet 1 of 2)

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the container object

• If this field is included when deserializing, serializing,
copying, or moving a container object, the value
provided in this field shall replace the metadata from the
source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a container object, the metadata from
the source URI shall be used.

• If this field is included when creating a new container
object by specifying a value, the value provided in this
field shall be used as the metadata.

• If this field is not included when creating a new container
object by specifying a value, an empty JSON object (i.e.,
"{}") shall be assigned as the field value.

• This field shall not be included when referencing a
container object.

Optional

domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall have
the "cross-domain" privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the existing domain shall be preserved.

Optional

exports JSON
Object

A structure for each protocol enabled for this container
object (see Clause 13). This field shall not be included
when referencing a container object.

Optional

deserialize JSON
String

URI of a CDMI data object that shall be deserialized to
create the new container object, including all child objects
inside the source serialized data object (see Clause 15).

When deserializing a container object, any exported
protocols from the original serialized container object are
not applied to the newly created container object(s).

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
66 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
copy JSON
String

URI of a source CDMI container object that shall be copied
into the new destination container object.

• If the destination container object URI and the copy
source object URI both do not specify individual fields,
the destination container object shall be a complete copy
of the source container object, including all child objects
under the source container object.

• If the destination container object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to create the destination
container object. If specified fields are not present in the
source, default field values shall be used.

• If the destination container object URI and the copy
source object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

When copying a container object, exported protocols are
not preserved across the copy.

If there are insufficient permissions to read the container
object at the source URI or create the container object at
the destination URI, or if the read operation fails, the copy
shall return an HTTP status code of 400 Bad Request,
and the destination container object shall not be created.

Optionala

move JSON
String

URI of an existing local or remote CDMI container object
(source URI) that shall be relocated, along with all child
objects, to the URI specified in the PUT. The contents of
the container object and all children, including the object
ID, shall be preserved by a move, and the container object
and all children of the source URI shall be removed after
the objects at the destination have been successfully
created.

If there are insufficient permissions to read the objects at
the source URI, write the objects at the destination URI, or
delete the objects at the source URI, or if any of these
operations fail, the move shall return an HTTP status code
of 400 Bad Request, and the source and destination are
left unchanged.

Optionala

reference JSON
String

URI of a CDMI container object that shall be redirected to
by a reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status
code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A container object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648. The object ID of the serialized container object shall
match the object ID of the destination container object.

Optionala

Table 33 - Request Message Body - Create a Container Object using CDMI Content Type
 (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 67
Version 1.1.0d

© SNIA

138

139
140

141

142
143
9.2.6 Response Headers

The HTTP response headers for creating a CDMI container object using CDMI content type are shown in
Table 34.

9.2.7 Response Message Body

The response message body fields for creating a CDMI container object using CDMI content type are
shown in Table 35.

Table 34 - Response Headers - Create a Container Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status
code of 400 Bad Request.

Mandatory

Table 35 - Response Message Body - Create a Container Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-container" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully
created or updated or if an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value
"Error".

Mandatory

aReturned only if present.
68 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

144

145
146
9.2.8 Response Status

Table 36 describes the HTTP status codes that occur when creating a container object using CDMI
content type.

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field,
if provided, may contain any integer value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the container object. This field includes any
user and data system metadata specified in the request
body metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for
a further description of metadata.

Mandatory

exports JSON
Object

A structure for each protocol that is enabled for this
container object. See Clause 13.

Optionala

snapshots JSON
Array of
JSON
Strings

URI(s) of the snapshot container objects. See Clause 14. Optionala

childrenrange JSON
String

The children of the container expressed as a range. If a
range of children is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
Array of
JSON
Strings

Names of the children objects in the container object. Child
container objects end with "/".

Mandatory

Table 36 - HTTP Status Codes - Create a CDMI Container Object using CDMI Content Type

HTTP Status Description

201 Created The new container object was created.

202 Accepted The container is in the process of being created. The CDMI client should monitor the
completionStatus and percentComplete fields to determine the current status of the
operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The container object name already exists.

Table 35 - Response Message Body - Create a Container Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aReturned only if present.
Cloud Data Management Interface Working Draft 69
Version 1.1.0d

© SNIA

147

148

149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172

173
174
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
9.2.9 Example

EXAMPLE PUT to the URI the container object name and metadata:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-container",
 "objectID" : "00007ED900104E1D14771DC67C27BF8B",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "00007ED900104E1D14771DC67C27BF8B",
 "permissions" : "00007E7F00104EB781F900791C70106C"
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 },
 "childrenrange" : "",
 "children" : [

]
}

70 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

203

204

205

206

207

208

209
210

211

212

213
214

215

216
217

218
219

220

221

222

223

224

225

226

227
9.3 Create a Container Object using a Non-CDMI Content Type

9.3.1 Synopsis

To create a new container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<NewContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

• <NewContainerName> is the name specified for the container object to be created.

After it is created, the container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

The presence of a trailing slash at the end of the HTTP PUT URI indicates that a container object is being
created and distinguishes it from a request to create a data object.

9.3.2 Capability

The following capability describes the supported operations that may be performed when creating a new
container object:

• Support for the ability to create a new container object is indicated by the presence of the
cdmi_create_container capability in the parent container object.

9.3.3 Request Headers

Request headers may be provided as per RFC 2616.

9.3.4 Request Message Body

A request body shall not be provided.

9.3.5 Response Headers

Response headers may be provided as per RFC 2616.

9.3.6 Response Message Body

A response body may be provided as per RFC 2616.
Cloud Data Management Interface Working Draft 71
Version 1.1.0d

© SNIA

228

229
230

231

232

233
234

235

236

237

238

239

240

241
242

243
244
245

246

247

248

249

250

251

252

253
9.3.7 Response Status

Table 37 describes the HTTP status codes that occur when creating a container object using a non-CDMI
content type.

9.3.8 Example

EXAMPLE PUT to the URI the container object name:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 201 Created

9.4 Read a Container Object using CDMI Content Type

9.4.1 Synopsis

To read all fields from an existing container object, the following request shall be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/

To read one or more requested fields from an existing container object, one of the following requests shall
be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<TheContainerName>/?children:<range>;...
GET <root URI>/<ContainerName>/<TheContainerName>/?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name specified for the container object to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

Table 37 - HTTP Status Codes - Create a Container Object using a Non-CDMI Content Type

HTTP Status Description

201 Created The new container object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The container object name already exists.
72 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

254

255
256

257
258

259
260

261
262

263

264
265

266

267

268

269
270
9.4.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing container object:

• Support for the ability to read the metadata of an existing container object is indicated by the
presence of the cdmi_read_metadata capability in the specified container object.

• Support for the ability to list the children of an existing container object is indicated by the presence
of the cdmi_list_children capability in the specified container object.

• Support for the ability to list ranges of the children of an existing container object is indicated by
the presence of the cdmi_list_children_range capability in the specified container object.

9.4.3 Request Headers

The HTTP request headers for reading a CDMI container object using CDMI content type are shown in
Table 38.

9.4.4 Request Message Body

A request body shall not be provided.

9.4.5 Response Headers

The HTTP response headers for reading a CDMI container object using CDMI content type are shown in
Table 39.

Table 38 - Request Headers - Read a Container Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-container" or a consistent value as per
clause 5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 39 - Response Headers - Read a Container Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Content-Type Header
String

"application/cdmi-container" Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional
Cloud Data Management Interface Working Draft 73
Version 1.1.0d

© SNIA

271

272
273
9.4.6 Response Message Body

The response message body fields for reading a CDMI container object using CDMI content type are
shown in Table 40.

Table 40 - Response Message Body - Read a Container Object using CDMI Content Type
 (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-container" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist and
shall not be returned.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.

Conditional

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully
created or updated or if an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value "Error".

Mandatory

aReturned only if present.
74 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

274
275
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field,
if provided, may contain any integer value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the container object. This field includes any
user and data system metadata specified in the request
body metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for
a further description of metadata.

Mandatory

exports JSON
Object

A structure for each protocol that is enabled for this
container object (see Clause 13)

Optionala

snapshots JSON
Array of
JSON
Strings

URIs of the snapshot container objects Optionala

childrenrange JSON
String

The children of the container expressed as a range. If a
range of children is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
Array of
JSON
Strings

Names of the children objects in the container object. When
a client uses a child name in a request URI or a header
URI, the client shall escape reserved characters according
to RFC 3986, e.g., a "%" character in a child name shall be
replaced with "%25".

• Children that are container objects shall have "/"
appended to the child name.

• Children that are references shall have "?" appended to
the child name.

Mandatory

Table 40 - Response Message Body - Read a Container Object using CDMI Content Type
 (Sheet 2 of 2)

Field Name Type Description Requirement

aReturned only if present.
Cloud Data Management Interface Working Draft 75
Version 1.1.0d

© SNIA

276

277
278

279

280

281
282
283
284

285

286
287
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
9.4.7 Response Status

Table 41 describes the HTTP status codes that occur when reading a container object using CDMI content
type.

9.4.8 Examples

EXAMPLE 1 GET to the container object URI to read all the fields of the container object:

GET /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-container",
 "objectID" : "00007ED900104E1D14771DC67C27BF8B",
 "objectName" : "MyContainer/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "exports" : {
 "OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 },
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 },
 "childrenrange" : "0-4",
 "children" : [
 "red",
 "green",
 "yellow",

Table 41 - HTTP Status Codes - Read a Container Object using CDMI Content Type

HTTP Status Description

200 OK The metadata for the container object is provided in the message body.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.
76 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

318
319
320
321
322

323

324
325
326
327

328

329
330
331

332
333
334
335
336
337
338
339
340
341

342

343
344
345
346

347

348
349
350

351
352
353
354
355
356
357
358

359

360
361
362
363
364

365

366
367
368

369
370
 "orange/",
 "purple/"
]
 }
}

EXAMPLE 2 GET to the container object URI to read parentURI and children of the container object:

GET /MyContainer/?parentURI;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "parentURI" : "/",
 "children" : [
 "red",
 "green",
 "yellow",
 "orange/",
 "purple/"
]
}

EXAMPLE 3 GET to the container object URI to read children 0..2 and childrenrange of the container object:

GET /MyContainer/?childrenrange;children:0-2 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "childrenrange" : "0-2",
 "children" : [
 "red",
 "green",
 "yellow"
]
}

EXAMPLE 4 GET to the container object by ID to read children 0..2 and childrenrange of the container object:

GET /cdmi_objectid/0000706D0010B84FAD185C425D8B537E/?childrenrange;children:0-2
HTTP/1.1

Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "childrenrange": "0-2",
Cloud Data Management Interface Working Draft 77
Version 1.1.0d

© SNIA

371
372
373
374
375
376

377

378

379

380

381
382

383

384

385

386

387

388
389

390

391
392
393

394
395

396

397

398
399

400
401

402
403

404
405

406
407

408
409
410
 "children": [
 "red",
 "green",
 "yellow"
]
}

9.5 Update a Container Object using CDMI Content Type

9.5.1 Synopsis

To update some or all fields in an existing container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<TheContainerName>/

To add, update, and remove specific metadata items of an existing container object, the following request
shall be performed:

PUT <root URI>/<ContainerName>/<TheContainerName>/?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be updated.

The container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/. An update shall not
result in a change to the object ID.

9.5.2 Delayed Completion of Snapshot

If the creation of a snapshot (see Clause 14) is requested by including a snapshot field in the request
message body, the server may return an HTTP status code of 202 Accepted. Such a response has the
following implications:

• With an HTTP status code of 202 Accepted, the server implies that the following checks have
passed:

— user authorization for creating the snapshot,

— user authorization for read access to the container object, and

— availability of space to create the snapshot or at least enough space to create a URI to report
an error.

• A client might not be able to immediately access the snapshot, e.g., due to delays resulting from
the implementation’s use of eventual consistency.

The client performs GET operations to the snapshot URI to track the progress of the operation. In
particular, the server returns two fields in its response body to indicate progress:

• A completionStatus field contains either "Processing", "Complete", or an error string starting with
the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed
(0 to 100). GET does not return any value for the object when completionStatus is not "Complete".

When the final result of the snapshot operation is an error, the snapshot URI is created with the
completionStatus field set to the error message. It is the client's responsibility to delete the URI after the
error has been noted.
78 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

411

412
413

414
415

416
417

418
419

420

421
422

423

424
425
9.5.3 Capabilities

The following capabilities describe the supported operations that may be performed when updating an
existing container object:

• Support for the ability to modify the metadata of an existing container object is indicated by the
presence of the cdmi_modify_metadata capability in the specified container object.

• Support for the ability to snapshot the contents of an existing container object is indicated by the
presence of the cdmi_snapshot capability in the specified container object.

• Support for the ability to add an exported protocol to an existing container object is indicated by the
presence of the cdmi_export_<protocol> capabilities for the specified container object.

9.5.4 Request Headers

The HTTP request headers for updating a CDMI container object using CDMI content type are shown in
Table 42.

9.5.5 Request Message Body

The request message body fields for updating a container object using CDMI content type are shown in
Table 43.

Table 42 - Request Headers - Update a Container Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 43 - Request Message Body - Update a Container Object using CDMI Content Type
 (Sheet 1 of 3)

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the container object. If present, the new
metadata specified replaces the existing object metadata. If
individual metadata items are specified in the URI, only
those items are replaced; other items are preserved.

See Clause 16 for a further description of metadata.

Optional

domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall have
the "cross-domain" privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the parent domain shall be used.

Optional

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.
Cloud Data Management Interface Working Draft 79
Version 1.1.0d

© SNIA
snapshot JSON
String

Name of the snapshot to be taken. This is not a URL, but
rather the final component of the absolute URL where the
snapshot will exist when the snapshot operation
successfully completes. If a snapshot is added or changed,
the PUT operation only returns after the snapshot is added
to the snapshot list. After they are created, snapshots may
be accessed as children container objects under the
cdmi_snapshots child container object of the container
object receiving a snapshot.

When creating a snapshot with the same name as an
existing snapshot, the new snapshot will replace the
existing snapshot.

Optional

deserialize JSON
String

URI of a CDMI container object that shall be deserialized to
update an existing container object. The object ID of the
serialized container object shall match the object ID of the
destination container object.

If the serialized container object does not contain children,
the update is applied only to the container object, and any
existing children are left as is. If the serialized container
object does contain children, then creates, updates, and
deletes are recursively applied for each child, depending
on the differences between the provided serialized state
and the current state of the child.

Optionala

Table 43 - Request Message Body - Update a Container Object using CDMI Content Type
 (Sheet 2 of 3)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.
80 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
copy JSON
String

URI of a CDMI container object that shall be copied into the
existing container object. Only the contents of the container
object itself shall be copied, not any children of the
container object."

with

"URI of a source CDMI container object that shall be copied
into the existing destination container object.

• If the destination container object URI and the copy
source object URI both do not specify individual fields,
the destination container object shall be replaced with
the source container object, including all child objects
under the source container object.

• If the destination container object URI or the copy source
object URI specifies individual fields, only the fields
specified shall be used to update the destination
container object. If specified fields are not present in the
source, these fields shall be ignored.

• If the destination container object URI and the copy
source object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

When copying a container object, exported protocols are
not preserved across the copy.

If there are insufficient permissions to read the container
object at the source URI or create the container object at
the destination URI, or if the read operation fails, the copy
shall return an HTTP status code of 400 Bad Request,
and the destination container object shall not be updated.

Optionala

deserializevalue JSON
Sting

A container object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

The object ID of the serialized container object shall match
the object ID of the destination container object. Otherwise,
the server shall return an HTTP status code of 400 Bad
Request.

• If the serialized container object does not contain
children, the update is applied only to the container
object, and any existing children are left as is.

• If the serialized container object does contain children,
then creates, updates, and deletes are recursively
applied for each child, depending on the differences
between the provided serialized state and the current
state of the children.

Optionala

exports JSON
Object

A structure for each protocol that is enabled for this
container object (see Clause 13). If an exported protocol is
added or changed, the PUT operation only returns after the
export operation has completed.

Optional

Table 43 - Request Message Body - Update a Container Object using CDMI Content Type
 (Sheet 3 of 3)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.
Cloud Data Management Interface Working Draft 81
Version 1.1.0d

© SNIA

426

427
428

429

430

431

432
433

434

435

436
437
438
439

440
441
442
443
444
445
446
447
448
449
450
451
9.5.6 Response Header

The HTTP response header for updating a CDMI container object using CDMI content type is shown in
Table 44.

9.5.7 Response Message Body

A response body may be provided as per RFC 2616.

9.5.8 Response Status

Table 45 describes the HTTP status codes that occur when updating a container object using CDMI
content type.

9.5.9 Examples

EXAMPLE 1 PUT to the container object URI to set new field values:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {

 } ,
 "exports" : {
 "OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 },

Table 44 - Response Header - Update a Container Object using CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 45 - HTTP Status Codes - Update a Container Object using CDMI Content Type

HTTP Status Description

204 No Content The data object content was returned in the response.

202 Accepted The container or snapshot (subcontainer object) is in the process of being created.
The CDMI client should montitor the completionStatus and percentComplete fields
to determine the current status of the operation.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.
82 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

452
453
454
455
456
457

458

459

460

461
462
463
464

465
466
467
468
469
470
471
472
473
474
475
476

477

478

479

480

481
482

483

484

485

486

487

488

489

490
491

492
493
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the container object URI to set a new exported protocol value:

PUT /MyContainer/?exports HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
 "exports" : {
 "OCCI/iSCSI" : {
 "identifier" : "00007ED900104E1D14771DC67C27BF8B",
 "permissions" : "00007E7F00104EB781F900791C70106C"
 } ,
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 }
}

The following shows the response.

HTTP/1.1 204 No Content

9.6 Delete a Container Object using CDMI Content Type

9.6.1 Synopsis

To delete an existing container object, including all contained children and snapshots, the following request
shall be performed:

DELETE <root URI>/<ContainerName>/<TheContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.6.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing container object:

• Support for the ability to delete an existing container object is indicated by the presence of the
cdmi_delete_container capability in the specified container object.
Cloud Data Management Interface Working Draft 83
Version 1.1.0d

© SNIA

494

495
496

497

498

499

500

501

502

503

504
505

506

507

508
509
510

511

512
9.6.3 Request Header

The HTTP request header for deleting a CDMI container object using CDMI content type is shown in
Table 46.

9.6.4 Request Message Body

A request body may be provided as per RFC 2616.

9.6.5 Response Headers

Response headers may be provided as per RFC 2616.

9.6.6 Response Message Body

A response body may be provided as per RFC 2616.

9.6.7 Response Status

Table 47 describes the HTTP status codes that occur when deleting a container object using CDMI
content type.

9.6.8 Example

EXAMPLE DELETE to the container object URI:

DELETE /MyContainer/ HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

Table 46 - Request Header - Delete a Container Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 47 - HTTP Status Codes - Delete a Container Object using CDMI Content Type

HTTP Status Description

204 No Content The container object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The container object may not be deleted.
84 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

513

514

515
516

517

518

519

520

521

522

523

524
525

526
527

528

529

530

531

532

533

534

535
9.7 Delete a Container Object using a Non-CDMI Content Type

9.7.1 Synopsis

To delete an existing container object, including all contained children and snapshots, the following request
shall be performed:

DELETE <root URI>/<ContainerName>/<TheContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.7.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing container object:

• Support for the ability to delete an existing container object is indicated by the presence of the
cdmi_delete_container capability in the specified container object.

9.7.3 Request Headers

Request headers may be provided as per RFC 2616.

9.7.4 Request Message Body

A request body may be provided as per RFC 2616.

9.7.5 Response Headers

Response headers may be provided as per RFC 2616.

9.7.6 Response Message Body

A response body may be provided as per RFC 2616.
Cloud Data Management Interface Working Draft 85
Version 1.1.0d

© SNIA

536

537
538

539

540

541
542

543

544

545

546

547
548

549

550
551

552

553

554

555
556

557

558
559

560

561
562
9.7.7 Response Status

Table 48 describes the HTTP status codes that occur when deleting a container object using a non-CDMI
content type.

9.7.8 Example

EXAMPLE DELETE to the container object URI:

DELETE /MyContainer/ HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 204 No Content

9.8 Create (POST) a New Data Object using CDMI Content Type

9.8.1 Synopsis

To create a new data object in a specified container where the name of the data object is a server-
assigned object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

To create a new data object where the data object does not belong to a container and is only accessible by
ID (see 5.8), the following request shall be performed:

POST <root URI>/cdmi_objectid/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

If created in "/cdmi_objectid/", the data object shall be accessible at <root URI>/cdmi_objectid/<objectID>.

If created in a container, the data object shall be accessible as a child of the container with a server-
assigned name, and shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

9.8.2 Delayed Completion of Create

In response to a create operation for a data object, the server may return an HTTP status code of 202
Accepted to indicate that the object is in the process of being created. This response is useful for long-

Table 48 - HTTP Status Codes - Delete a Container Object using a Non-CDMI Content Type

HTTP Status Description

204 No Content The container object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The container object may not be deleted.
86 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

563
564

565
566

567
568

569

570
571

572
573

574
575

576
577

578
579

580
581

582
583
584

585

586
587

588
589

590
591

592
593
594

595
596
597

598
599
600

601
602
603
604

605
606

607
608
609
running operations (e.g., copying a large data object from a source URI). Such a response has the
following implications.

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With an HTTP status code of 202 Accepted, the server implies that the following checks have
passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the Accepted POST has
completed (0 to 100).

GET does not return any value for the object when completionStatus is not "Complete". When the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

9.8.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
data object by ID in "/cdmi_objectid/":

• Support for the ability to create data objects through this operation is indicated by the presence of
the cdmi_post_dataobject_by_ID system capability.

• If the object being created in "/cdmi_objectid/" is a reference, support for that ability is indicated by
the presence of the cdmi_create_reference_by_ID system capability.

• If the new data object being created in "/cdmi_objectid/" is a copy of an existing data object,
support for the ability to copy is indicated by the presence of the cdmi_copy_dataobject_by_ID
system capability.

• If the new data object being created in "/cdmi_objectid/" is the destination of a move, support for
the ability to move the data object to "/cdmi_objectid/" is indicated by the presence of the
cdmi_object_move_to_ID system capability.

• If the new data object being created in "/cdmi_objectid/" is the destination of a deserialization
operation, support for the ability to deserialize the data object is indicated by the presence of the
cdmi_deserialize_dataobject_by_ID system capability.

• If the new data object being created in "/cdmi_objectid/" is the destination of a serialize operation,
support for the ability to serialize the data object is indicated by the presence of the
cdmi_serialize_dataobject_to_ID, cdmi_serialize_container_to_ID, cdmi_serialize_domain_to_ID,
or cdmi_serialize_queue_to_ID system capabilities.

The following capabilities describe the supported operations that may be performed when creating a new
data object by ID in a container:

• Support for the ability to create data objects through this operation is indicated by the presence of
both the cdmi_post_dataobject and the cdmi_create_dataobject capabilities in the specified
container object.
Cloud Data Management Interface Working Draft 87
Version 1.1.0d

© SNIA

610
611

612
613

614
615

616
617
618

619
620
621
622

623

624
625
• If the object being created in the parent container object is a reference, support for that ability is
indicated by the presence of the cdmi_create_reference capability in the parent container object.

• If the new data object is a copy of an existing data object, support for the ability to copy is indicated
by the presence of the cdmi_copy_dataobject capability in the parent container object.

• If the new data object is the destination of a move, support for the ability to move the data object is
indicated by the presence of the cdmi_move_dataobject capability in the parent container object.

• If the new data object is the destination of a deserialize operation, support for the ability to
deserialize the the data object is indicated by the presence of the cdmi_deserialize_dataobject
capability in the parent container object.

• If the new data object is the destination of a serialize operation, support for the ability to serialize
the source data object is indicated by the presence of the cdmi_serialize_dataobject,
cdmi_serialize_container, cdmi_serialize_domain, or cdmi_serialize_queue capabilities in the
parent container object.

9.8.4 Request Headers

The HTTP request headers for creating a new CDMI data object using CDMI content type are shown in
Table 49.

Table 49 - Request Headers - Create a New Data Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-object" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the newly created object is part of a
series of writes and the value has not yet been fully
populated. If X-CDMI-Partial is present, the
completionStatus field in the response body shall be set to
"Processing". X-CDMI-Partial works across CDMI and non-
CDMI operations.

Optional
88 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

626

627
628
9.8.5 Request Message Body

The request message body fields for creating a new data object using CDMI content type are shown in
Table 50.

Table 50 - Request Message Body - Create a New Data Object using CDMI Content Type
 (Sheet 1 of 2)

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of
the data object

• This field may be included when creating by value,
deserializing, serializing, copying, and moving a data
object.

• This field shall be stored as part of the data object.

• If this field is not specified, the value of "text/
plain" shall be assigned as the field value.

• This field shall not be included when creating a
reference.

• This mimetype field value shall be converted to lower
case before being stored.

Optional

metadata JSON
Object

Metadata for the data object

• If this field is included when deserializing, serializing,
copying, or moving a data object, the value provided
in this field shall replace the metadata from the
source URI.

• If this field is not included when deserializing,
serializing, copying, or moving a data object, the
metadata from the source URI shall be used.

• If this field is included when creating a new data
object by specifying a value, the value provided in this
field shall be used as the metadata.

• If this field is not included when creating a new data
object by specifying a value, an empty JSON object
(i.e., "{}") shall be assigned as the field value.

• This field shall not be included when referencing a
data object.

Optional

domainURI JSON
String

URI of the owning domain

• Any domain may be specified, and the
"cross_domain" privilege is not required (see
cdmi_member_privileges in Table 64).

• If not specified, the root domain "/cdmi_domains/"
shall be used.

Optional

deserialize JSON
String

URI of a CDMI data object that shall be deserialized to
create the new data object

Optionala

serialize JSON
String

URI of a CDMI object that shall be serialized into the
new data object

Optionala

copy JSON
String

URI of a CDMI data object or queue object that shall be
copied into the new data object

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 89
Version 1.1.0d

© SNIA
move JSON
String

URI of a CDMI data object or queue object value that
shall be copied into the new data object. The data
object or queue object value at the source URI shall be
removed upon the successful completion of the copy.

Optionala

reference JSON
String

URI of a CDMI data object that shall be redirected to by
a reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status
code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in
RFC 4648.

Optionala

valuetransferencoding JSON
String

The value transfer encoding used for the container
object value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the value
field. Setting the contents of the data object value
field to any value other than a valid base 64 string
shall result in an HTTP status code of 400 Bad
Request being returned to the client.

This field shall only be included when creating a data
object by value. If not specified by the client, the server
shall set the valuetransferencoding field to "utf-8".

This field shall be stored as part of the object.

Optional

value JSON
String

JSON-encoded data

• If this field is not included, an empty JSON String (i.e.,
"") shall be assigned as the field value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped
using the JSON escaping rules described in RFC
4627.

• If the valuetransferencoding field indicates base 64
encoding, the value shall be first encoded using the
base 64 encoding rules described in RFC 4648.

Optionala

Table 50 - Request Message Body - Create a New Data Object using CDMI Content Type
 (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
90 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

629

630
631

632

633
634
9.8.6 Response Headers

The HTTP response headers for creating a new CDMI data object using CDMI content type are shown in
Table 51.

9.8.7 Response Message Body

The response message body fields for creating a new CDMI data object using CDMI content type are
shown in Table 52.

Table 51 - Response Headers - Create a New Data Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Location Header
String

The unique URI for the new data object as assigned by the
system. In the absence of file name information from the
client, the system shall assign the URI in the form: <root
URI>/<ContainerName>/<ObjectID>.

Mandatory

Table 52 - Response Message Body - Create a New Data Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-object" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist and
shall not be returned.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.

Conditional
Cloud Data Management Interface Working Draft 91
Version 1.1.0d

© SNIA

635

636
637
9.8.8 Response Status

Table 53 describes the HTTP status codes that occur when creating a new data object using CDMI content
type.

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully
created or updated or if an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value "Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field, if
provided, may contain any integer value from 0 through
100.

Optional

mimetype JSON
String

MIME type of the value of the data object Mandatory

metadata JSON
Object

Metadata for the data object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system.

See Clause 16 for a further description of metadata.

Mandatory

Table 53 - HTTP Status Codes - Create a New Data Object using CDMI Content Type

HTTP Status Description

201 Created The new data object was created.

202 Accepted The data object is in the process of being created. The CDMI client should monitor
the completionStatus and percentComplete fields to determine the current status of
the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a state
transition error on the server.

Table 52 - Response Message Body - Create a New Data Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement
92 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

638

639

640
641
642
643
644

645
646
647
648
649
650
651

652

653
654
655
656

657
658
659
660
661
662
663
664
665
666
667
668
669
670

671

672
673
674
675
676

677
678
679
680
681

682

683
684
685
686

687
688
689
690
691
692
693
694
9.8.9 Examples

EXAMPLE 1 POST to the container object URI the data object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "value" : "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1
Location: http://cloud.example.com/MyContainer/00007ED900104E1D14771DC67C27BF8B

{
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED900104E1D14771DC67C27BF8B",
 "objectName" : "00007ED900104E1D14771DC67C27BF8B",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007ED900104E1D14771DC67C27BF8B",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {

 }
}

EXAMPLE 2 POST to the object ID URI the data object contents:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype": "text/plain",
 "domainURI": "/cdmi_domains/MyDomain/",
 "value": "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/00007ED900104E1D14771DC67C27BF8B
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "objectType": "application/cdmi-object",
 "objectID": "00007ED900104E1D14771DC67C27BF8B",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/dataobject/",
 "completionStatus": "Complete",
 "mimetype": "text/plain",
 "metadata": {
Cloud Data Management Interface Working Draft 93
Version 1.1.0d

© SNIA

695
696
697
698
699
700
701
702
703
704

705

706

707
708

709

710

711

712
713

714
715

716
717
718

719

720
721

722
723
724
 "cdmi_acl": [
 {
 "acetype": "ALLOW",
 "identifier": "OWNER@",
 "aceflags": "NO_FLAGS",
 "acemask": "ALL_PERMS"
 }
]
 }
}

9.9 Create (POST) a New Data Object using a Non-CDMI Content Type

9.9.1 Synopsis

To create a new data object in a specified container where the name of the data object is a server-assigned
object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

The data object shall be accessible as a child of the container with a server-assigned name and shall also
be accessible at <root URI>/cdmi_objectid/<objectID>.

Non-CDMI POST to a container is used to enable CDMI servers to support RFC 1867 form-based file
uploading. When implementing RFC 1867, the CDMI server-assigned name may be the user-provided file
name.

9.9.2 Capability

The following capability describes the supported operations that may be performed when creating a new
data object:

• Support for the ability to create data objects through this operation is indicated by the presence of
both the cdmi_post_dataobject and cdmi_create_dataobject capabilities in the specified container
object.
94 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

725

726
727

728

729

730

731
732

733

734
9.9.3 Request Header

The HTTP request header for creating a new CDMI data object using a non-CDMI content type is shown in
Table 54.

9.9.4 Request Message Body

The message body shall contain the contents (value) of the data object to be created.

9.9.5 Response Header

The HTTP response header for creating a new CDMI data object using a non-CDMI content type is shown
in Table 55.

9.9.6 Response Message Body

A response body may be provided as per RFC 2616.

Table 54 - Request Header - Create a New Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

The content type of the data to be stored as a data object.
The value specified here shall be converted to lower case
and stored in the mimetype field of the CDMI data object. If
the content type includes the charset parameter as defined
in RFC 2246 of "utf-8" (e.g., ";charset=utf-8"), the
valuetransferencoding field of the CDMI data object shall be
set to "utf-8". Otherwise, the valuetransferencoding field of
the CDMI data object shall be set to "base64".

Mandatory

X-CDMI-Partial Header
String

"true". Indicates that the newly created object is part of a
series of writes and has not yet been fully created. When
set, the completionStatus field shall be set to "Processing".
X-CDMI-Partial works across CDMI and non-CDMI
operations.

Optional

Table 55 - Response Header - Create a New Data Object using a Non-CDMI Content Type

Header Type Description Requirement

Location Header
String

The unique URI for the new data object as assigned by the
system. In the absence of file name information from the
client, the system shall assign the URI in the form: <root
URI>/<ContainerName>/<ObjectID>.

Mandatory
Cloud Data Management Interface Working Draft 95
Version 1.1.0d

© SNIA

735

736
737

738

739

740
741
742

743

744

745
746
747

748

749

750
751

752

753
754

755

756

757

758
759

760
761

762
763
9.9.7 Response Status

Table 56 describes the HTTP status codes that occur when creating a new data object using a non-CDMI
content type.

9.9.8 Examples

EXAMPLE 1 POST to the container object URI the data object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain;charset=utf-8

<object contents>

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/MyContainer/00007ED900104E1D14771DC67C27BF8B
utf-8

9.10 Create (POST) a New Queue Object using CDMI Content Type

9.10.1 Synopsis

To create a new queue object (see Clause 11) in a specified container where the name of the queue object
is a server-assigned object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

To create a new queue object where the queue object does not belong to a container and is only
accessible by ID (see 5.8), the following request shall be performed:

POST <root URI>/cdmi_objectid/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash
(i.e., "/") between each pair of container object names.

If created in "/cdmi_objectid/", the queue object shall be accessible at <root URI>/cdmi_objectid/
<objectID>.

If created in a container, the queue object shall be accessible as a child of the container with a server-
assigned name, and shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

Table 56 - HTTP Status Codes - Create a New Data Object using a Non-CDMI Content Type

HTTP Status Description

201 Created The new data object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.
96 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

764

765
766
767
768

769
770

771
772

773

774
775

776
777

778
779

780
781

782
783

784
785

786
787
788

789

790
791

792
793

794
795

796
797
798

799
800
801

802
803
804

805
806

807
808
809
9.10.2 Delayed Completion of Create

On a create operation for a queue object, the server may return an HTTP status code of 202 Accepted.
In this case, the object is in the process of being created. This response is particularly useful for long-
running operations, e.g., copying a large number of queue values from a source URI. Such a response has
the following implications:

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.

• With an HTTP status code of 202 Accepted, the server implies that the following checks have
passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the accepted POST has
completed (0 to 100).

GET does not return any value for the object when completionStatus is not "Complete". When the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

9.10.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
queue object by ID in "/cdmi_objectid/":

• Support for the ability to create queue objects through this operation is indicated by the presence
of the cdmi_post_queue_by_ID system capability.

• If the object being created in "/cdmi_objectid/" is a reference, support for that ability is indicated by
the presence of the cdmi_create_reference_by_ID system capability.

• If the new queue object being created in "/cdmi_objectid/" is a copy of an existing queue object,
support for the ability to copy is indicated by the presence of the cdmi_copy_queue_by_ID system
capability.

• If the new queue object being created in "/cdmi_objectid/" is the destination of a move, support for
the ability to move the data object to "/cdmi_objectid/" is indicated by the presence of the
cdmi_object_move_to_ID system capability.

• If the new queue object being created in "/cdmi_objectid/" is the destination of a deserialization
operation, support for the ability to deserialize the data object is indicated by the presence of the
cdmi_deserialize_queue_by_ID system capability.

The following capabilities describe the supported operations that may be performed when creating a new
queue object by ID in a container:

• Support for the ability to create queue objects through this operation is indicated by the presence
of both the cdmi_post_queue and cdmi_create_queue capabilities in the specified container
object.
Cloud Data Management Interface Working Draft 97
Version 1.1.0d

© SNIA

810
811

812
813

814
815
816

817
818
819

820

821
822
• If the object being created in the parent container object is a reference, support for that ability is
indicated by the presence of the cdmi_create_reference capability in the parent container object.

• If the new queue object is a copy of an existing queue object, support for the ability to copy is
indicated by the presence of the cdmi_copy_queue capability in the parent container object.

• If the new queue object is the destination of a move, support for the ability to move the queue
object is indicated by the presence of the cdmi_move_queue capability in the parent container
object.

• If the new queue object is the destination of a deserialize operation, support for the ability to
deserialize the the queue object is indicated by the presence of the cdmi_deserialize_queue
capability in the parent container object.

9.10.4 Request Headers

The HTTP request headers for creating a new CDMI queue object using CDMI content type are shown in
Table 57.

Table 57 - Request Headers - Create a New Queue Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory
98 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

823

824
825
9.10.5 Request Message Body

The request message body fields for creating a new queue object using CDMI content type are shown in
Table 58.

Table 58 - Request Message Body - Create a New Queue Object using CDMI Content Type

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object

• If this field is included when deserializing, serializing,
copying, or moving a queue object, the value provided in
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a queue object, the metadata from
the source URI shall be used.

• If this field is included when creating a new queue object
by specifying a value, the value provided in this field shall
be used as the metadata.

• If this field is not included when creating a new queue
object by specifying a value, an empty JSON object (i.e.,
"{}") will be assigned as the field value.

• This field shall not be included when referencing a queue
object.

Optional

domainURI JSON
String

URI of the owning domain

• Any domain may be specified, and the "cross_domain"
privilege is not required (see cdmi_member_privileges in
Table 64).

• If not specified, the root domain "/cdmi_domains/" shall
be used.

Optional

deserialize JSON
String

URI of a CDMI data object that will be deserialized to create
the new queue object

Optionala

copy JSON
String

URI of a CDMI queue object that will be copied into the new
queue object

Optionala

move JSON
String

URI of a CDMI queue object that will be copied into the new
queue object. When the copy is successfully completed, the
queue object at the source URI is removed.

Optionala

reference JSON
String

URI of a CDMI queue object that shall be redirected to by a
reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status
code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 99
Version 1.1.0d

© SNIA

826

827

828

829

830

831
9.10.6 Response Headers

The response headers for creating a new CDMI queue object using CDMI content type are shown in
Table 59.

9.10.7 Response Message Body

The response message body fields for creating a new CDMI queue object using CDMI content type are
shown in Table 60.

Table 59 - Response Headers - Create a New CDMI Queue Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Location Header
String

The unique URI for the new queue object as assigned by
the system. In the absence of file name information from
the client, the system shall assign the URI in the form: <root
URI>/<ContainerName>/<ObjectID>.

Mandatory

Table 60 - Response Message Body - Create a New Queue Object with CDMI
Content (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-queue" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not exist
and shall not be returned.

Conditional

parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist and
shall not be returned.

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist and
shall not be returned.

Conditional
100 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully
created or updated or if an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value "Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field,
if provided, may contain any integer value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for
a further description of metadata.

Mandatory

queueValues JSON
String

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique, monotonically-
incrementing positive integer designator, starting from 0. If
no values are enqueued, an empty string shall be returned.
If values are enqueued, the lowest designator, followed by
a hyphen ("-"), followed by the highest designator shall be
returned.

Mandatory

Table 60 - Response Message Body - Create a New Queue Object with CDMI
Content (Sheet 2 of 2)

Field Name Type Description Requirement
Cloud Data Management Interface Working Draft 101
Version 1.1.0d

© SNIA

832

833
834

835

836

837
838
839
840
841

842
843

844

845
846
847
848

849
850
851
852
853
854
855
856
857
858
859
860
861
9.10.8 Response Status

Table 61 describes the HTTP status codes that occur when creating a new queue object using CDMI
content type.

9.10.9 Example

EXAMPLE POST to the container object URI the queue object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1
Location: http://cloud.example.com/MyContainer/00007ED900104E1D14771DC67C27BF8B

{
 "objectType" : "application/cdmi-queue",
 "objectID" : "00007ED900104E1D14771DC67C27BF8B",
 "objectName" : "00007ED900104E1D14771DC67C27BF8B",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007ED900104E1D14771DC67C27BF8B",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/queue/",
 "completionStatus" : "Complete",
 "metadata" : {
 },
 "queueValues" : ""
}

Table 61 - HTTP Status Codes - Create a New CDMI Queue Object using CDMI Content Type

HTTP Status Description

201 Created The new queue object was created.

202 Accepted The queue object is in the process of being created. The CDMI client should monitor
the completionStatus and percentComplete fields to determine the current status of
the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or could cause a state
transition error on the server.
102 Working Draft Cloud Data Management Interface
Version 1.1.0d

Section III

CDMI Advanced

© SNIA

1

2

3
4
5
6
7
8
9

10
11
12
13

14

15

16
17

18
19
20
21
22

23
24
25

26
27

28
29

30

31

32

33

34

35
36
37

38
39

40

41
10 Domain Object Resource Operations

10.1 Overview

Domain objects represent the concept of administrative ownership of stored data within a CDMI™ storage
system. A CDMI offering may include a hierarchy of domains that provide access to domain-related
information within a CDMI context. This domain hierarchy is a series of CDMI objects that correspond to
parent and child domains, with each domain corresponding to logical groupings of objects that are to be
managed together. Domain measurement information about objects that are associated with each domain
flow up to parent domains, facilitating billing and management operations that are typical for a cloud
storage environment.

Domain objects are created in the cdmi_domains container found in the root URI for the cloud storage
system. If the cdmi_create_domain capability is present for the URI of a given domain, then the cloud
storage system supports the ability to create child domains under the URI. If a cloud storage system
supports domains, the cdmi_domains container shall be present.

Domains are addressed in CDMI in two ways:

• by name (e.g., http://cloud.example.com/cdmi_domains/myDomain/); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
00007ED90010329E642EBFBC8B57E9AD/.

Every domain object has a single, globally-unique object ID that remains constant for the life of the object.
Each domain object shall also have one URI address that allows the domain object to be accessed.
Following the URI conventions for hierarchical paths, domain URIs shall start with "/cdmi_domains/" and
consist of one or more domain names that are separated by forward slashes ("/") and that end with a
forward slash ("/").

If a request is performed against an existing domain resource and the trailing slash at the end of the URI is
omitted, the server shall respond with an HTTP status code of 301 Moved Permanently, and a
Location header containing the URI with the trailing slash will be added.

If a CDMI request is performed to create a new domain resource and the trailing slash at the end of the
URI is omitted, the server shall respond with an HTTP status code of 400 Bad Request.

Individual fields within a domain object may be accessed by specifying the field name after a question
mark "?" appended to the end of the domain object URI.

EXAMPLE 1 The following URI returns just the children field in the response message body:

http://cloud.example.com/cdmi_domains/myDomain/?children

By specifying a range after the children field name, specific ranges of the children field may be accessed.

EXAMPLE 2 The following URI returns the first three children from the children field:

http://cloud.example.com/cdmi_domains/myDomain/?children:0-2

Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616. A
client can determine the number of children present by requesting the childrenrange field without
requesting a range of children.

A list of fields separated by a semicolon ";" may be specified, allowing multiple fields to be accessed in a
single request.

EXAMPLE 3 The following URI would return the children and metadata fields in the response message body:

http://cloud.example.com/cdmi_domains/myDomain/?children;metadata
104 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

42
43
44

45
46

47
48

49

50

51
52

53

54
55
56
57

58
59
60
61

62

63

64

65

66
If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields
shall be returned. If no requested fields are permitted to be read, an HTTP status code of 403
Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be
performed, and an HTTP status code of 403 Forbidden shall be returned to the client.

When a client provides or includes deserialization fields that are not defined in this international standard,
these fields shall be stored as part of the object.

10.1.1 Domain Object Metadata

The following domain-specific field shall be present for each domain (see Table 62).

Domains may also contain domain-specific data system metadata items as defined in 16.4 and 16.5
Domain data system metadata shall be inherited to child domain objects.

10.1.2 Domain Object Summaries

Domain object summaries provide summary measurement information about domain usage and billing. If
supported, a domain summary container named "cdmi_domain_summary" shall be present under each
domain container. Like any container, the domain summary subcontainer may have an Access Control List
(ACL) (see 16.1) that restricts access to this information.

Within each domain summary container are a series of domain summary data objects that are generated
by the cloud storage system. The "yearly", "monthly", and "daily" containers of these data objects contain
domain summary data objects corresponding to each year, month, and day, respectively. These
containers are organized into the following structures:

http://example.com/cdmi_domains/domain/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/cumulative

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-01

Table 62 - Required Metadata for a Domain Object

Metadata Name Type Description Requirement

cdmi_domain_enabled JSON
String

Indicates if the domain is enabled and specified at the
time of creation. Values shall be "true" or "false".

• If a domain is disabled, the cloud storage system
shall not permit any operations to be performed
against any URI managed by that domain.

• If this metadata item is not present at the time of
domain creation, the value is set to "false".

Mandatory

cdmi_domain_delete_reassign JSON
String

If the domain is deleted, indicates to which domain the
objects that belong to the domain shall be reassigned.
To delete a domain that contains objects, this
metadata item shall be present. If this metadata item
is not present or does not contain the URI of a valid
domain that is different from the the URI of the domain
being deleted, an attempt to delete a domain that has
objects shall result in an HTTP status code of 409
Conflict.

Conditional
Cloud Data Management Interface Working Draft 105
Version 1.1.0d

© SNIA

67

68

69

70

71

72

73

74

75

76
77
78

79
80

81
82
83
84

85
86

87
88

89
90

91
92

93

94
http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-02

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-03

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-07

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-08

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-10

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/2009

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/2010

The "cumulative" summary data object covers the entire time period, from the time the domain is created to
the time it is accessed. Each data object at the daily, monthly, and yearly level contains domain summary
information for the time period specified, bounded by domain creation time and access time.

If a time period extends earlier than the domain creation time, the summary information includes the time
from when the domain was created until the end of the time period.

EXAMPLE 1 If a domain were created on July 4, 2009, at noon, the daily summary "2009-07-04" would contain
information from noon until midnight, the monthly summary "2009-07" would contain information
from noon on July 4 until midnight on July 31, and the yearly summary "2009" would contain
information from noon on July 4 until midnight on December 31.

If a time period starts after the time when the domain was created and ends earlier than the time of access,
the summary data object contains complete information for that time period.

EXAMPLE 2 If a domain were created on July 4, 2009, and on July 10, the "2009-07-06" daily summary data
object was accessed, it would contain information for the complete day.

If a time period ends after the current access time, the domain summary data object contains partial
information from the start of the time period (or the time the domain was created) until the time of access.

EXAMPLE 3 If a domain were created on July 4, 2009, and at noon on July 10, the "2009-07-10" daily summary
data object was accessed, it would contain information from the beginning of the day until noon.

The information in Table 63 shall be present within the contents of each domain summary object, which
are in JSON representation.

Table 63 - Contents of Domain Summary Objects (Sheet 1 of 2)

Metadata Name Type Description Requirement

cdmi_domainURI JSON
String

Domain name corresponding to the domain that is
summarized

Mandatory

cdmi_summary_start JSON
String

An ISO-8601 time indicating the start of the time
range that the summary information is presenting

Mandatory

cdmi_summary_end JSON
String

An ISO-8601 time indicating the end of the time
range that the summary information is presenting

Mandatory

cdmi_summary_objecthours JSON
String

The sum of the time each object belonging to the
domain existed during the summary time period

Optional

cdmi_summary_objectsmin JSON
String

The minimum number of objects belonging to the
domain during the summary time period

Optional
106 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

95

96
97
98
99

100
101
102
103
104
EXAMPLE An example of a daily domain summary object is as follows:

{
 "cdmi_domainURI" : "/cdmi_domains/MyDomain/",
 "cdmi_summary_start" : "2009-12-10T00:00:00",
 "cdmi_summary_end" : "2009-12-10T23:59:59",
 "cdmi_summary_objecthours" : "382239734",
 "cdmi_summary_puts" : "234234",
 "cdmi_summary_gets" : "489432",
 "cdmi_summary_bytehours" : "334895798347",
 "cdmi_summary_writes" : "7218368343",

cdmi_summary_objectsmax JSON
String

The maximum number of objects belonging to the
domain during the summary time period

Optional

cdmi_summary_objectsaverage JSON
String

The average number of objects belonging to the
domain during the summary time period

Optional

cdmi_summary_puts JSON
String

The number of objects written to the domain Optional

cdmi_summary_gets JSON
String

The number of objects read from the domain Optional

cdmi_summary_bytehours JSON
String

The sum of the time each byte belonging to the
domain existed during the summary time period

Optional

cdmi_summary_bytesmin JSON
String

The minimum number of bytes belonging to the
domain during the summary time period

Optional

cdmi_summary_bytesmax JSON
String

The maximum number of bytes belonging to the
domain during the summary time period

Optional

cdmi_summary_bytesaverage JSON
String

The average number of bytes belonging to the
domain during the summary time period

Optional

cdmi_summary_writes JSON
String

The number of bytes written to the domain Optional

cdmi_summary_reads JSON
String

The number of bytes read from the domain Optional

cdmi_summary_charge JSON
String

An ISO 4217 currency code (see ISO 4217:2008)
that is followed or preceded by a numeric value
and separated by a space, where the numeric
value represents the closing charge in the
indicated currency for the use of the service
associated with the domain over the summary
time period

Optional

cdmi_summary_kwhours JSON
String

The sum of energy consumed (in kilowatt hours)
by the domain during the summary time period

Optional

cdmi_summary_kwmin JSON
String

The minimum rate at which energy is consumed
(in kilowatt hours per hour) by the domain during
the summary time period

Optional

cdmi_summary_kwmax JSON
String

The maximum rate at which energy is consumed
(in kilowatt hours per hour) by the domain during
the summary time period

Optional

cdmi_summary_kwaverage JSON
String

The average rate at which energy is consumed
(in kilowatt hours per hour) by the domain during
the summary time period

Optional

Table 63 - Contents of Domain Summary Objects (Sheet 2 of 2)

Metadata Name Type Description Requirement
Cloud Data Management Interface Working Draft 107
Version 1.1.0d

© SNIA

105
106
107

108
109

110
111
112

113

114
115
116
117
118

119
120
121
122
123
124

125
126
127

128
129

130

131

132

133

134
135
136
137

138
 "cdmi_summary_reads" : "11283974933",
 "cdmi_summary_charge" : "4289.23 USD"
}

If the charge value is provided, the value is for the operational cost (excluding fixed fees) of service already
performed and storage and bandwidth already consumed. Pricing of services is handled separately.

Domain summary information may be extended by vendors to include additional metadata or domain
reports beyond the metadata items specified by this international standard, as long as the field names for
those metadata items do not begin with "cdmi_".

10.1.3 Domain Object Membership

In cloud storage environments, in the same way that domains are often created programmatically, domain
user membership and credential mapping also shall be populated using such interfaces. By providing
access to user membership, this capability enables self-enrollment, automatic provisioning, and other
advanced self-service capabilities, either directly using CDMI or through software systems that interface
with CDMI.

The domain membership capability provides information about, and allows the specification of, end users
and groups of users that are allowed to access the domain via CDMI and other access protocols. The
concept of domain membership is not intended to replace or supplant ACLs (see 16.1), but rather to
provide a single, unified place to map identities and credentials to principals used by ACLs within the
context of a domain (see model described in 10.1.4). It also provides a place for authentication mappings
to external authentication providers, such as LDAP and Active Directory, to be specified.

If supported, a domain membership container named cdmi_domain_members shall be present under each
domain. Like any container, the domain membership container has an Access Control List (see 16.1) that
restricts access to this information.

Within each domain membership container are a series of user objects that are specified through CDMI to
define each user known to the domain. These objects are formatted into the following structure:

http://example.com/cdmi_domains/domain/

http://example.com/cdmi_domains/domain/cdmi_domain_members/

http://example.com/cdmi_domains/domain/cdmi_domain_members/john_doe

http://example.com/cdmi_domains/domain/cdmi_domain_members/john_smith

The domain membership container may also contain subcontainers with data objects. Data objects in
these subcontainers are treated the same as data objects in the domain membership container, and no
meaning is inferred from the subcontainer name. This organization is used to create different access
security relationships for groups of user objects and to allow delegation to a common set of members.

Table 64 lists the domain settings that shall be present within each domain member user object.

Table 64 - Required Settings for Domain Member User Objects (Sheet 1 of 2)

Metadata Name Type Description Requirement

cdmi_member_enabled JSON
String

If true, this field indicates that requests associated with
this domain member are allowed. If false, all requests
performed by this domain member shall result in an
HTTP status code of 403 Forbidden.

Mandatory

cdmi_member_type JSON
String

This field indicates the type of member record. Values
include "user", "group", and "delegation".

Mandatory

cdmi_member_name JSON
String

This field contains the user or group name as presented
by the client. This will normally be the standard full name
of the principal.

Mandatory
108 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

139

140

141
142
Table 65 lists the domain settings that shall be present within each domain member delegation object.

EXAMPLE 1 An example of a domain membership object for a user is as follows:

{
 "cdmi_member_enabled" : "true",

cdmi_member_credentials JSON
String

This field contains credentials to be matched against the
credentials as presented by the client. If this field is not
present, one or more delegations shall be present and
shall be used to resolve user credentials. As one cannot
log in as a group but only as a member of a group, the
"group" type member records shall not have credentials.

Optional

cdmi_member_principal JSON
String

This field indicates to which principal name (used in
ACLs) the user or group is mapped. If this field is not
present, one or more delegations shall be present and
shall be used to resolve the principal.

Optional

cdmi_member_privileges JSON
Array of
JSON
Strings

This field contains a JSON list of special privileges
associated with the user or "group".

The following privileges are defined:

• "administrator". Allows the principal to take ownership
of any object/container.

• "backup_operator". Bypass regular ACL checks to
allow backup and restore of objects and containers,
including all associated attributes, metadata, ACLs
and ownership.

• "cross_domain". Operations specifying a domain
other than the domain of the parent object are
permitted. Unless this privilege is conferred by the
user record or a group (possibly nested) to which the
user or group belongs, all attempts to change the
domain of objects to a domain other than the parent
domain shall fail.

Mandatory

cdmi_member_groups JSON
Array of
JSON
Strings

This field contains a JSON array of group names to
which the user or group belongs.

Optional

Table 65 - Required Settings for Domain Member Delegation Objects

Metadata Name Type Description Requirement

cdmi_member_enabled JSON
String

If true, this field indicates that requests associated with
this domain member are allowed. If false, all requests
performed by this domain member shall result in an
HTTP status code of 403 Forbidden.

Mandatory

cdmi_member_type JSON
String

This field indicates the type of member record. Values
include "user" and "delegation".

Mandatory

cdmi_delegation_URI JSON
String

This field contains the URI of an external identity
resolution provider (such as LDAP or Active Directory) or
the URI of a domain membership container object.

External delegations are expressed in the form of ldap://
or ad://.

Mandatory

Table 64 - Required Settings for Domain Member User Objects (Sheet 2 of 2)

Metadata Name Type Description Requirement
Cloud Data Management Interface Working Draft 109
Version 1.1.0d

© SNIA

143
144
145
146
147
148
149
150
151
152
153
154

155

156
157
158
159
160
161

162

163
164
165
166
167

168
169
170

171
172

173

174
175
176
177

178

179

180

181

182

183

184

185

186
 "cdmi_member_type" : "user",
 "cdmi_member_name" : "John Doe",
 "cdmi_member_credentials" : "p+5/oX1cmExfOIrUxhX1lw==",
 "cdmi_member_groups" : [
 "users"
],
 "cdmi_member_principal" : "jdoe",
 "cdmi_privileges" : [
 "administrator",
 "cross_domain"
]
}

EXAMPLE 2 An example of a domain membership object for a delegation is as follows:

{
 "cdmi_member_enabled" : "true",
 "cdmi_member_type" : "delegation",
 "cdmi_delegation_URI" : "/cdmi_domains/MyDomain/",

}

10.1.4 Domain Usage in Access Control

When a transaction is performed against a CDMI object, the associated domain object (i.e., the domain
object indicated by the domainURI) specifies the authentication context. The user identity and credentials
presented as part of the transaction are compared to the domain membership list to determine if the user is
authorized within the domain and to resolve the user's principal. If resolved, the user’s principal is
evaluated against the object's ACL to determine if the transaction is permitted.

When evaluating members within a domain, delegations are evaluated first, in any order, followed by user
records, in any order. If there is at least one matching record and none of the matching records indicate
that the user is disabled, the user is considered to be a member of the domain.

When a sub-domain is initially created, the membership container contains one member record that is a
delegation in which the delegation URI is set to the URI of the parent domain.

10.1.5 Domain Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in
any order, with the exception that, if present, for domain objects, the childrenrange and children fields shall
appear last and in that order.

10.2 Create a Domain Object using CDMI Content Type

10.2.1 Synopsis

To create a new domain object, the following request shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<NewDomainName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more intermediate domains that already exist.

• <NewDomainName> is the name specified for the domain to be created.

After it is created, the domain shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.
110 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

187

188
189

190
191

192
193

194
195
196

197

198
199
10.2.2 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
domain:

• Support for the ability to create a new domain object is indicated by the presence of the
cdmi_create_domain capability in the parent domain.

• If the new domain object is a copy of an existing domain object, support for the ability to copy is
indicated by the presence of the cdmi_copy_domain capability in the source domain.

• If the new domain is the destination of a deserialize operation, support for the ability to deserialize
the source data object serialization of a domain is indicated by the presence of the
cdmi_deserialize_domain capability in the parent domain.

10.2.3 Request Headers

The HTTP request headers for creating a CDMI domain object using CDMI content type are shown in
Table 66.

Table 66 - Request Headers - Create a Domain Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-domain" or a consistent value as per
clause 5.13.2

Optional

Content-Type Header
String

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
for example, "1.1, 1.5, 2.0"

Mandatory
Cloud Data Management Interface Working Draft 111
Version 1.1.0d

© SNIA

200

201
202
10.2.4 Request Message Body

The request message body fields for creating a domain object using CDMI content type are shown in
Table 67.

Table 67 - Request Message Body - Create a Domain Object using CDMI Content Type

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the domain object

• If this field is included when deserializing, serializing,
copying, or moving a domain object, the value provided
in this field shall replace the metadata from the source
URI.

• If this field is not included when deserializing, serializing,
copying, or moving a domain object, the metadata from
the source URI shall be used.

• If this field is included when creating a new domain
object by specifying a value, the value provided in this
field shall be used as the metadata.

• If this field is not included when creating a new domain
object by specifying a value, an empty JSON object (i.e.,
"{}") shall be assigned as the field value.

Optional

copy JSON
String

URI of a CDMI domain that shall be copied into the new
domain, including all child domains and membership from
the source domain

Optionala

move JSON
String

URI of an existing local CDMI domain object (source URI)
that shall be relocated, along with all child domains, to the
URI specified in the PUT. The contents of the domain and
all sub-domains, including the object ID, shall be
preserved by a move, and the domain and sub-domains of
the source URI shall be removed after the objects at the
destination have been successfully created.

If there are insufficient permissions to read the objects at
the source URI, write the objects at the destination URI, or
delete the objects at the source URI, or if any of these
operations fail, the move shall return an HTTP status code
of 400 Bad Request, and the source and destination are
left unchanged.

Optionala

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new domain, including all child
objects inside the source serialized data object

Optionala

deserializevalue JSON
String

A domain object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
112 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

203

204

205

206
207
10.2.5 Response Headers

The HTTP response headers for creating a domain object using CDMI content type are shown in Table 68.

10.2.6 Response Message Body

The response message body fields for creating a domain object using CDMI content type is shown in
Table 69.

Table 68 - Response Headers - Create a Domain Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version
supported by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status
code of 400 Bad Request.

Mandatory

Table 69 - Response Message Body - Create a Domain Object using CDMI Content Type

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-domain" Mandatory

objectID JSON
String

Object ID of the domain Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent objectAppending the objectName to the
parentURI shall always produce a valid URI for the object.

Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain. A domain object is always
owned by itself.

Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

metadata JSON
Object

Metadata for the domain. This field includes any user and
data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for
a further description of metadata.

Mandatory

childrenrange JSON
String

The sub-domains of the domain expressed as a range. If a
range of sub-domains is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
Array of
JSON
Strings

Names of the children domains in the domain. Child
containers end with "/".

Mandatory
Cloud Data Management Interface Working Draft 113
Version 1.1.0d

© SNIA

208

209
210

211

212

213
214
215
216
217

218
219
220
221

222

223
224
225

226
227
228
229
230
231
232
233
234
235
236
237

238
239
240
241
242
243
10.2.7 Response Status

Table 70 describes the HTTP status codes that occur when creating a domain object using CDMI content
type.

10.2.8 Example

EXAMPLE PUT to the domain URI the domain name and metadata:

PUT /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

"metadata":
{
 "cdmi_domain_enabled": "true"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-domain",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "MyDomain/",
 "parentURI" : "/cdmi_domains/",
 "parentID" : "00007E7F0010C058374D08B0AC7B3550",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/domain/",
 "metadata" : {
 "cdmi_domain_enabled": "true",
 "cdmi_authentication_methods": "anonymous, basic"
},

 "childrenrange" : "0-1",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

Table 70 - HTTP Status Codes - Create a Domain Object using CDMI Content Type

HTTP Status Description

201 Created The new domain object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The domain name already exists.
114 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

244

245

246

247

248
249

250
251
252
253

254

255

256

257

258

259

260

261

262

263
264

265
266

267
268

269

270
271

272

273
10.3 Read a Domain Object using CDMI Content Type

10.3.1 Synopsis

To read all fields from an existing domain object, the following request shall be performed:

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

To read one or more requested fields from an existing domain object, one of the following requests shall be
performed:

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/
?<fieldname>;<fieldname>;...

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?children:<range>;...
GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

10.3.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing domain:

• Support for the ability to read the metadata of an existing domain object is indicated by the
presence of the cdmi_read_metadata capability in the specified domain.

• Support for the ability to list the children of an existing domain object is indicated by the presence
of the cdmi_list_children capability in the specified domain.

10.3.3 Request Headers

The HTTP request headers for reading a CDMI domain object using CDMI content type are shown in
Table 71.

10.3.4 Request Message Body

A request body shall not be provided.

Table 71 - Request Headers - Read a Domain Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-domain" or a consistent value as per clause
5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory
Cloud Data Management Interface Working Draft 115
Version 1.1.0d

© SNIA

274

275
276

277

278
279
10.3.5 Response Headers

The HTTP response headers for reading a CDMI domain object using CDMI content type are shown in
Table 72.

10.3.6 Response Message Body

The response message body fields for reading a CDMI domain object using CDMI content type are shown
in Table 73.

Table 72 - Response Headers - Read a Domain Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Content-Type Header
String

"application/cdmi-domain" Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 73 - Response Message Body - Read a Domain Object using CDMI Content Type

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-domain" Mandatory

objectID JSON
String

Object ID of the domain Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain. A domain object is always owned
by itself.

Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

metadata JSON
Object

Metadata for the domain. This field includes any user and
data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for a
further description of metadata.

Mandatory

childrenrange JSON
String

The sub-domains of the domain expressed as a range. If a
range of sub-domains is requested, this field indicates the
children returned as a range.

Mandatory

children JSON
Array of
JSON
Strings

The children of the domain. Sub-domains end with "/". Mandatory
116 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

280
281

282

283
284

285

286

287
288
289
290

291

292
293
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

313

314
315
316
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

10.3.7 Response Status

Table 74 describes the HTTP status codes that occur when reading a domain object using CDMI content
type.

10.3.8 Examples

EXAMPLE 1 GET to the domain URI to read all the fields of the domain:

GET /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
 "objectType": "application/cdmi-domain",
 "objectID": "00007E7F00104BE66AB53A9572F9F51E",
 "objectName": "MyDomain/",
 "parentURI": "/cdmi_domains/",
 "parentID": "00007E7F0010C058374D08B0AC7B3550",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/domain/",
 "metadata": {
 "cdmi_domain_enabled": "true",
 "cdmi_authentication_methods": "anonymous, basic"
 },
 "childrenrange": "0-1",
 "children": [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

EXAMPLE 2 GET to the domain URI to read the parentURI and children of the domain:

GET /MyDomain/?parentURI;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain

Table 74 - HTTP Status Codes - Read a Domain Object using CDMI Content Type

HTTP Status Description

200 OK The domain object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.
Cloud Data Management Interface Working Draft 117
Version 1.1.0d

© SNIA

317

318

319
320
321

322
323
324
325
326
327
328

329

330
331
332
333

334

335
336
337

338
339
340
341
342
343
344

345

346

347

348

349
350

351
352

353

354

355

356

357
358
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
 "parentURI" : "/cdmi_domains/",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

EXAMPLE 3 GET to the domain URI to read the first two children of the domain:

GET /MyDomain/?childrenrange;children:0-1 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
 "childrenrange" : "0-1",
 "children" : [
 "cdmi_domain_summary/",
 "cdmi_domain_members/"
]
}

10.4 Update a Domain Object using CDMI Content Type

10.4.1 Synopsis

To update some or all fields in an existing domain object, the following request shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

To add, update, and remove specific metadata items of an existing domain object, the following request
shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/
?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/. An update shall not result in
a change to the object ID.
118 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

359

360
361

362
363

364

365
366

367

368
369
10.4.2 Capability

The following capability describes the supported operations that may be performed when updating an
existing domain:

• Support for the ability to modify the metadata of an existing domain object is indicated by the
presence of the cdmi_modify_metadata capability in the specified domain.

10.4.3 Request Headers

The HTTP request headers for updating a CDMI domain object using CDMI content type are shown in
Table 75.

10.4.4 Request Message Body

The request message body fields for updating a domain object using CDMI content type are shown in
Table 76.

Table 75 - Request Headers - Update a Domain Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 76 - Request Message Body - Update a Domain Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the domain object. If present, the new
metadata specified replaces the existing object metadata. If
individual metadata items are specified in the URI, only
those items are replaced; other items are preserved.

See Clause 16 for a further description of metadata.

Optional

copy JSON
String

URI of a CDMI domain object that shall be copied into the
existing domain object. Only the metadata and membership
of the domain shall be copied, not any sub-domains of the
domain.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.
Cloud Data Management Interface Working Draft 119
Version 1.1.0d

© SNIA

370

371
372

373

374
10.4.5 Response Header

The HTTP response header for updating a CDMI domain object using CDMI content type is shown in
Table 77.

10.4.6 Response Message Body

A response body may be provided as per RFC 2616.

deserialize JSON
String

URI of a serialized CDMI domain object that shall be
deserialized to update an existing domain object. The object
ID of the serialized domain object shall match the object ID
of the destination domain object.

If the serialized domain does not contain children, the
update is applied only to the domain object, and any
existing children are left as is. If the serialized domain object
does contain children, then creates, updates, and deletes
are recursively applied for each child, depending on the
differences between the provided serialized state and the
current state of the children.

Optionala

deserializevalue JSON
String

A domain object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648. The object ID of the serialized domain object shall
match the object ID of the destination domain object.

If the serialized domain does not contain children, the
update is applied only to the domain object, and any
existing children are left as is. If the serialized domain object
does contain children, then creates, updates, and deletes
are recursively applied for each child, depending on the
differences between the provided serialized state and the
current state of the children.

Optionala

Table 77 - Response Header - Update a Domain Object using CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 76 - Request Message Body - Update a Domain Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.
120 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

375

376
377

378

379

380
381
382
383

384
385
386
387
388

389

390

391

392

393
394

395

396

397

398

399

400
10.4.7 Response Status

Table 78 describes the HTTP status codes that occur when updating a domain object using CDMI content
type.

10.4.8 Example

EXAMPLE PUT to the domain URI to set new field values:

PUT /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {
 "test" : "value"
 }
}

The following shows the response.

HTTP/1.1 204 No Content

10.5 Delete a Domain Object using CDMI Content Type

10.5.1 Synopsis

To delete an existing domain object and transfer all objects associated with that domain to another domain
(to preserve access), the following request shall be performed:

DELETE <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

Table 78 - HTTP Status Codes - Update a Domain Object using CDMI Content Type

HTTP Status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.
Cloud Data Management Interface Working Draft 121
Version 1.1.0d

© SNIA

401

402
403

404
405

406

407
408

409

410

411

412

413

414

415

416
417

418

419

420
421
10.5.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing domain:

• Support for the ability to delete an existing domain object is indicated by the presence of the
cdmi_delete_domain capability in the specified domain.

10.5.3 Request Headers

The HTTP request headers for deleting a CDMI domain object using CDMI content type are shown in
Table 79.

10.5.4 Request Message Body

A request body may be provided as per RFC 2616.

10.5.5 Response Headers

Response headers may be provided as per RFC 2616.

10.5.6 Response Message Body

A response body may be provided as per RFC 2616.

10.5.7 Response Status

Table 80 describes the HTTP status codes that occur when deleting a domain object using CDMI content
type.

10.5.8 Example

EXAMPLE DELETE to the domain URI:

DELETE /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com

Table 79 - Request Headers - Delete a Domain Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 80 - HTTP Status Codes - Delete a Domain Object using CDMI Content Type

HTTP Status Description

204 No Content The domain object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The domain cannot be deleted because there are objects belonging to the
domain, and cdmi_domain_delete_reassign is missing, invalid, or unusable.
122 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

422

423

424
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content
Cloud Data Management Interface Working Draft 123
Version 1.1.0d

© SNIA

1

2

3
4
5
6
7
8

9

10

11
12

13
14

15
16

17
18

19

20
21

22
23

24

25
26

27
28
29

30
31
32

33
34

35

36

37
38

39
11 Queue Object Resource Operations

11.1 Overview

Queue objects provide first-in, first-out access when storing and retrieving data. A queue object writer
POSTs data into a queue object, and a queue object reader GETs value(s) from the queue object and
subsequently deletes the value(s) to acknowledge receipt of the value(s) that it received. Queuing provides
a simple mechanism for one or more writers to send data to a single reader in a reliable way. If supported
by the cloud storage system, cloud clients create the queue objects by using the mechanism described in
9.10 and this clause.

Queue objects are addressed in CDMI™ in two ways:

• by name (e.g., http://cloud.example.com/queueobject); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
00007ED900104F67307652BAC9A37C93/).

Every queue object has a single, globally-unique object identifier (ID) that remains constant for the life of
the object. Each queue object shall have one or more URI addresses that allow the object to be accessed.

A queue object may have a parent object. In this case, the queue object inherits data system metadata that
is not explicitly specified in the queue object itself.

EXAMPLE 1 The "receipts.queue" queue object stored at the following URI would inherit data system metadata
from its parent container, "finance":

http://cloud.example.com/finance/receipts.queue

Individual fields within a queue object may be accessed by specifying the field name after a question mark
"?" that is appended to the end of the data object URI.

EXAMPLE 2 The following URI returns the value field containing the oldest queue object value in the response
body:

http://cloud.example.com/queueobject?value

The encoding of the data transported in the queue object value field depends on the queue object
valuetransferencoding field:

• If the value transfer encoding of the object is set to "utf-8", the data stored in the value of the
queue object shall be a valid UTF-8 string, and it shall be transported as a UTF-8 string in the
value field.

• If the value transfer encoding of the object is set to "base64", the data stored in the value of the
queue object can contain arbitrary binary sequences, and it shall be transported as a base 64-
encoded string in the value field.

Specific ranges of the value of a queue object may be accessed by specifying a byte range after the value
field name.

EXAMPLE 3 The following URI returns the first thousand bytes of the oldest value enqueued:

http://cloud.example.com/queueobject?value:0-999

Because a byte range of a UTF-8 string is often not a valid UTF-8 string, the response to a range request
shall always be transported in the value field as a base 64-encoded string.

Byte ranges are specified as single, inclusive byte ranges as per Section 14.35.1 of RFC 2616.
124 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

40
41
42

43
44

45
46

47

48
49

50

51
52

53

54
55
56
57

58

59

60

61

62

63

64

65
66

67

68

69
70

71

72
73
74
75

76
77
If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields
shall be returned. If no requested fields are permitted to be read, an HTTP status code of 403
Forbidden shall be returned to the client.

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be
performed, and an HTTP status code of 403 Forbidden shall be returned to the client.

When a client provides or includes deserialization fields that are not defined in this international standard,
these fields shall be stored as part of the object.

11.1.1 Queue Object Metadata

Queue object metadata may also include arbitrary user-supplied metadata, storage system metadata, and
data system metadata, as specified in Clause 16.

11.1.2 Queue Object Addressing

Each queue object is addressed via one or more unique URIs, and all operations may be performed
through any of these URIs.

11.1.3 Queue Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in
any order, with the exception that, if present, for queue objects, the valuerange and value fields shall
appear last and in that order.

11.2 Create a Queue Object using CDMI Content Type

11.2.1 Synopsis

To create a new queue object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>

To create a new queue object by ID, see 9.10.

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e.,
"/") between each pair of container names.

• <QueueName> is the name specified for the queue object to be created.

After it is created, the object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

The newly created queue shall have no values unless the queue is created as a result of copying or
moving a source queue that has values or as a result of deserializing a serialized queue that has values.

11.2.2 Delayed Completion of Create

In response to a create operation for a queue object, the server may return an HTTP status code of 202
Accepted. In this case, the queue object is in the process of being created. This response is particularly
useful for long-running operations, (e.g., for copying a queue object with a large number of enqueued
values from a source URI). Such a response has the following implications:

• The server shall return a Location header with a URI to the object to be created along with an
HTTP status code of 202 Accepted.
Cloud Data Management Interface Working Draft 125
Version 1.1.0d

© SNIA

78
79

80

81
82

83
84

85
86

87
88

89
90

91
92

93
94
95

96

97
98

99
100

101
102

103
104

105
106

107
108
109

110

111
112
• With an HTTP status code of 202 Accepted, the server implies that the following checks have
passed:

— user authorization for creating the queue object;

— user authorization for read access to any source object for move, copy, serialize, or
deserialize; and

— availability of space to create the queue object or at least enough space to create a URI to
report an error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the
server returns two fields in its response body to indicate progress.

• A completionStatus text field contains either "Processing", "Complete", or an error string starting
with the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed
(0 to 100).

GET does not return any value for the object when completionStatus is not "Complete". When the final
result of the create operation is an error, the URI is created with the completionStatus field set to the error
message. It is the client's responsibility to delete the URI after the error has been noted.

11.2.3 Capabilities

The following capabilities describe the supported operations that may be performed when creating a new
queue object:

• Support for the ability to create a new queue object is indicated by the presence of the
cdmi_create_queue capability in the parent container.

• If the object being created in the parent container is a reference, support for that ability is indicated
by the presence of the cdmi_create_reference capability in the parent container.

• If the new queue object is a copy of an existing queue object, support for the ability to copy is
indicated by the presence of the cdmi_copy_queue capability in the parent container.

• If the new queue object is the destination of a move, support for the ability to move the queue
object is indicated by the presence of the cdmi_move_queue capability in the parent container.

• If the new queue object is the destination of a deserialize operation, support for the ability to
deserialize the source data object is indicated by the presence of the cdmi_deserialize_queue
capability in the parent container.

11.2.4 Request Headers

The HTTP request headers for creating a CDMI queue object using CDMI content type are shown in
Table 81.

Table 81 - Request Headers - Create a Queue Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue" Mandatory

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory
126 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

113

114

115
11.2.5 Request Message Body

The request message body fields for creating a queue object using CDMI content type are shown in
Table 82.

Table 82 - Request Message Body - Create a Queue Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object

• If this field is included when deserializing, serializing,
copying, or moving a queue object, the value provided in
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing,
copying, or moving a queue object, the metadata from the
source URI shall be used.

• If this field is included when creating a new queue object
by specifying a value, the value provided in this field shall
be used as the metadata.

• If this field is not included when creating a new queue
object by specifying a value, an empty JSON object (i.e.,
"{}") shall be assigned as the field value.

• This field shall not be included when referencing a queue
object.

Optional

domainURI JSON
String

URI of the owning domain

• If different from the parent domain, the user shall have
the "cross_domain" privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the parent domain shall be used.

Optional

deserialize JSON
String

URI of a serialized CDMI data object that shall be
deserialized to create the new queue object

Optionala

copy JSON
String

URI of a source CDMI queue object that shall be copied into
the new destination queue object.

• If the destination queue object URI and the copy source
queue object URI both do not specify individual fields, the
destination queue object shall be a complete copy of the
source queue object, including all enqueued values.

• If the destination queue object URI or the copy source
queue object URI specifies individual fields, only the
fields specified shall be used to create the destination
queue object. If specified fields are not present in the
source, default field values shall be used.

• If the destination queue object URI and the copy source
queue object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

If there are insufficient permissions to read the queue object
at the source URI or create the queue object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination queue object shall not be created.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 127
Version 1.1.0d

© SNIA

116

117
118

119

120
121
11.2.6 Response Headers

The HTTP response headers for creating a CDMI queue object using CDMI content type are shown in
Table 83.

11.2.7 Response Message Body

The response message body fields for creating a CDMI queue object using CDMI content type are shown
in Table 84.

move JSON
String

URI of an existing local or remote CDMI queue object
(source URI) that shall be relocated to the URI specified in
the PUT. The contents of the queue object, including the
object ID, shall be preserved by a move, and the queue
object at the source URI shall be removed after the queue
object at the destination has been successfully created.

If there are insufficient permissions to read the queue object
at the source URI, write the queue object at the destination
URI, or delete the queue object at the source URI, or if any
of these operations fail, the move shall return an HTTP
status code of 400 Bad Request, and the source and
destination are left unchanged.

Optionala

reference JSON
String

URI of a CDMI queue object that shall be redirected to by a
reference. If other fields are supplied when creating a
reference, the server shall respond with an HTTP status
code of 400 Bad Request.

Optionala

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

Optionala

Table 83 - Response Headers - Create a Queue Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Table 84 - Response Message Body - Create a Queue Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-queue" Mandatory

objectID JSON
String

Object ID of the object Mandatory

Table 82 - Request Message Body - Create a Queue Object using CDMI Content Type (Continued)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
128 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object

Appending the objectName to the parentURI shall always
produce a valid URI for the object.

Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

domainURI JSON
String

URI of the owning domain. Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of being
created or updated by another operation, and after that
operation is complete, indicates if it was successfully
created or updated or if an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value "Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing", this
field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0 through
100.

• When the value of completionStatus is "Complete", this
field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this field, if
provided, may contain any integer value from 0 through
100.

Optional

metadata JSON
Object

Metadata for the queue object. This field includes any user
and data system metadata specified in the request body
metadata field, along with storage system metadata
generated by the cloud storage system. See Clause 16 for a
further description of metadata.

Mandatory

queueValues JSON
String

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique, monotonically-
incrementing positive integer designator, starting from 0. If
no values are enqueued, an empty string shall be returned.
If values are enqueued, the lowest designator, followed by a
hyphen ("-"), followed by the highest designator shall be
returned.

Mandatory

Table 84 - Response Message Body - Create a Queue Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement
Cloud Data Management Interface Working Draft 129
Version 1.1.0d

© SNIA

122

123
124

125

126

127
128
129
130
131

132
133
134
135
136

137

138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154

155

156
157
11.2.8 Response Status

Table 85 describes the HTTP status codes that occur when creating a queue object using CDMI content
type.

11.2.9 Examples

EXAMPLE 1 PUT to the queue URI the queue object name and contents:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {

 }
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-queue",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "MyQueue",
 "parentURI " : "/MyContainer/",
 "parentID" : "00007ED900104F67307652BAC9A37C93",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/queue/",
 "completionStatus" : "Complete",
 "metadata" : {

 },
 "queueValues" : ""
}

EXAMPLE 2 PUT to the queue object URI to create a new queue, copying from another queue:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com

Table 85 - HTTP Status Codes - Create a Queue Object using CDMI Content Type

HTTP Status Description

201 Created The new queue object was created.

202 Accepted The queue object is in the process of being created. The CDMI client should
monitor the completionStatus and percentComplete fields to determine the
current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.
130 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

158
159

160
161
162

163

164
165
166

167
168
169
170
171
172
173
174
175
176
177
178

179

180

181

182

183
184

185
186
187

188

189

190

191

192

193

194

195
196

197

198
199
200

201

202
203
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "copy": "/MyContainer/SourceQueue?value:0-9"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "objectType": "application/cdmi-queue",
 "objectID": "00007E7F00104BE66AB53A9572F9F51E",
 "objectName": "MyQueue",
 "parentURI ": "/MyContainer/",
 "parentID": "00007ED900104F67307652BAC9A37C93",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "0-9"
}

11.3 Read a Queue Object using CDMI Content Type

11.3.1 Synopsis

To read all fields from an existing queue object, the following request shall be performed:

GET <root URI>/<ContainerName>/<QueueName>

To read one or more requested fields from an existing queue object, one of the following requests shall be
performed:

GET <root URI>/<ContainerName>/<QueueName>?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<QueueName>?value:<range>;...
GET <root URI>/<ContainerName>/<QueueName>?metadata:<prefix>;...

To read one or more queue values from an existing queue object, the following request shall be performed:

GET <root URI>/<ContainerName>/<QueueName>?values:<count>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be read from.

• <fieldname> is the name of a field.

• <range> is a byte range of the queue object value to be returned in the value field. If a byte range
is requested, the range returned shall be from the oldest queue object value.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

• <count> is the number of values to be retrieved from the queue object. If more queue object
entries are requested to be retrieved than exist in the queue object, the count is processed as if it
is equal to the number of entries in the queue object.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

Reading a queue object shall, by default, return the complete value of the oldest item in the queue, unless
the queueValues range is empty.
Cloud Data Management Interface Working Draft 131
Version 1.1.0d

© SNIA

204

205
206

207
208

209
210

211

212
213

214

215

216

217
218
11.3.2 Capabilities

The following capabilities describe the supported operations that may be performed when reading an
existing queue object:

• Support for the ability to read the metadata of an existing queue object is indicated by the
presence of the cdmi_read_metadata capability in the specified queue object.

• Support for the ability to read the value of an existing queue object is indicated by the presence of
the cdmi_read_value capability in the specified queue object.

11.3.3 Request Headers

The HTTP request headers for reading a CDMI queue object using CDMI content type are shown in
Table 86.

11.3.4 Request Message Body

A request body shall not be provided.

11.3.5 Response Headers

The HTTP response headers for reading a CDMI queue object using CDMI content type are shown in
Table 87.

Table 86 - Request Headers - Read a Queue Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue" or a consistent value as per
clause 5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 87 - Response Headers - Read a Queue Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Content-Type Header
String

"application/cdmi-queue" Mandatory

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional
132 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

219

220
221
11.3.6 Response Message Body

The response message body fields for reading a CDMI queue object using CDMI content type are shown
in Table 88.

Table 88 - Response Message Body - Read a Queue Object using CDMI Content Type (Sheet 1 of 3)

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-queue" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object

• For objects in a container, the objectName field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the objectName field does not
exist and shall not be returned.

Conditional

parentURI JSON
String

URI for the parent object

• For objects in a container, the parentURI field shall
be returned.

• For objects not in a container (objects that are only
accessible by ID), the parentURI field does not exist
and shall not be returned.

Appending the objectName to the parentURI shall
always produce a valid URI for the object.

Conditional

parentID JSON
String

Object ID of the parent container object

• For objects in a container, the parentID field shall be
returned.

• For objects not in a container (objects that are only
accessible by ID), the parentID field does not exist
and shall not be returned.

Conditional

domainURI JSON
String

URI of the owning domain Mandatory

capabilitiesURI JSON
String

URI to the capabilities for the object Mandatory

completionStatus JSON
String

A string indicating if the object is still in the process of
being created or updated by another operation, and
after that operation is complete, indicates if it was
successfully created or updated or if an error occurred.

The value shall be the string "Processing", the string
"Complete", or an error string starting with the value
"Error".

Mandatory

percentComplete JSON
String

• When the value of completionStatus is "Processing",
this field, if provided, shall indicate the percentage of
completion as a numeric integer value from 0
through 100.

• When the value of completionStatus is "Complete",
this field, if provided, shall contain the value "100".

• When the value of completionStatus is "Error", this
field, if provided, may contain any integer value from
0 through 100.

Optional
Cloud Data Management Interface Working Draft 133
Version 1.1.0d

© SNIA
metadata JSON
Object

Metadata for the queue object. This field includes any
user and data system metadata specified in the request
body metadata field, along with storage system
metadata generated by the cloud storage system. See
Clause 16 for a further description of metadata.

Mandatory

queueValues JSON
String

The range of designators for enqueued values. Every
enqueued value shall be assigned a unique,
monotonically-incrementing positive integer designator,
starting from 0. If no values are enqueued, an empty
string shall be returned. If values are enqueued, the
lowest designator, followed by a hyphen ("-"), followed
by the highest designator shall be returned.

Mandatory

mimetype JSON
Array of
JSON
Strings

MIME types for each queue object value

• The MIME types of the values are returned, each
corresponding to the value in the same position in
the JSON array.

• This field shall only be provided when
completionStatus is "Complete" and when one or
more values are enqueued.

Optional

valuerange JSON
Array of
JSON
Strings

The range of bytes of the queue object values to be
returned in the value field

• The value ranges of the values are returned, each
corresponding to the value in the same position in
the JSON array.

• If a specific value range has been requested, the
entry in the valuerange field shall correspond to the
bytes requested. If the request extends beyond the
end of the value, the valuerange field shall indicate
the smaller byte range returned.

• The valuerange field shall only be provided when the
completionStatus field contains "Complete".

Optional

valuetransferencoding JSON
Array of
JSON
Strings

The value transfer encoding used for each queue
object value. Two value transfer encodings are defined:

• "utf-8" indicates that the queue object value contains
a valid UTF-8 string, and it shall be transported as a
UTF-8 string in the value field.

• "base64" indicates that the queue object value may
contain arbitrary binary sequences, and it shall be
transported as a base 64-encoded string in the value
field.

The value transfer encodings are returned, each
corresponding to the value in the same position in the
JSON array.

The valuetransferencoding field shall only be provided
when the completionStatus field contains "Complete".

Optional

Table 88 - Response Message Body - Read a Queue Object using CDMI Content Type (Sheet 2 of 3)

Field Name Type Description Requirement
134 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

222
223

224

225
226

227

228

229
230
231
232

233

234
235
236

237
238
239
240
If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

11.3.7 Response Status

Table 89 describes the HTTP status codes that occur when reading a queue object using CDMI content
type.

11.3.8 Examples

EXAMPLE 1 GET to the queue object URI to read all fields of the queue object:

GET /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "objectType": "application/cdmi-queue",
 "objectID": "00007E7F00104BE66AB53A9572F9F51E",
 "objectName": "MyQueue",

value JSON
Array of
JSON
Strings

The oldest enqueued queue object values

• The values in the JSON array are returned in order
from oldest to newest.

• If the valuetransferencoding field indicates UTF-8
encoding, the corresponding value field shall contain
a UTF-8 string using JSON escaping rules described
in RFC 4627.

• If the valuetransferencoding field indicates base 64
encoding, the corresponding value field shall contain
a base 64-encoded string as described in RFC RFC
4648.

• The value field shall only be provided when the
completionStatus field contains "Complete".

Conditional

Table 89 - HTTP Status Codes - Read a Queue Object using CDMI Content Type

HTTP Status Description

200 OK The queue object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the
Accept header.

Table 88 - Response Message Body - Read a Queue Object using CDMI Content Type (Sheet 3 of 3)

Field Name Type Description Requirement
Cloud Data Management Interface Working Draft 135
Version 1.1.0d

© SNIA

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261

262
263
264
265

266

267
268
269

270
271
272
273
274
275

276

277
278
279
280

281

282
283
284

285
286
287
288
289

290

291
292
293
294

295
 "parentURI": "/MyContainer/",
 "parentID" : "00007ED900104F67307652BAC9A37C93",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/queue/",
 "completionStatus": "Complete",
 "metadata": {},
 "queueValues": "1-1",
 "mimetype": [
 "text/plain"
],
 "valuerange": [
 "0-19"
],
 "valuetransferencoding": [
 "utf-8"
],
 "value": [
 "First Enqueued Value"
]
}

EXAMPLE 2 GET to the queue object URI to read the value and queue items of the queue object:

GET /MyContainer/MyQueue?value;queueValues HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "queueValues" : "1-1",
 "value" : [
 "First Enqueued Value"
]
}

EXAMPLE 3 GET to the queue object URI to read the first five bytes of the value of the queue object:

GET /MyContainer/MyQueue?value:0-4 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

The following shows the response:

HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "value" : [
 "First"
]
}

EXAMPLE 4 GET to the queue object URI to read two values of the queue object:

GET /MyContainer/MyQueue?mimetype;valuerange;values:2 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

The following shows the response.
136 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

296
297
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312

313

314

315
316

317

318
319

320

321

322

323

324

325
326

327

328
329

330
331
HTTP/1.1 200 OK
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : [
 "text/plain",
 "text/plain"
],
 "valuerange" : [
 "0-19",
 "0-20"
],
 "value" : [
 "First Enqueued Value",
 "Second Enqueued Value"
]
}

11.4 Update a Queue Object using CDMI Content Type

11.4.1 Synopsis

To update some or all fields in an existing queue object (excluding the enqueueing of values), the following
request shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>

To add, update, and remove specific metadata items of an existing queue object, the following request
shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>. An update shall not result in a
change to the object ID.

11.4.2 Capability

The following capability describes the supported operations that may be performed when updating an
existing queue object:

• Support for the ability to modify the metadata of an existing queue object is indicated by the
presence of the cdmi_modify_metadata capability in the specified queue object.
Cloud Data Management Interface Working Draft 137
Version 1.1.0d

© SNIA

332

333
334

335

336

337
11.4.3 Request Headers

The HTTP request headers for updating a CDMI queue object using CDMI content type are shown in
Table 90.

11.4.4 Request Message Body

The request message body fields for updating a queue object using CDMI content type are shown in
Table 91.

Table 90 - Request Headers - Update a Queue Object using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue " Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 91 - Request Message Body - Update a Queue Object using CDMI Content Type (Sheet 1 of 2)

Field Name Type Description Requirement

metadata JSON
Object

Metadata for the queue object. If present, the new metadata
specified replaces the existing object metadata. If individual
metadata items are specified in the URI, only those items
are replaced; other items are preserved.

See Clause 16 for a further description of metadata.

Optional

domainURI JSON
String

URI of the owning domain.

• If different from the parent domain, the user shall have
the "cross_domain" privilege (see
cdmi_member_privileges in Table 64).

• If not specified, the existing domain shall be preserved.

Optional

deserialize JSON
String

URI of a serialized CDMI queue object that shall be
deserialized to update an existing queue object. The object
ID of the serialized queue object shall match the object ID of
the destination queue object.

All enqueued items in the serialized queue object shall be
added to the destination queue object.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.
138 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

338

339
340

341

342
11.4.5 Response Header

The HTTP response header for updating a CDMI queue object using CDMI content type is shown in
Table 92.

11.4.6 Response Message Body

A response body may be provided as per RFC 2616.

copy JSON
String

URI of a source CDMI queue object that shall be copied into
the existing destination queue object.

• If the destination queue object URI and the copy source
queue object URI both do not specify individual fields, the
destination queue object shall be replaced with the
source queue object, with the exception that the
destination queue values shall be preserved. See 11.6 to
copy enqueued items.

• If the destination queue object URI or the copy source
queue object URI specifies individual fields, only the
fields specified shall be used to update the destination
queue object. If specified fields are not present in the
source, these fields shall be ignored. If the value field is
specified, it shall be ignored.

• If the destination queue object URI and the copy source
queue object URI both specify fields, an HTTP status
code of 400 Bad Request shall be returned to the
client.

If there are insufficient permissions to read the queue object
at the source URI or update the queue object at the
destination URI, or if the read operation fails, the copy shall
return an HTTP status code of 400 Bad Request, and the
destination queue object shall not be updated.

Optionala

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648. The object ID of the serialized queue object shall
match the object ID of the destination queue object.

All enqueued items in the serialized queue object shall be
added to the destination queue object.

Optionala

Table 92 - Response Header - Update a Queue Object using CDMI Content Type

Header Type Description Requirement

Location Header
String

The server shall respond with the URI that the reference
redirects to if the object is a reference.

Conditional

Table 91 - Request Message Body - Update a Queue Object using CDMI Content Type (Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored.
Cloud Data Management Interface Working Draft 139
Version 1.1.0d

© SNIA

343

344
345

346

347

348
349
350
351

352
353
354
355
356

357

358

359

360
361
362
363

364
365
366

367

368

369

370

371
372
11.4.7 Response Status

Table 93 describes the HTTP status codes that occur when updating a queue object using CDMI content
type.

11.4.8 Examples

EXAMPLE 1 PUT to the queue object URI to set new metadata:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "metadata" : {

 }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the queue object URI to move six queue values from another queue:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "move": "/MyContainer/SourceQueue?value:10-15"
}

The following shows the response.

HTTP/1.1 204 No Content

11.5 Delete a Queue Object using CDMI Content Type

11.5.1 Synopsis

To delete an existing queue object, along with all enqueued values, the following request shall be
performed:

Table 93 - HTTP Status Codes - Update a Queue Object using CDMI Content Type

HTTP Status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause a
state transition error on the server.
140 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

373

374

375

376

377

378

379

380
381

382
383

384

385
386

387

388

389

390

391

392
DELETE <root URI>/<ContainerName>/<QueueName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

11.5.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing queue object:

• Support for the ability to delete an existing queue object is indicated by the presence of the
cdmi_delete_queue capability in the specified queue object.

11.5.3 Request Header

The HTTP request header for deleting a CDMI queue object using CDMI content type is shown in
Table 94.

11.5.4 Request Message Body

A request body may be provided as per RFC 2616.

11.5.5 Response Headers

Response headers may be provided as per RFC 2616.

11.5.6 Response Message Body

A response body may be provided as per RFC 2616.

Table 94 - Request Header - Delete a Queue Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory
Cloud Data Management Interface Working Draft 141
Version 1.1.0d

© SNIA

393

394
395

396

397

398
399
400

401

402

403

404

405

406

407

408

409
410

411

412

413

414
415

416
417
11.5.7 Response Status

Table 95 describes the HTTP status codes that occur when deleting a queue object using CDMI content
type.

11.5.8 Example

EXAMPLE DELETE to the queue object URI:

DELETE /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

11.6 Enqueue a New Queue Value using CDMI Content Type

11.6.1 Synopsis

To enqueue one or more values into an existing queue object, the following request shall be performed:

POST <root URI>/<ContainerName>/<QueueName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e.,
"/") between each pair of container names.

• <QueueName> is the name of the queue object to be enqueued into.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

11.6.2 Capability

The following capability describes the supported operations that may be performed when enqueuing a new
value into an existing queue object:

• Support for the ability to modify the value of an existing queue object is indicated by the presence
of the cdmi_modify_value capability in the specified queue object.

Table 95 - HTTP Status Codes - Delete a Queue Object using CDMI Content Type

HTTP Status Description

204 No Content The queue object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The queue object may not be deleted (may be immutable).
142 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

418

419
420

421

422

423
11.6.3 Request Headers

The HTTP request headers for enqueuing a new CDMI queue object value using CDMI content type are
shown in Table 96.

11.6.4 Request Message Body

The request message body fields for enqueuing a new queue object value using CDMI content type are
shown in Table 97.

Table 96 - Request Headers - Enqueue a New Queue Object Value using CDMI Content Type

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 97 - Request Message Body - Enqueue a New Queue Object Value using CDMI Content Type
(Sheet 1 of 2)

Field Name Type Description Requirement

mimetype JSON
Array of
JSON
Strings

MIME type(s) of the data value(s) to be enqueued into
the queue object.

• This field shall be stored as part of the queue object.

• If this field is not specified, the value of "text/plain"
shall be assigned as the field value.

• The same number of array elements shall be
present as is present in the value field, and the
mimetype field shall be associated with the value in
the corresponding position.

• This mimetype field value shall be converted to
lower case before being stored.

Optional

copy JSON
String

URI of a source CDMI data object or queue object from
which the value shall be copied and enqueued

• If a copy source object URI to a data object is
provided, the value, mimetype, and
valuetransferencoding field values from the source
data object are used to enqueue the new item into
the destination queue object.

• If a copy source object URI to a queue object is
provided, the corresponding value, mimetype, and
valuetransferencoding field values of the specified
number of enqueued items in the source queue
object are copied to the destination queue object.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
Cloud Data Management Interface Working Draft 143
Version 1.1.0d

© SNIA

424

425

426

427
11.6.5 Response Headers

Response headers may be provided as per RFC 2616.

11.6.6 Response Message Body

A response body may be provided as per RFC 2616.

move JSON
String

URI of a source CDMI data object or queue object from
which the value shall be moved and enqueued

• If a move source object URI to a data object is
provided, the value, mimetype, and
valuetransferencoding field values from the source
data object are used to enqueue the new item into
the destination queue object, and the source data
object is atomically deleted.

• If a move source object URI to a queue object is
provided, the corresponding value, mimetype, and
valuetransferencoding field values of the specified
number of enqueued items in the source queue
object are transferred to the destination queue
object and atomically removed from the source
queue object.

Optionala

valuetransferencoding JSON
Array of
JSON
Strings

The value transfer encoding(s) used for the queue
object value(s). Two value transfer encodings are
defined:

• "utf-8" indicates that the queue object value contains
a valid UTF-8 string, and shall be transported as a
UTF-8 string in the value field.

• "base64" indicates that the queue object value may
contain arbitrary binary sequences, and shall be
transported as a base 64 encoded string in the value
field. Setting the contents of the queue object value
field to any value other than a valid base 64 string
shall result in an HTTP status code of 400 Bad
Request being returned to the client.

If this field is not specified, the value of "utf-8" shall be
assigned as the field value.

This field shall be stored as part of the object.

Optional

value JSON
Array of
JSON
Strings

Data value(s) to be enqueued into the queue object.

• If the corresponding valuetransferencoding field
indicates UTF-8 encoding, the value shall be a
UTF-8 string escaped using the JSON escaping
rules described in RFC 4627.

• If the corresponding valuetransferencoding field
indicates base 64 encoding, the value shall be first
encoded using the base 64 encoding rules as
described in RFC 4648.

Optionala

Table 97 - Request Message Body - Enqueue a New Queue Object Value using CDMI Content Type
(Sheet 2 of 2)

Field Name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400
Bad Request.
144 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

428

429
430

431

432

433
434
435
436

437
438
439
440
441
442
443
444

445

446

447

448
449
450
451

452
453
454

455

456

457

458
459
460
461

462
11.6.7 Response Status

Table 98 describes the HTTP status codes that occur when enqueuing a new queue object using CDMI
content type.

11.6.8 Examples

EXAMPLE 1 POST to the queue object URI a new value:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : [
 "text/plain"
],
 "value" : [
 "Value to Enqueue"
]
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 POST to the queue object URI to copy an existing value:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "copy" : "/MyContainer/MyDataObject.txt"
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 3 POST to the queue object URI to transfer 20 values from another queue object:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{

Table 98 - HTTP Status Codes - Enqueue a New Queue Object Value using CDMI Content Type

HTTP Status Description

204 No Content The new queue object values were enqueued.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or may cause
a state transition error on the server.
Cloud Data Management Interface Working Draft 145
Version 1.1.0d

© SNIA

463
464

465

466

467

468
469
470
471

472
473
474
475
476
477
478
479
480
481

482

483

484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

505

506
 "move" : "/MyContainer/FirstQueue?values:20"
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 4 POST to the queue object URI two new values:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype" : [
 "text/plain",
 "text/plain"
],
 "value" : [
 "First",
 "Second"
]
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 5 POST to the queue object URI two new values, one with base 64 transfer encoding and one with
utf-8 transfer encoding:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "mimetype": [
 "text/plain",
 "text/plain"
],
 "valuetransferencoding": [
 "utf-8",
 "base64"
],
 "value": [
 "First",
 "U2Vjb25k"
]
}

The following shows the response.

HTTP/1.1 204 No Content
146 Working Draft Cloud Data Management Interface
Version 1.1.0d

http://cloud.example.com/

© SNIA

507

508

509
510

511
512
513

514

515

516

517

518
519
520

521
522
523
524
525
526
527

528

529
530
531

532

533
534

535
536

537

538
539

540

541
11.7 Delete a Queue Object Value using CDMI Content Type

11.7.1 Synopsis

To delete one or more of the oldest enqueued values in an existing queue, the following request shall be
performed:

DELETE <root URI>/<ContainerName>/<QueueName>?value
DELETE <root URI>/<ContainerName>/<QueueName>?values:<count>
DELETE <root URI>/<ContainerName>/<QueueName>?values:<range>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be deleted.

• <count> is the number of values, starting from the oldest, to be removed from the queue object. If
more queue object entries are requested to be deleted than exist in the queue object, the count
shall be considered equal to the number of entries in the queue object.

• <range> is the lowest to highest numbers as found in the queueValues field that are to be removed
from the queue object. The first range value shall be smaller or equal to the lowest queue value. If
the first range value is smaller than the lowest queue value, the lowest existing queue value shall
be used. If the first range value is larger than the lowest queue value, an HTTP status code of 400
Bad Request shall be returned to the client. If the second range value is higher than the highest
existing queue value, the highest existing queue value shall be used, which allows for idempotent
queue value deletion.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

The "?value" suffix at the end of the queue resource URI shall be included to distinguish the deletion of the
oldest value from the deletion of the queue object itself, as described in 11.5 (which deletes all enqueued
values).

11.7.2 Capability

The following capability describes the supported operations that may be performed when deleting an
existing queue object value:

• Support for the ability to modify the value of an existing queue object is indicated by the presence
of the cdmi_modify_value capability in the specified queue object.

11.7.3 Request Header

The HTTP request header for deleting a CDMI queue object value using CDMI content type is shown in
Table 99.

11.7.4 Request Message Body

A request body may be provided as per RFC 2616.

Table 99 - Request Header - Delete a Queue Object Value using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory
Cloud Data Management Interface Working Draft 147
Version 1.1.0d

© SNIA

542

543

544

545

546

547
548

549

550

551
552
553

554

555

556

557
558
559

560

561

562

563
564
565

566

567
11.7.5 Response Headers

Response headers may be provided as per RFC 2616.

11.7.6 Response Message Body

A response body may be provided as per RFC 2616.

11.7.7 Response Status

Table 100 describes the HTTP status codes that occur when deleting a queue object value using CDMI
content type.

11.7.8 Example

EXAMPLE 1 DELETE to the queue object URI value to delete the oldest enqueued value:

DELETE /MyContainer/MyQueue?value HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 DELETE to the queue object URI value to remove the ten oldest values:

DELETE /MyContainer/MyQueue?values:10 HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 3 DELETE to the queue object URI value to remove queue values 10 through 19:

DELETE /MyContainer/MyQueue?values:10-19 HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

Table 100 - HTTP Status Codes - Delete a Queue Object Value using CDMI Content Type

HTTP Status Description

204 No Content The queue object value was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The queue object may not be deleted (may be immutable).
148 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1

2

3
4

5
6
7
8

9
10
11

12
13
14
15

16
17
18
19

20
21
22

23
24

25
26
12 Capability Object Resource Operations

12.1 Overview

Capability objects allow a CDMI™ client to discover what subset of this international standard is
implemented by a CDMI provider.

For each URI in a cloud storage system, the set of interactions that the system is capable of performing for
that URI are described by the presence of named capabilities. Each capability present for a given URI
indicates what functionality the cloud storage system will allow against that URI. Capabilities are always
static.

Capabilities may differ from the operations permitted by an Access Control List (ACL) (see 16.1)
associated with a given URI‚ e.g., a read-only cloud may not permit write access to a container or object,
despite the presence of an ACL allowing write access.

Cloud clients may use capabilities to discover what operations are supported. If an operation is attempted
on a CDMI object that does not have a corresponding capability, an HTTP status code of 400 Bad
Request shall be returned to the client. All CDMI-compliant cloud storage systems shall implement the
ability to read capabilities, but support for the functionality indicated by each capability is optional.

Every CDMI data object, container object, domain object, and queue object shall have a capabilitiesURI
field that contains a valid URI of a capabilities object. Within the capabilities object, the name of each
capability confers a specific meaning that has been agreed to between the cloud storage provider and the
cloud storage consumer.

The capabilities defined as part of this international standard are described starting in 12.1.1 "Cloud
Storage System-Wide Capabilities". Vendor-defined capabilities not specified in this international standard
shall not start with "cdmi_".

Figure 7 shows the hierarchy of capabilities in an offering and how the capabilitiesURI links data objects
and container objects into the capabilities tree.

The capabilities container within the capabilities tree to which an object is linked is based on the type of the
object and the data system metadata fields present in the object.

Figure 7 - Hierarchy of Capabilities

domain/mydomain/

capabilitiesURI

gold_container/

container/

Immutable/

dataobject/

mycontainer/ capabilitiesURI

mygoldcontainer/

capabilitiesURI

capabilitiesURI

mydataobject capabilitiesURI

myimmutabledataobject
capabilitiesURI

queue/

myqueue
capabilitiesURI

“/” Root URI cdmi_capabilities/
Cloud Data Management Interface Working Draft 149
Version 1.1.0d

© SNIA

27
28

29
30
31
32

33

34

35

36
EXAMPLE A container with no data system metadata fields specified may map to the "container" capabilities
entry.

As an option, a CDMI implementation may map a container to a "gold_container" capabilities entry, if a
data system metadata field is present and set to a given value, such as if the cdmi_data_redundancy field
was set to the value of "4". This permits a cloud provider to create profiles of data system metadata fields
and values.

Capabilities do not have a CDMI metadata field.

12.1.1 Cloud Storage System-Wide Capabilities

Table 101 defines the system-wide capabilities in a cloud storage system. These capabilities, which are
found in the capabilities object, are referred to by the root URI (root capabilities).

Table 101 - System-Wide Capabilities (Sheet 1 of 4)

Capability Name Type Definition

cdmi_domains JSON
String

If present and "true", indicates that the cloud storage system
supports domains. If not present, the domainURI field shall not be
present in response bodies and the "cdmi_domains" URI shall not
be present.

cdmi_export_cifs JSON
String

If present and "true", this capability indicates that the cloud
storage system supports CIFS exports.

cdmi_dataobjects JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data objects.

cdmi_export_iscsi JSON
String

If present and "true", this capability indicates that the cloud
storage system supports iSCSI exports.

cdmi_export_nfs JSON
String

If present and "true", this capability indicates that the cloud
storage system supports NFS protocol exports.

cdmi_export_occi_iscsi JSON
String

If present and "true", this capability indicates that the cloud
storage system supports OCCI/iSCSI exports.

cdmi_export_webdav JSON
String

If present and "true", this capability indicates that the cloud
storage system supports WebDAV exports.

cdmi_metadata_maxitems JSON
String

If present, this capability indicates the maximum number of user-
defined metadata items supported per object. If absent, there is no
limit placed on the number of user-defined metadata items.

cdmi_metadata_maxsize JSON
String

If present, this capability indicates the maximum size, in bytes, of
each user-defined metadata item supported per object. If absent,
there is no limit placed on the size of user- defined metadata
items.

cdmi_metadata_maxtotalsize JSON
String

If present, this capability indicates the maximum size, in bytes, of
user-defined metadata supported by the cloud storage system. If
absent, there is no limit placed on the size of user-defined
metadata.

cdmi_notification JSON
String

If present and "true", this capability indicates that the cloud
storage system supports notification queues.

cdmi_logging JSON
String

If present and "true", this capability indicates that the cloud
storage system supports logging queues.

cdmi_query JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query queues.
150 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
cdmi_query_regex JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query with regular expressions.

cdmi_query_contains JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query with "contains" expressions.

cdmi_query_tags JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query with tag-matching expressions.

cdmi_query_value JSON
String

If present and "true", this capability indicates that the cloud
storage system supports query of value fields.

cdmi_queues JSON
String

If present and "true", this capability indicates that the cloud
storage system supports queue objects.

cdmi_security_access_control JSON
String

If present and "true", this capability indicates that the cloud
storage system supports ACLs. See 12.1.3 for additional
information.

cdmi_security_audit JSON
String

If present and "true", this capability indicates that the cloud
storage system supports audit logging. See 20.3 for additional
information.

cdmi_security_data_integrity JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data integrity/authenticity. See 12.1.3 for
additional information.

cdmi_security_encryption JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data at-rest encryption. See 12.1.3 for
additional information.

cdmi_security_immutability JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data immutability/retentions. See 12.1.3
for additional information.

cdmi_security_sanitization JSON
String

If present and "true", this capability indicates that the cloud
storage system supports data/media sanitization. See 12.1.3 for
additional information.

cdmi_serialization_json JSON
String

If present and "true", this capability indicates that the cloud
storage system supports JSON as a serialization format.

cdmi_snapshots JSON
String

If present and "true", this capability indicates that the cloud
storage system supports snapshots.

cdmi_references JSON
String

If present and "true", this capability indicates that the cloud
storage system supports references.

cdmi_object_move_from_local JSON
String

If present and "true", this capability indicates that the cloud
storage system supports moving CDMI objects from URIs within
the same storage system.

cdmi_object_move_from_remote JSON
String

If present and "true", this capability indicates that the cloud
storage system supports moving CDMI objects from URIs within
other CDMI storage systems.

cdmi_object_move_from_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports moving CDMI objects without a path
from a /cdmi_objectid/ URI within the same storage system. This
effectively adds a path, allowing the object to be accessed by ID
and by path.

Table 101 - System-Wide Capabilities (Sheet 2 of 4)

Capability Name Type Definition
Cloud Data Management Interface Working Draft 151
Version 1.1.0d

© SNIA
cdmi_object_move_to_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports moving CDMI objects with a path to a /
cdmi_objectid/ URI within the same storage system. This
effectively removes the path, leaving the object only accessible by
ID.

cdmi_object_copy_from_local JSON
String

If present and "true", this capability indicates that the cloud
storage system supports copying CDMI objects from URIs within
the same storage system.

cdmi_object_copy_from_remote JSON
String

If present and "true", this capability indicates that the cloud
storage system supports copying CDMI objects from URIs within
other CDMI storage systems.

cdmi_object_access_by_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports accessing, updating, and deleting
objects through /cdmi_objectid/.

cdmi_post_dataobject_by_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports adding a new data object by ID via POST
to "/cdmi_objectid/".

cdmi_post_queue_by_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports adding a new queue object by ID via
POST to "/cdmi_objectid/".

cdmi_deserialize_dataobject_by_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports deserializating serialized data objects
when creating a new data object by ID via POST to 
/cdmi_objectid/.

cdmi_deserialize_queue_by_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports deserializating serialized queue objects
when creating a new queue object by ID via POST to "/
cdmi_objectid/".

cdmi_serialize_dataobject_to_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports serializing data objects when creating a
new data object by ID via POST to "/cdmi_objectid/".

cdmi_serialize_domain_to_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports serializing domain objects when creating
a new data object by ID via POST to "/cdmi_objectid/".

cdmi_serialize_container_to_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system allows serializing container objects when creating
a new data object by ID via POST to "/cdmi_objectid/".

cdmi_serialize_queue_to_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system allows serializing queue objects when creating a
new data object by ID via POST to "/cdmi_objectid/".

cdmi_copy_dataobject_by_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports copying an existing data object when
creating a new data object by ID via POST to "/cdmi_objectid/".

cdmi_copy_queue_by_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports copying an existing queue object when
creating a new queue object by ID via POST to "/cdmi_objectid/".

Table 101 - System-Wide Capabilities (Sheet 3 of 4)

Capability Name Type Definition
152 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

37

38
39

40

41

42
43
12.1.2 Storage System Metadata Capabilities

Table 102 defines the capabilities for storage system metadata in a cloud storage system. These
capabilities are found in the capabilities objects for domain objects, data objects, container objects, and
queue objects. See16.3 for a description of these storage system metadata items.

12.1.3 Data System Metadata Capabilities

Table 103 defines the capabilities that indicate which data system metadata items are supported for
objects stored in a cloud storage system. These capabilities are found in the capabilities objects for

cdmi_create_reference_by_ID JSON
String

If present and "true", this capability indicates that the cloud
storage system supports creating a new reference via POST to "/
cdmi_objectid/".

cdmi_copy_dataobject_from_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system supports the ability to copy to a data object from a
queue object.

Table 102 - Capabilities for Storage System Metadata

Capability Name Type Definition

cdmi_acl JSON
String

If present and "true", this capability indicates that the cloud
storage system supports ACLs. When a CDMI implementation
supports ACLs for the purpose of access control, the system-wide
capability of cdmi_security_access_control specified in Table 102
of 12.1.1 shall be set to "true". Otherwise, it shall not be present,
indicating that there is no support for access control.

cdmi_size JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_size storage system
metadata for each stored object.

cdmi_ctime JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_ctime storage system
metadata for each stored object.

cdmi_atime JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_atime storage system
metadata for each stored object.

cdmi_mtime JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_mtime storage system
metadata for each stored object.

cdmi_acount JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_acount storage system
metadata for each stored object.

cdmi_mcount JSON
String

If present and "true", this capability indicates that the cloud
storage system shall generate a cdmi_mcount storage system
metadata for each stored object.

Table 101 - System-Wide Capabilities (Sheet 4 of 4)

Capability Name Type Definition
Cloud Data Management Interface Working Draft 153
Version 1.1.0d

© SNIA

44

45
domains, data objects, containers, and queues. See 16.4 (Table 120) for a description of the meaning of
the corresponding data system metadata items.

Table 103 - Capabilities for Data System Metadata (Sheet 1 of 3)

Capability Name Type Definition

cdmi_assignedsize JSON
String

When the cloud storage system supports the cdmi_assignedsize
data system metadata as defined in 16.4, the cdmi_assignedsize
capability shall be present and set to the string value "true". When
this capability is absent, or present and set to the string value
"false", cdmi_assignedsize data system metadata shall not be
used.

cdmi_data_redundancy JSON
String

When the cloud storage system supports the
cdmi_data_redundancy data system metadata as defined in 16.4,
the cdmi_data_redundancy capability shall be present and set to a
positive numeric string representing the maximum value that the
server supports. When this capability is absent, or present and set
to an empty string value "", cdmi_data_redundancy data system
metadata shall not be used.

cdmi_data_dispersion JSON
String

When the cloud storage system supports the
cdmi_data_dispersion data system metadata as defined in 16.4,
the cdmi_data_dispersion capability shall be present and set to
the string value "true". When this capability is absent, or present
and set to the string value "false", cdmi_data_dispersion data
system metadata shall not be used.

cdmi_data_retention JSON
String

When the cloud storage system supports both the
cdmi_retention_id and cdmi_retention_period data system
metadata as defined in 16.4, the cdmi_data_retention capability
shall be present and set to the string value "true". When this
capability is absent, or present and set to the string value "false",
cdmi_retention_id and cdmi_retention_period data system
metadata shall not be used.

cdmi_data_autodelete JSON
String

When the cloud storage system supports the
cdmi_data_autodelete data system metadata as defined in 16.4,
the cdmi_data_autodelete capability shall be present and set to
the string value "true". When this capability is absent, or present
and set to the string value "false", cdmi_data_autodelete data
system metadata shall not be used.

cdmi_data_holds JSON
String

When the cloud storage system supports the cdmi_hold_id data
system metadata as defined in 16.4, the cdmi_data_holds
capability shall be present and set to the string value "true". When
this capability is absent, or present and set to the string value
"false", cdmi_data_holds data system metadata shall not be used.

When a cloud storage system supports holds for the purpose of
making data immutable, the system-wide capability of
cdmi_security_immutability specified in Table 101 of 12.1.1 shall
be present and set to "true".

cdmi_encryption JSON
Array of
JSON
Strings

When the cloud storage system supports the cdmi_encryption
data system metadata as defined in 16.4, the cdmi_encryption
capability shall be present and set to one or more values
described in the cdmi_encryption data system metadata section in
16.4. When this capability is absent, or present and is an empty
JSON array, cdmi_encryption data system metadata shall not be
used.

When a cloud storage system supports at-rest encryption, the
system-wide capability of cdmi_security_encryption specified in
Table 101 of 12.1.1 shall be present and set to "true".
154 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
cdmi_geographic_placement JSON
String

When the cloud storage system supports the
cdmi_geographic_placement data system metadata as defined in
16.4, the cdmi_geographic_placement capability shall be present
and set to the string value "true". When this capability is absent, or
present and set to the string value "false",
cdmi_geographic_placement data system metadata shall not be
used.

cdmi_immediate_redundancy JSON
String

When the cloud storage system supports the
cdmi_immediate_redundancy data system metadata as defined in
16.4, the cdmi_immediate_redundancy capability shall be present
and set to a positive numeric string representing the maximum
value that the server supports. When this capability is absent, or
present and set to an empty string value "",
cdmi_immediate_redundancy data system metadata shall not be
used.

cdmi_infrastructure_redundancy JSON
String

When the cloud storage system supports the
cdmi_infrastructure_redundancy data system metadata as
defined in 16.4, the cdmi_infrastructure_redundancy capability
shall be present and set to a positive numeric string representing
the maximum value that the server supports. When this capability
is absent, or present and set to an empty string value "",
cdmi_infrastructure_redundancy data system metadata shall not
be used.

cdmi_latency JSON
String

When the cloud storage system supports the cdmi_latency data
system metadata as defined in 16.4, the cdmi_latency capability
shall be present and set to the string value "true". When this
capability is absent, or present and set to the string value "false",
cdmi_latency data system metadata shall not be used.

cdmi_RPO JSON
String

When the cloud storage system supports the cdmi_RPO data
system metadata as defined in 16.4, the cdmi_RPO capability
shall be present and set to the string value "true". When this
capability is absent, or present and set to the string value "false",
cdmi_RPO data system metadata shall not be used.

cdmi_RTO JSON
String

When the cloud storage system supports the cdmi_RTO data
system metadata as defined in 16.4, the cdmi_RTO capability
shall be present and set to the string value "true". When this
capability is absent, or present and set to the string value "false",
cdmi_RTO data system metadata shall not be used.

cdmi_sanitization_method JSON
Array of
JSON
Strings

When the cloud storage system supports the
cdmi_sanitization_method data system metadata as defined in
16.4, the cdmi_sanitization_method capability shall be present
and set to one or more values described in the
cdmi_sanitization_method data system metadata section in 16.4.
When this capability is absent, or present and is an empty JSON
array, cdmi_sanitization_method data system metadata shall not
be used.

When a cloud storage system supports sanitization, the system-
wide capability of cdmi_security_sanitization specified in
Table 101 of 12.1.1 shall be present and set to "true".

cdmi_throughput JSON
String

When the cloud storage system supports the cdmi_throughput
data system metadata as defined in 16.4, the cdmi_throughput
capability shall be present and set to the string value "true". When
this capability is absent, or present and set to the string value
"false", cdmi_throughput data system metadata shall not be used.

Table 103 - Capabilities for Data System Metadata (Sheet 2 of 3)

Capability Name Type Definition
Cloud Data Management Interface Working Draft 155
Version 1.1.0d

© SNIA

46

47
12.1.4 Data Object Capabilities

Table 104 defines the capabilities for data objects in a cloud storage system.

cdmi_value_hash JSON
Array of
JSON
Strings

When the cloud storage system supports the cdmi_value_hash
data system metadata as defined in 16.4, the cdmi_value_hash
capability shall be present and set to one or more values
described in the cdmi_value_hash data system metadata section
in 16.4. When this capability is absent, or present and is an empty
JSON array, cdmi_value_hash data system metadata shall not be
used.

When a cloud storage system supports value hashing, the
system-wide capability of cdmi_security_data_integrity specified
in Table 101 of 12.1.1 shall be present and set to "true".

cdmi_authentication_methods JSON
Array of
JSON
Strings

If present, this capability contains a list of authentication methods
supported by a domain. The following values for authentication
method strings are defined:

• "anoymous" - No authentication required

• "basic" - HTTP basic authentication required

• "digest" - HTTP digest authentication required

When present, the cdmi_authentication_methods data system
metadata shall be supported for all domains.

Table 104 - Capabilities for Data Objects

Capability Name Type Definition

cdmi_read_value JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to read the object’s
value.

cdmi_read_value_range JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to read the object’s
value with byte ranges.

cdmi_read_metadata JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to read the object’s
metadata.

cdmi_modify_value JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to modify the object’s
value.

cdmi_modify_value_range JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to modify the object’s
value with byte ranges.

cdmi_modify_metadata JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to modify the object’s
metadata.

cdmi_modify_deserialize_dataobject JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the data object to
deserialize a serialized data object into the data object as an
update.

cdmi_delete_dataobject JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to delete the object.

Table 103 - Capabilities for Data System Metadata (Sheet 3 of 3)

Capability Name Type Definition
156 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

48

49
12.1.5 Container Capabilities

Table 105 defines the capabilities for containers in a cloud storage system.

Table 105 - Capabilities for Containers (Sheet 1 of 2)

Capability Name Type Definition

cdmi_list_children JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to list the container’s
children.

cdmi_list_children_range JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to list the container’s
children with ranges.

cdmi_read_metadata JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to read the container’s
metadata.

cdmi_modify_metadata JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to modify the container’s
metadata.

cdmi_modify_deserialize_container JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the container object to
deserialize a serialized container object into the container object
as an update.

cdmi_snapshot JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the container object to
create a new snapshot.

cdmi_serialize_dataobject JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to serialize a data object.

cdmi_serialize_container JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to serialize the container
and all children’s contents.

cdmi_serialize_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to serialize a queue
object.

cdmi_serialize_domain JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to serialize the domain
and all child domains.

cdmi_deserialize_container JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the container to
deserialize the serialized containers and associated serialized
children into the container.

cdmi_deserialize_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the container to
deserialize the serialized queue objects into the container.

cdmi_deserialize_dataobject JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the container to
deserialize the serialized data objects into the container.

cdmi_create_dataobject JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the container to add a
new data object.
Cloud Data Management Interface Working Draft 157
Version 1.1.0d

© SNIA
cdmi_post_dataobject JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the container to add a
new data object via POST.

cdmi_post_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability of the container to add a
new queue object via POST.

cdmi_create_container JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to create a new container
object via PUT.

cdmi_create_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to create new queue
objects..

cdmi_create_reference JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to create a new child
reference via PUT.

cdmi_export_container_cifs JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to export a container as a
file system via CIFS.

cdmi_export_container_nfs JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to export a container as a
file system via NFS.

cdmi_export_container_iscsi JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to export a container as a
file system via iSCSI.

cdmi_export_container_occi JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to export a container as a
file system via OCCI.

cdmi_export_container_webdav JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to export a container as a
file system via WebDAV.

cdmi_delete_container JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to delete a container.

cdmi_move_container JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to move a container
object into a container.

cdmi_copy_container JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to copy a container object
into a container.

cdmi_move_dataobject JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to move a data object into
a container.

cdmi_copy_dataobject JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to copy a data object into
a container.

Table 105 - Capabilities for Containers (Sheet 2 of 2)

Capability Name Type Definition
158 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

50

51

52
12.1.6 Domain Object Capabilities

Table 106 defines the capabilities for domains in a cloud storage system. (All capabilities refer to what may
be done via CDMI content-type operations.

Table 106 - Capabilities for Domain Objects

Capability Name Type Definition

cdmi_create_domain JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to add a new
subdomain.

cdmi_delete_domain JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to delete a domain.

cdmi_move_domain JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to move a domain.

cdmi_domain_summary JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to support domain
summaries.

cdmi_domain_members JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to support domain user
management.

cdmi_list_children JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to list the domain's
children.

cdmi_read_metadata JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to read the domain's
metadata.

cdmi_modify_metadata JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to modify the
domain's metadata.

cdmi_modify_deserialize_domain JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to deserialize a
serialized domain object into the domain object as an update.

cdmi_copy_domain JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to copy the domain
(via PUT) to another URI.

cdmi_deserialize_domain JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to deserialize
serialized domains and associated serialized children into the
domain.
Cloud Data Management Interface Working Draft 159
Version 1.1.0d

© SNIA

53

54

55

56
57
58
59

60

61

62

63

64
65

66
12.1.7 Queue Object Capabilities

Table 107 defines the capabilities for queue objects in a cloud storage system.

12.1.8 Capability Object Representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in
any order, with the exception that, if present, for capability objects, the childrenrange and children fields
shall appear last and in that order.

12.2 Read a Capabilities Object using CDMI Content Type

12.2.1 Synopsis

To read all fields from an existing capability object, the following request shall be performed:

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/

To read one or more requested fields from an existing capability object, one of the following requests shall
be performed:

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/

Table 107 - Capabilities for Queue Objects

Capability Name Type Definition

cdmi_read_value JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to read a queue's
value.

cdmi_read_metadata JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to read the queue's
metadata.

cdmi_modify_value JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to modify the queue's
value.

cdmi_modify_metadata JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to modify the queue's
metadata.

cdmi_modify_deserialize_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to deserialize a
serialized queue into the queue as an update.

cdmi_delete_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to delete a queue.

cdmi_move_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to move a queue to
another URI.

cdmi_copy_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to copy a queue to
another URI.

cdmi_reference_queue JSON
String

If present and "true", this capability indicates that the cloud
storage system shall support the ability to reference a queue
from another queue.
160 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

67
68

69

70

71

72

73

74

75

76

77
78

79

80

81
82

83

84

85

86
87
?<fieldname>;<fieldname>
GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/?children:<range>

Where:

• <root URI> is the path to the CDMI cloud.

• <Capability> is zero or more intermediate capabilities containers.

• <TheCapability> is the name specified for the capabilities to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

12.2.2 Capability

The following capability describes the supported operations that may be performed when reading an
existing capabilities object:

• All CDMI implementations shall permit clients to read all fields of all capabilities objects.

12.2.3 Request Headers

The HTTP request headers for reading a CDMI capabilities object using CDMI content type are shown in
Table 108.

12.2.4 Request Message Body

A request body shall not be provided.

12.2.5 Response Headers

The HTTP response headers for reading a CDMI capabilities object using CDMI content type are shown in
Table 109.

Table 108 - Request Headers - Read a Capabilities Object using CDMI Content Type

Header Type Description Requirement

Accept Header
String

"application/cdmi-capability" or a consistent value as per
clause 5.13.2

Optional

X-CDMI-
Specification-
Version

Header
String

A comma-separated list of versions that the client supports,
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 109 - Response Headers - Read a Capabilities Object using CDMI Content Type

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header
String

The server shall respond with the highest version supported
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the
client supports, the server shall return an HTTP status code
of 400 Bad Request.

Mandatory

Content-Type Header
String

"application/cdmi-capability" Mandatory
Cloud Data Management Interface Working Draft 161
Version 1.1.0d

© SNIA

88

89
90

91
92

93

94
95
12.2.6 Response Message Body

The response message body fields for reading a CDMI capabilities object using CDMI content type are
shown in Table 110.

If individual fields are specified in the GET request, only these fields are returned in the result body.
Optional fields that are requested but do not exist are omitted from the result body.

12.2.7 Response Status

Table 111 describes the HTTP status codes that occur when reading a capabilities object using CDMI
content type.

Table 110 - Response Message Body - Read a Capabilities Object using CDMI Content Type

Field Name Type Description Requirement

objectType JSON
String

"application/cdmi-capability" Mandatory

objectID JSON
String

Object ID of the object Mandatory

objectName JSON
String

Name of the object Mandatory

parentURI JSON
String

URI for the parent object Mandatory

parentID JSON
String

Object ID of the parent container object Mandatory

capabilities JSON
Object

The capabilities supported by the corresponding object.
Capabilities in the "/cdmi_capabilities/" object are system-
wide capabilities. Capabilities found in children objects
under "/cdmi_capabilities/" correspond to the capabilities of
a specific subset of objects. Each capability is expressed as
a JSON string.

Mandatory

childrenrange JSON
String

The child capabilities of the capability expressed as a range.
If a range of child capabilities is requested, this field
indicates the children returned as a range.

Mandatory

children JSON
Array of
JSON
Strings

Names of the children capabilities objects. For the root
container capabilities, this includes "domain/", "container/",
"dataobject/", and "queue/". Within each of these
capabilities objects, further more specialized capabilities
profiles may be specified by the cloud storage system.

Mandatory

Table 111 - HTTP Status Codes - Read a Capabilities Object using CDMI Content Type

HTTP Status Description

200 OK The capabilities object content was returned in the response.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in
the Accept header.
162 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

96

97

98
99

100
101

102

103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130

131
132
133
134

135

136
137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
12.2.8 Examples

EXAMPLE 1 GET to the root container capabilities URI to read all fields of the container:

GET /cdmi_capabilities/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "application/cdmi-capability",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "cdmi_capabilities/",
 "parentURI" : "/",
 "parentID" : "00007E7F0010128E42D87EE34F5A6560",
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024"
 },
 "childrenrange" : "0-3",
 "children" : [
 "domain/",
 "container/",
 "dataobject/",
 "queue/"
]
}

EXAMPLE 2 GET to the root container capabilities URI to read the capabilities and children of the container:

GET /cdmi_capabilities/?capabilities;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

{
 "capabilities" : {
 "cdmi_domains" : "true",
 "cdmi_export_nfs" : "true",
 "cdmi_export_iscsi" : "true",
 "cdmi_queues" : "true",
 "cdmi_notification" : "true",
 "cdmi_query" : "true",
 "cdmi_metadata_maxsize" : "4096",
 "cdmi_metadata_maxitems" : "1024"
 },
 "children" : [
 "domain/",
 "container/",
 "dataobject/",
Cloud Data Management Interface Working Draft 163
Version 1.1.0d

© SNIA

154
155
156

157

158
159
160
161

162

163
164
165

166
167
168
169
170
171
172
 "queue/"
]
}

EXAMPLE 3 GET to the root container capabilities URI to read the first two children of the container:

GET /cdmi_capabilities/?childrenrange;children:0-1 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

{
 "childrenrange" : "0-1",
 "children" : [
 "domain/",
 "container/"
]
}

164 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1

2

3
4
5

6
7
8
9

10
13 Exported Protocols

13.1 Overview

CDMI™ containers are accessible not only via CDMI as a data path, but also via other protocols as well.
This access is especially useful for using CDMI as the storage interface for a cloud computing
environment, as Figure 8 shows.

The exported protocols from CDMI containers may be used by the virtual machines in the cloud computing
environment as virtual disks on each guest as shown. The cloud computing infrastructure management is
shown as implementing both an Open Cloud Computer Interface (OCCI) and CDMI interfaces. With the
internal knowledge of the network and the virtual machine manager's mapping of drives, this infrastructure
may associate the CDMI containers to the guests using the appropriate exported protocol.

Figure 8 - CDMI and OCCI in an Integrated Cloud Computing Environment

VM VM VM

Data Storage Resources

Compute Resources

iSCSI NFS

OCCI
API

CDMI
API

iSCSI NFS WebDAV

NFS NFS

Client

iSCSI
Web
DAV

Virtual
Machine
Manager

 CDMI
Exported
Protocols

Cloud Computing
and Storage
Infrastructure

CDMI

OCCI

 Private, Hidden Storage Network for the Cloud

Container Container Container Container Container
Cloud Data Management Interface Working Draft 165
Version 1.1.0d

© SNIA

11
12
13
14
15

16
17

18
19
20

21
22

23

24

25
26
27
28
29

30

31

32

33

34
35
36

37

38

39

40
41
42
43

44
45
46

47
48
49
50
51
52

53
54

55
56
57
58
To support exported protocols and improve their interoperability with CDMI, CDMI provides a type of
exported protocol that contains information obtained via the OCCI interface. In addition, OCCI provides a
type of storage that corresponds to a CDMI container that is exported with a specific type of protocol used
by OCCI. A client of both interfaces performs operations that align the architectures, including the
following:

• The client creates a CDMI container through the CDMI interface and exports it as an OCCI export
protocol type. The CDMI container object ID is returned as a result.

• The client creates a virtual machine through the OCCI interface and attaches a storage volume of
type CDMI using the object ID and protocol type. The OCCI virtual machine ID is returned as a
result.

• The client updates the export protocol structure of the CDMI container object with the OCCI virtual
machine ID to allow the virtual machine access to the container.

• The client starts the virtual machine through the OCCI interface.

13.2 Exported Protocol Structure

The export of a container, via data path protocols other than CDMI, is accomplished by creating or
updating a container and supplying one or more export protocol structures, one for each such protocol. In
this international standard, all such protocols are referred to as foreign protocols. The implementation of
foreign protocols shall be indicated by "true" values for system-wide capabilities in 12.1.1 that shall always
begin with "cdmi_export_".

The elements of the export protocol structure include

• the protocol being used;

• the identity of the container as standardized by the protocol;

• the internet domain of the protocol name server for the clients being served;

• the list of who may mount that container via that protocol, identified as standardized by that
protocol or optionally by leveraging the name mapping protocol (see 13.2.1) and specifying CDMI
user or groupnames;

• required export parameters for the protocol;

• optional export parameters for the protocol; and

• export control parameters.

This international standard defines JSON export structures for several well known foreign protocols. All
depend on the following user and groupname mapping feature in the case that multi-protocol access to the
container is desired. However, name mapping is not required if CDMI is used only to provision containers
to be used exclusively by foreign protocols.

Implementations that support authenticated and authorized access to CDMI objects via both CDMI and
foreign protocols need a way to support the setting of security on a per-object basis. The numerous
methods of doing this include:

• Defining or adopting a security scheme and mapping all requests into that scheme. CDMI
implementations that adopt this scheme shall use a name mapping technique to accomplish it, as
(a) this mapping is easier for administrators to manage than straight id-to-id mapping, and (b) it is
desired that interoperable CDMI implementations behave similarly in this respect. This means that
the name of the principal in an incoming request is mapped to the name of a principal in the
security domain, and that principal’s id is acquired and used in the authorization procedure.

• Allowing each protocol to set its own security, which implies that an object might be accessible to a
given user via one protocol but not another.

• Using the security scheme of the last protocol that was used to set permissions on the object. This
method also requires mapping the principal in the incoming request to a principal in the security
domain of the object. As in the first case, the server shall use a name mapping procedure to obtain
the id that is used to authorize the user against the desired object’s ACL.
166 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

59
60

61

62
63
64
65

66
67
68
69
70
71
72

73
74
75
76

77
78
79
80

81
82
83

84

85
86

87
88
89
90

91
92
93

94

95
96
97

98

99
100
101
102
103
104
105
106
CDMI does not mandate which method shall be used. It does, however, specify how users and groups
shall be mapped between protocols.

13.2.1 Mapping Names from CDMI to Another Protocol

Clients wishing to restrict exports via foreign protocols to mounting only by certain users and groups may
be required to provide user and groupname mapping information to the server. This mapping information is
also required if access to the container is desired by multiple protocols, e.g., both CDMI and NFS. The
mapping is done as follows.

1 When a network share on a CDMI container is created, the server should use the appropriate
mechanism, e.g., Powershell WmiClass.Create() on the Windows platform or /etc/exports on Unix,
to limit permitted mounts of the share from other servers, as specified in the "hosts" line of the
"exports" property. The syntax of the hosts line follows the syntax of /etc/exports in the Linux
operating system, as encoded in a JSON string. If the CDMI server is unable to limit mounts as
specified by the hosts line, an error shall result, but the success or failure of the operation depends
on the implementation.

2 When any request requiring the use of a CDMI principal name comes in via a foreign protocol, the
foreign domain controller to which the foreign server belongs shall be queried for the principal name
corresponding to the user id given in the request. Failure to procure the principal name shall cause
the original request to fail.

3 The usermap list for that protocol shall be searched, in order, for an entry matching the username
gotten from the foreign domain controller (see 13.2.3 for details on the search). If no match is found,
the request shall be denied. The search results may be kept in the same cache entry as the
information from the preceding step.

4 The CDMI principal name gotten from the first matching usermap entry during this search is then
used to authorize the user request via the security mechanism of the protocol whose security
governs access to the object.

13.2.1.1 Capabilities

The following capabilities describe the supported operations that can be performed on an existing
container:

• The system-wide capability to export via a given protocol is indicated by the
cdmi_<protocol>_export capability in the system-level metadata (e.g., "cdmi_nfs_export", when
set to "true", indicates the ability of the system to export containers via NFS). If false or not set,
attempts to export containers via the given protocol shall fail.

• Support for the ability to export an existing container object via a given foreign protocol is indicated
by the cdmi_<protocol>_export capability in the specified container. The default shall be "true" if
this capability is unset.

13.2.1.2 Domains

The internet domain name corresponding to each export shall be given as a JSON-formatted string in the
"domain" child element of the protocol export specification. If this element is not present, it shall be
assumed that the domain is the same as that of the server hosting the CDMI implementation.

13.2.1.3 Caching

The lookup to a foreign domain controller can be quite expensive, especially for stateless protocols such
as NFS v3, in which it can be theoretically required for nearly every operation. It shall be permissible to
cache the results of this lookup. The recommended lifetime of a username cache entry is 30 minutes.
Implementations should use this value or less when possible. Servers shall flush this cache whenever a
change is made to the exports metadata concerning the protocol being cached. A client may request that
the cache be flushed by reading in the usermap data for one or more protocols and writing them back
without change. Servers shall flush their username mapping caches, as part of the rewrite operation, for
any protocol for which the usermap information has been changed or reset.
Cloud Data Management Interface Working Draft 167
Version 1.1.0d

© SNIA

107
108
109
110
111
112
113
114

115

116
117

118

119

120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
For authorization by group to operate via a foreign protocol, a similar mapping exercise must be
performed. Multiple lookups to the foreign domain controller may be required to get all the groupnames for
a given user (e.g., it is common for an NFS user to be a member of several groups). A groupname cache
may be used to mitigate the cost of these lookups. The recommended lifetime of a groupname cache entry
is 12 hours. Implementations should use this value or less when possible. Clients may force a flush of the
cache by reading in and resetting the group map information. Servers shall immediately flush their
groupname mapping cache, as part of the rewrite operation, for any protocol for which the group map
information has been changed or reset.

13.2.1.4 Groups

Groupname mapping for each foreign protocol shall be specified in a groupname field of the foreign
protocol export specification. Its syntax is identical to the syntax for the username field.

Note: The mapping information is only required on the container being exported.

13.2.1.5 Synopsis

PUT /MyContainer HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "exports" : {
 "nfs" : {

 "hosts" : { "*.mycollege.edu", "derf.cs.myuni.edu" },
 "domain" : "lab.mycollege.edu",
 "usermap" : {
 { <cdminame>, <map>, <nfsname> },
 { "jimsmith", "<-->", "jims" },
 { [ordered list of CDMIname/operator/NFSname triples] },
 { "*", "<-->", "*" }
 }
 "groupmap" : {
 { "admins", "<-", "wheel" },
 { "everyone", "<-", "*" }
 }
 }
 "cifs" : {
 "hosts" : "*",
 "domain" : "lab.mycollege.edu",
 "usermap" : {
 { "jimsmith", "<-->", "james.smith" }
 { [ordered list of CDMIname/operator/NFSname triples] },
 { "*", "<-->", "*" }
 }
 "groupmap" : {
 { "admins", "<-", "Administrators" },
 { "everyone", "<-", "*" }
 }
 }
 }
}

168 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

156

157
158
159

160
161
162
163
164
165
166
167
168
169
170
171

172

173
174

175

176

177

178
179

180
181

182
183

184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
 "objectURI" : "/Containers/MyContainer/",
 "objectID" : "00007E7F00100C435125A61B4C289455",
 "objectName" : "MyContainer/",
 "parentURI" : "/Containers/",
 "parentID" : "00007E7F0010D538DEEE8E38399E2815",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/container/",
 "completionStatus" : "Complete",
 "metadata" : { ... },
 "exports" : { <exports as listed in request> }
}

13.2.2 Administrative Users

By default, the following users shall be considered "root", or administrative users, and equivalent to each
other:

• root (Unix/NFS/LDAP),

• Administrator (Windows/AD/CIFS), and

• the domain owner (CDMI).

Servers shall automatically map these users to the root user of the target protocol unless otherwise
instructed by the usermaps.

As an automatic mapping does not meet strict security standards, servers shall override these built-in
entries with any usermap entries that apply to one or more root users.

EXAMPLE In the following example, root gets mapped to nobody, and everyone else is mapped to a user of the
same name in the NFS domain and the CDMI domain.

PUT /MyContainer HTTP/1.1
Host: cloud.example.com
Accept: application/vnd.org.snia.cdmi.container+json
Content-Type: application/vnd.org.snia.cdmi.container+json
X-CDMI-Specification-Version: 1.1

{
 "exports": {
 "nfs": {
 "usermap": [
 [
 "nobody",
 "<-",
 "root"
],
 [
 "*",
 "<-->",
 "*"
]
]
 }
 }
}

Permissions Mapping
Cloud Data Management Interface Working Draft 169
Version 1.1.0d

© SNIA

208
209
210
211
212

213
214
215

216

217

218

219

220

221

222

223

224

225

226
227
228
229
230

231
232
233

234
235

236
237
238
239

240

241
242

243

244

245

246
The permissions sets of file-serving protocols, unfortunately, do not map on a one-to-one basis to each
other. NFSv4 ACLs, Windows ACLs, POSIX ACLs, NFSv3 perms and object-based capabilities all are
capable of representing security conditions that the others are not, except NFSv3, which is the least
expressive. The primary area of concern is in representing the possibly rich set of permissions in a CDMI
ACL in a more restricted perms-based system, such as NFSv3, for display to users.

As there are a number of possible ways to coordinate the permissions/ACLs and CDMI ACLs, this
international specification does not mandate a particular method. However, all mappings of user and
groupnames between domains shall use the name mapping mechanism specified in 13.2.3.

13.2.3 User and Groupname Mapping Syntax and Evaluation Rules

A BNF-style grammar for name mapping is as follows:

name_mapping_list = protocol protocol mapping_list

protocol = "cdmi" | "nfs" | "cifs" | "ldap"

mapping_list = name mapping_operator name

name = pattern | utf8_name | quoted_utf8_name

quoted_utf8_name = " utf8_name "

utf8_name = <any legal utf8 character sequence not including the characters ",',\,/,:,*,?>

pattern = <utf8_name> * | *

mapping_operator = "<--" | "<-->" | "-->"

To restate this in English, a mapping entry consists of two names separated by a directional indicator. As
most environments use the same usernames and groupnames across administrative domains, the most
common mapping is " * <--> * ", which maps any name to the same name in the foreign protocol domain,
and vice versa. It is highly recommended that this be both the default map and the last entry on all more
complex maps.

CDMI specifies pattern matching on names in the name map, but only prefix matching is required. The
symbol " * " at the end of a character string shall match zero or more occurrences of any non-whitespace
character.

Evaluation of the name mapping list shall proceed in order; once a match is made, evaluation shall cease
and the result of the match shall be returned.

If no matches are found on the match list, the result is system dependent. However, it is recommended
that servers either deny access altogether or map the user in question to the equivalent of "anonymous" on
the destination protocol. It is also recommended that an entry be devoted to the special user
"EVERYONE@".

13.3 Discovering and Mounting Containers via Foreign Protocols

Clients need a way to discover exported containers that may be available for mounting. Discovering
containers is done via a GET operation to the "exports" member of a container.

Synopsis:

To read all exports for an existing container object, the following request shall be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/?exports

To read selected exports for an existing container object, the following request shall be performed:
170 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

247
248

249

250

251

252
253

254
255
256

257
258
259
260

261
262
263
264
265
266

267

268
269
270
271

272
GET <root URI>/<ContainerName>/<TheContainerName>/
?exports:protocol=<protocol>,user=<user>,verbose="false"

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <TheContainerName> is the name specified for the topmost container for which exports are
available.

• <protocol> is the name of a protocol to which query results should be restricted. This parameter is
optional; if it is omitted or a value of "all" is given, information about all protocols shall be returned,
subject to additional filtering.

• <user> is the login name of a CDMI user who wishes to mount the share. This parameter is
optional and defaults to the owner of the container. When non-empty, servers shall filter the
returned export list to include only exports which may be mounted given the restrictions in the
protocol export structures.

• <verbose> is an optional parameter indicating a desire for maximum information about the
exports. When present, it shall have the values "true" or "false". The default is "false". When true,
the server should return additional information about the container, as contained in its "exports"
member. The amount of said information that is returned is implementation dependent, as server
implementors need to be able to balance the needs of their clients against various security
considerations.

13.4 NFS Exported Protocol

To export a container via NFS, the information required is exactly what the server implementation will use
to do the export. Normally, this information is contained in the /etc/exports file on a server or the
equivalent. Administrators should be aware that lines may be automatically added to that file for each
CDMI container that is exported.

Required members of the protocol structure for NFS are described in Table 112.

Table 112 - Required Members of the NFS Protocol Structure

Member Description

protocol The protocol being requested. This value shall be "NFSv3", "NFSv4", "NFSv4.1", or any
subsequent NFS version enshrined in a major IETF RFC. Version 2 of NFS is not supported by
CDMI.

exportpath The pathname to which the export should be surfaced. This value shall be a UTF8 string of the
form [<server>]:/<path>, where the <server> component is optional, (e.g., "eeserver:/lessons/
number1"). The <server> component of the path must be obtained from an administrator of the
service running the CDMI implementation.

exportdomain The internet domain of the protocol name server for the clients being served. This value is
normally the name of the LDAP domain for the organization, e.g., "iti.edu". A value of "." shall
be interpreted to be the DNS name of the domain occupied by the CDMI server.

mode This value shall be "ro", "rw", "root" or "rpc_gsssec" and becomes the default export mode.
Hosts requiring different access shall be specified in the optional "rw_mode", "ro_mode", and
"root_mode" structure members. However, the "rpc_gsssec" mode overrides all other modes,
and all other mode members and their contents shall be ignored if it is specified.

control Export control for the container. This value shall be "immediate", "off", "on", or <n> (a number).
Servers may set the value to on, but clients shall not. A numeric value (<n>) indicates that the
export should be shut down in <n> seconds, possibly after a message has been sent to clients
mounting the export. If a client specifies a value for <n> but the server does not support
delayed shutdown of exports, then <n> shall be interpreted to mean off.
Cloud Data Management Interface Working Draft 171
Version 1.1.0d

© SNIA

273

274
275
276
277
278

279
280
281
282
283
284
285
286
287
288

289

290

291
292

293
294
Optional export parameters for NFS are described in Table 113.

Other export parameters for NFS are not specified by the CDMI protocol but may be included in the export
structure. These parameters include Linuxisms, such as "sync", "no_wdelay", "insecure_locks", and
"no_acl", as well as any other parameters used by a given server operating system. In all such cases, the
parameter shall be specified as a JSON tuple in which "true" and "false" are explicitly called out for binary
flags, and a JSON-formatted string or list is used for other parameters.

EXAMPLE

{ "exports"
{ "nfs"
{

...
{"no_wdelay", "true" },
{"refer", "otherserver://path/leaf"},
...

}
}

}

Export Control

Export control is accomplished with the use of a single member, named "control":

• The value "immediate" shall indicate to the server that the export shall be made successfully
before the PUT operation returns. Servers shall reset the value to "on" and place that in the reply.

• The value "off" shall indicate to the server that the export, if new, shall not be enabled, and if
existing, shall be shut down and all client connections forcibly broken.

Table 113 - Optional NFS Export Parameters

Parameter Description

domain_servers A list of server names or IP addresses that function as name servers for the domain given in
"domain". If given, this list shall override the names obtainable by the CDMI server via other
programmatic means.

mount_name The name the client should use to surface the export. This name replaces the last name in the
path string, (e.g., mounting "eeserver:/lessons/number1" with a mountname of "1" over the
directory /somepath/lessons/num1 should result in a /somepath/lessons/1 directory on the
client).

hosts A list of hosts that can access the container in the mode given in "mode". The default shall be
"*"; other values restrict the possibilities.

root_hosts A list of hosts that can access the container in superuser mode. The default shall be an empty
list.

rw_hosts A list of hosts that can access the container in r/w mode. The default shall be an empty list.

ro_hosts A list of hosts that can access the container in r/o mode only. The default shall be an empty list.

mount_type One of the two strings "hard" or "soft". Clients hang when a server serving a hard mount
becomes unresponsive. Clients with soft mounts generate error messages. The default is
implementation dependent.

recurse This value shall be either "true" or "false". The default shall be "true". When true, recurse
indicates that mounts within the CDMI directory structure (presumably put there by other NFS
operations) shall be followed and the mounted directory exposed as though it were part of the
CDMI container actually being exported. This parameter is equivalent to the Linux "crossmnt"
parameter.
172 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

295
296
297
298
299

300
301

302
303

304
305
306
307
308

309
310
311

312

313
314
315
316

317

318

319
320

321
322
323
324
325
• A numeric value <n> shall indicate that the server shall wait <n> seconds before forcibly shutting
down the export and breaking client connections. Whether the server sends a warning message to
clients, giving them a chance to exit from the connection gracefully, is recommended but
implementation dependent. Once the export has been shut down, the server shall also change the
value of "control" to "off" in the export structure.

Servers shall support wildcard matching on the " * " and " ? " characters in the hosts lists (this is standard
practice), so that **.cs.uscs.edu" matches all servers in the cs.ucsc.edu department.

Servers may support netgroup names in the various hosts lists. When this functionality is supported, these
names shall resolve to ordinary lists of hostnames via queries to the domain nameserver.

Servers may also support IP address ranges in the various lists of hosts. These IP addresses shall
beaugmented by the same wildcard matching as is used for ordinary host names (e.g., "192.168.1.*"
exports to all the machines on a default home network). Client-side developers should note that "exporting
to" only means making a container available for export. The client must still mount the exported container
before there is a connection with the server.

Users wishing to use optional and vendor-specific settings are responsible for determining from the CDMI
product vendor the legal settings and their format. Servers shall return an HTTP status code of 400 Bad
Request when an export setting does not conform to an allowable setting on the server.

13.5 CIFS Exported Protocol

To export a container via CIFS, the information required is exactly what the server implementation will use
to do the export. Where this information is contained on a server is implementation dependent. The server
may add or delete lines automatically to and from that file for each CDMI container that is exported or
unexported.

Required members of the protocol structure for CIFS are described in Table 114.

There is no protocol specification; CDMI assumes that normal SMB protocol negotiation will take place.

An optional export parameter is "comment," which is often used as a user-friendly share name on the
client.

Other export parameters for CIFS are not specified by the CDMI protocol but may be included in the export
structure. These parameters include vendor settings such as "forcegroup", "umask", "caching", and
"oplocks", as well as any other parameters used by a given server operating system. In all such cases, the
parameter shall be specified as a JSON tuple in which "true" and "false" are explicitly called out for binary
flags, and a JSON-formatted string or list is used for other parameters.

Table 114 - Required Members of the CIFS Protocol Structure

Member Description

share_name The name that CIFS shall use to discover the share.

exportdomain The domain of the protocol name server for the clients being served. This value is normally
the name of the Active Directory LDAP domain for the organization, e.g. "iti.edu". A value of
"." shall be interpreted to be the domain occupied by the CDMI server.

mode This value shall be either "ro" or "rw".

control Export control for the container. This value shall be "immediate", "off", or <n> (a number).
Servers may set the value to on, but clients shall not. The semantics and normative
requirements are exactly the same as for NFS, as documented in the paragraph "Export
Control" in the subclause on NFS Exports (see 13.4).
Cloud Data Management Interface Working Draft 173
Version 1.1.0d

© SNIA

326

327
328
329
330
331
332
333
334
335
336

337
338
339

340
341
342

343

344

345

346

347
348

349

350
351
352
353
354
355
356

357

358
359

360

361
362
363
364

365

366

367

368

369
EXAMPLE

{ "exports"
{ "cifs"
{

...
{"caching", { "manual", "document", "program" },
{"oplocks", "true"},
...

}
}

}

Users wishing to manipulate vendor-specific settings are responsible for determining from the CDMI
product vendor the legal settings and their format. Servers shall return an HTTP status code of 400 Bad
Request when an export setting does not conform to an allowable setting on the server.

For more detail on the use of the OCCI export protocol structure attributes, see 13.1 "Overview". Because
the actual networking and access control is under the control of a hidden, common infrastructure
implementing both OCCI and CDMI, the normal permission structure shall not be provided.

13.6 OCCI Exported Protocol

CDMI defines an export protocol structure for the Open Cloud Computing Interface (OCCI) as follows:

• The protocol is "OCCI/<protocol standard>" (e.g., "OCCI/NFSv4").

• The identifier is the CDMI object ID.

• A JSON array of URIs to OCCI compute resources shall have access (permissions) to the
exported container.

EXAMPLE An example of an OCCI export protocol structure in JSON is as follows:

"OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 }

For more detail on using the OCCI export protocol structure attributes, see 13.1 "Overview". Because the
actual networking and access control is under the control of a hidden, common infrastructure that
implements both OCCI and CDMI, the normal permission structure shall not be provided.

13.7 iSCSI Export Modifications

CDMI defines the export of a container using the iSCSI protocol (see RFC 3720). Each container is
exported as a single SCSI Logical Unit as a Logical Unit Number (LUN). One or more iSCSI initiators
import the LUN through an iSCSI target node and port using one or more iSCSI network portals (IP
addresses).

The export is described by the presence of an export field structure on the container that specifies the

• export protocol ("Network/iSCSI");

• iSCSI target information (IP addresses or fully qualified domain names, target identifier, and LUN);

• logical unit world-wide name; and

• iSCSI initiators having access.
174 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

370
371

372

373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

391

392
393
394

395
396
397
398
399
400
401
402
403

404
405
406

407

408
409
410

411
412
413
414
415
416
417
418
The target identifier may be in iqn, naa, or eui format and shall have the target portal group tag appended
in hexadecimal.

13.7.1 Read Container

All of the information in the export structure is returned:

"exports" :
{
 "Network/iSCSI": {
 "portals": [
 "192.168.1.101",
 "192.168.1.102"
],
 "target_identifier": "iqn.2010-

01.com.cloudprovider:acmeroot.container1,t,0x0001",
 "logical_unit_number": "3",
 "logical_unit_name": "0x60012340000000000000000000000001",
 "permissions": [
 "iqn.2010-01.com.acme:host1",
 "iqn.2010-01.com.acme:host2"
]
 }
}

13.7.2 Create and Update Containers

The following code creates a container with iSCSI export or updates an existing container with new iSCSI
export. Support for either of these operations is indicated by the cdmi_export_iscsi capability on the parent
container of the created container or of the existing container, respectively.

"exports" :
{
 "Network/iSCSI": {
 "permissions": [
 "iqn.2010-01.com.acme:host1",
 "iqn.2010-01.com.acme:host2"
]
 }
}

For these export creation operations, the CDMI implementation selects the IP portals, iSCSI target, logical
unit number, and logical unit name; these are not supplied. Only the list of initiator identifiers that are to
have access to the container are specified.

13.7.3 Modify an Export

The following code modifies an export on an existing container. Support for this operation is indicated by
the cdmi_export_iscsi on the parent container of the existing container. For this operation, only the current
list of initiator identifiers that are to have access to the container are specified.

"exports" :
{
 "Network/iSCSI": {
 "permissions": [
 "iqn.2010-01.com.acme:host2"
]
 }
}

Cloud Data Management Interface Working Draft 175
Version 1.1.0d

© SNIA

419

420

421

422

423
424

425

426
427
428
429
430

431
432

433
434
435
13.8 WebDAV Exported Protocol

CDMI defines an export protocol structure for the WebDAV standard as follows (see RFC 4918):

• The protocol is "Network/WebDAV".

• The path of the WebDAV mount point is as presented to clients (including server host name).

• The list of who may access the share is determined by the standard CDMI ACLs for each resource
as exported via WebDAV.

EXAMPLE The following example shows a WebDAV export protocol structure in JSON:

"Network/WebDAV" :
{
 "identifier": "/users",
 "permissions": "domain"
}

In this example, the value "domain" in the permissions field indicates that user credentials should be
mapped through the domain membership in the domain of the CDMI container being exported.

WebDAV supports locking, but it is up to implementations to support any locking of access through CDMI
as a result, and the interaction between the two protocols is purposely not described in this international
standard.
176 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

Cloud Data Management Interface Working Draft 177
Version 1.1.0d

14 Snapshots

A snapshot is a point-in-time copy (image) of a container and all of its contents, including subcontainers
and all data objects and queue objects. The client names a snapshot of a container at the time the
snapshot is requested. A snapshot operation creates a new container to contain the point-in-time image.
The first processing of a snapshot operation also adds a cdmi_snapshots child container to the source
container. Each new snapshot container is added as a child of the cdmi_snapshots container. The
snapshot does not include the cdmi_snapshots child container or its contents (see Figure 9).

A snapshot operation is requested using the container update operation (see 9.5), in which the snapshot
field specifies the requested name of the snapshot.

A snapshot may be accessed in the same way that any other CDMI™ object is accessed. An important
use of a snapshot is to allow the contents of the source container to be restored to their values at a
previous point in time using a CDMI copy operation.

Figure 9 - Snapshot Container Structure

Source Container

cdmi_snapshots

Snap_Shot_A

Snap_Shot_B...

PUT(Container Update) A

PUT(Container Update) B

https://example.com/
source/

https://example.com/source/
cdmi_snapshots/

https://example.com/source/cdmi_snapshots/
Snap_Shot_A/

https://example.com/source/cdmi_snapshots/
Snap_Shot_B/

1

2
3
4
5
6
7

8
9

10
11
12

© SNIA

1

2

3
4
5

6

7

8

9
10
11

12

13
14
15
16
17

18
19

20
21

22
23
24

25
26
27
28
29

30
31

32

33
34
35

36
37
38
39
40

41
42
43
15 Serialization/Deserialization

15.1 Overview

Occasionally, bulk data movement is needed between, into, or out of clouds. When moving bulk data,
cloud serialization operations provide a means to normalize data to a canonical, self-describing format,
which includes:

• data migration between clouds,

• data migration during upgrades (or replacements) of cloud implementations, and

• robust backup.

The canonical format of serialized data describes how the data is to be represented in a byte stream. As
long as this byte stream is not changed during the transfer from source to destination, the data may be
reconstituted on the destination system.

15.2 Exporting Serialized Data

A canonical encoding of the data is obtained by creating a new data object and specifying that the source
for the creation is to serialize a given CDMI™ data object, container object, or queue object. On a
successful serialization, the result shall be a data object that is created with the serialized data as its value.
If a container object has an exported block protocol, the serialized data may contain the block-by-block
contents of that container object along with its metadata.

The resulting data object that is produced is the canonical representation of the selected data object,
container object and children, or queue object.

• If the source specified is a data object, the canonical format shall contain all data object fields,
including the value, valuetransferencoding, and metadata fields.

• If the source being specified is a queue object, the canonical format shall contain all queue object
fields, including the value and valuetransferencoding fields of enqueued items, along with the
metadata of the queue object itself.

• If the source being specified is a container object, the canonical format shall contain all container
object fields, recursively, including all children of the container object. If a user attempts to serialize
a container object that includes children that the user, who is performing the serialization
operation, does not have permission to read, these objects shall not be included in the resulting
serialized object.

When performing a serialization operation, objects shall only be included if the principal initiating the
serialization has sufficient permissions to read those objects.

15.3 Importing Serialized Data

Canonical data may be deserialized back into the cloud by creating a new data object, container object, or
queue object and by specifying that the source for the creation is to deserialize a given CDMI data object
or by specifying the serialized data in base 64 encoding in the deserializevalue field.

The destination may or may not exist previously. If not, a create operation is performed. If a container
object already exists, an update operation with serialized children shall update the container object and all
children. If the serialized container object does not contain children, only the container object is updated.
Data objects are recreated as specified in the canonical format, including all metadata and the data object
ID.

• If the user who is deserializing a serialized data object has the cross_domain privilege and has not
specified a domainURI as part of the deserialize operation, the original domainURIs from the
serialized object shall be used. If any of the specified domainURIs are not valid in the context of
178 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

44
45

46
47
48
49
50
51

52
53
54
55

56
57
58
59
60

61

62
63
64
65
66
67
68

69

70

71

72

73

74

75

76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
the storage system on which the deserialization operation is being performed, the entire
deserialize operation shall fail.

• If the user who is deserializing a serialized object specifies a domainURI as part of the deserialize
operation, the domainURI of every object being deserialized shall be set to the specified
domainURI. To specify a domainURI other than the domainURI of the parent, the user shall have
the cross_domain privilege. If the user does not have the cross_domain privilege and specifies a
domainURI other than the domainURI of the parent, an HTTP status code of 400 Bad Request
shall be returned.

• If the user who is deserializing a serialized object does not specify a domainURI and does not
have the cross_domain privilege, then the deserialization operation shall only be successful if all
objects have the same domainURI as the parent object on which the deserialization operation is
being performed.

Deserialization operations shall restore all metadata from the specified source. If the original provider of
the serialized data-supported vendor extensions is through custom metadata keys and values, then these
customized requirements shall be restored when deserialized. However, the custom metadata keys and
values may be treated as user metadata (preserved, but not interpreted) by the destination provider.
Preservation allows custom data requirements to move between clouds without losing this information.

15.3.1 Canonical Format

The canonical format shall represent specified data objects and container objects as they exist within the
storage system. Each object shall be represented by the metadata for the object, identifiers, and the data
stream contents of the data object. Because metadata is inherited from enclosing container objects, all
parent metadata shall be represented in the canonical format (essentially flattening the hierarchy). To
preserve the actual metadata values that apply to the data object that is being serialized, the non-
overridden metadata is included from both the immediate parent container object of the specified object
and from the parent of each higher-level container object.

The canonical format shall have the following characteristics:

• recursive JSON for the data object, consistent with the rest of CDMI;

• user and data system metadata for each data object/container object;

• data stream contents for each data object and queue object;

• binary data represented using escaped JSON strings; and

• typing of data values consistent with CDMI JSON representations.

15.3.2 Example JSON Canonical Serialized Format

EXAMPLE In this example, a data object and a queue object in a container object have been selected for
serialization:

{
 "objectType": "application/cdmi-container",
 "objectID": "00007E7F00102E230ED82694DAA975D2",
 "objectName": "MyContainer/",
 "parentURI": "/",
 "parentID": "00007E7F0010128E42D87EE34F5A6560",
 "domainURI": "/cdmi_domains/MyDomain/",
 "capabilitiesURI": "/cdmi_capabilities/container/",
 "completionStatus": "Complete",
 "metadata": {},
"exports" : {
 "OCCI/iSCSI": {
 "identifier": "00007E7F00104BE66AB53A9572F9F51E",
 "permissions": [
 "http://example.com/compute/0/",
 "http://example.com/compute/1/"
]
 },
Cloud Data Management Interface Working Draft 179
Version 1.1.0d

© SNIA

96
97
98
99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152
 "Network/NFSv4" : {
 "identifier" : "/users",
 "permissions" : "domain"
 }
 },

"childrenrange" : "0-1",
 "children" : [
 {
 "objectType" : "application/cdmi-object",
 "objectID" : "00007ED900104F67307652BAC9A37C93",
 "objectName" : "MyDataObject.txt",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {

 },
 "valuerange" : "0-36",
 "valuetransferencoding": "utf-8",
 "value" : "This is the Value of this Data Object"
 },
{
 "objectType" : "application/cdmi-queue",
 "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
 "objectName" : "MyQueue",
 "parentURI" : "/MyContainer/",
 "parentID" : "00007E7F00102E230ED82694DAA975D2",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/queue/",
 "completionStatus" : "Complete",
 "metadata" : {

 },

 "queueValues" : "0-1",
 "mimetype": [
 "text/plain",
 "text/plain"
],
 "valuetransferencoding": [
 "utf-8",
 "utf-8"
],"valuerange" : [
 "0-2",
 "0-3"
],
 "value" : [
 "red",
 "blue"
]
 }
]
}

To allow efficient deserialization in stream mode when serializing container objects to JSON, the children
array should be the last item in the canonical serialized JSON format.
180 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1

2

3
4
5
6

7

8
9

10
11
12
13

14
15
16

17

18

19
20

21
22

23

24
25
26
16 Metadata

16.1 Access Control

Access control comprises the mechanisms by which various types of access to objects are authorized and
permitted or denied. CDMI™ uses the well-known mechanism of an Access Control List (ACL) as defined
in the NFSv4 standard (see RFC 3530). ACLs are lists of permissions-granting or permissions-denying
entries called access control entries (ACEs).

16.1.1 ACL and ACE Structure

An ACL is an ordered list of ACEs. The two types of ACEs in CDMI are ALLOW and DENY. An ALLOW
ACE grants some form of access to a principal. Principals are either users or groups and are represented
by identifiers. A DENY ACE denies access of some kind to a principal. For instance, a DENY ACE may
deny the ability to write the metadata or ACL of an object but may remain silent on other forms of access.
In that case, if another ACE ALLOWs write access to the object, the principal is allowed to write the
object's data, but nothing else.

ACEs are composed of four fields: type, who, flags and access_mask, as per RFC 3530. The type, flags,
and access_mask shall be specified as either unsigned integers in hex string representation or as a
comma-delimited list of bit mask string form values taken from Table 115, Table 117, and Table 118.

16.1.2 ACE Types

Table 115 defines the following ACE types, following NFSv4.

Note: The reason that the string forms may be safely abbreviated is that they are local to the ACE
structure type, as opposed to constants, which are relatively global in scope.

The client is responsible for ordering the ACEs in an ACL. The server shall not enforce any ordering and
shall store and evaluate the ACEs in the order given by the client.

16.1.3 ACE Who

The special "who" identifiers need to be understood universally, rather than in the context of a particular
external security domain (see Table 116). Some of these identifiers may not be understood when a CDMI
client accesses the server, but they may have meaning when a local process accesses the file. The ability

Table 115 - ACE Types

String Form Description Constant Bit Mask

"ALLOW" Allow access rights for a principal CDMI_ACE_ACCESS_ALLOW 0x00000000

"DENY" Deny access rights for a principal CDMI_ACE_ACCESS_DENY 0x00000001

"AUDIT" Generate an audit record when the
principal attempts to exercise the specified
access rights

CDMI_ACE_SYSTEM_AUDIT 0x00000002
Cloud Data Management Interface Working Draft 181
Version 1.1.0d

© SNIA

27
28

29
30

31

32
33
34

35
to display and modify these permissions is permitted over CDMI, even if none of the access methods on
the server understands the identifiers.

To avoid name conflicts, these special identifiers are distinguished by an appended "@" (with no domain
name).

16.1.4 ACE Flags

CDMI allows for nested containers and mandates that objects and subcontainers be able to inherit access
permissions from their parent containers. However, it is not enough to simply inherit all permissions from
the parent; it might be desirable, for example, to have different default permissions on child objects and
subcontainers of a given container. The flags in Table 117 govern this behavior.

Table 116 - Who Identifiers

Who Description

"OWNER@" The owner of the file

"GROUP@" The group associated with the file

"EVERYONE@" The world

"ANONYMOUS@" Access without authentication

"AUTHENTICATED@" Any authenticated user (opposite of ANONYMOUS)

"ADMINISTRATOR@" A user with administrative status, e.g., root

"ADMINUSERS@" A group whose members are given administrative status

Table 117 - ACE Flags

String Form Description Constant Bit Mask

"NO_FLAGS" No flags are set CDMI_ACE_FLAGS_NO
NE

0x00000000

"OBJECT_INHE
RIT"

An ACE on which OBJECT_INHERIT is set is inherited by objects
as an effective ACE: OBJECT_INHERIT is cleared on the child
object. When the ACE is inherited by a
container, OBJECT_INHERIT is retained for the purpose of
inheritance, and additionally, INHERIT_ONLY is set.

CDMI_ACE_FLAGS_OBJ
ECT_INHERIT_ACE

0x00000001

"CONTAINER_IN
HERIT"

An ACE on which CONTAINER_INHERIT is set is inherited
by a subcontainer as an effective ACE. Both INHERIT_ONLY
and CONTAINER_INHERIT are cleared on the child
container.

CDMI_ACE_FLAGS_CO
NTAINER_INHERIT_ACE

0x00000002

"NO_PROPAGA
TE"

An ACE on which NO_PROPAGATE is set is not inherited by
any objects or subcontainers. It applies only to the container
on which it is set.

CDMI_ACE_FLAGS_NO
_PROPAGATE_ACE

0x00000004

"INHERIT_ONLY
"

An ACE on which INHERIT_ONLY is set is propagated to
children during ACL inheritance as specified
by OBJECT_INHERIT and CONTAINER_INHERIT. The ACE
is ignored when evaluating access to the container on which
it is set and is always ignored when set on objects.

CDMI_ACE_FLAGS_INH
ERIT_ONLY_ACE

0x00000008

"IDENTIFIER_G
ROUP"

An ACE on which IDENTIFIER_GROUP is set indicates that
the "who" refers to a group identifier.

CDMI_ACE_FLAGS_IDE
NTIFIER_GROUP

0x00000040

"INHERITED" An ACE on which INHERITED is set indicates that this ACE
is inherited from a parent directory. A server that supports
automatic inheritance will place this flag on any ACEs
inherited from the parent directory when creating a
new object.

CDMI_ACE_FLAGS_INH
ERITED_ACE

0x00000080
182 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

36

37

38
16.1.5 ACE Mask Bits

The mask field of an ACE contains 32 bits. Table 118 defines the ACE bit masks in CDMI; their values are
taken from the IETF NFSv4 RFC 3530.

Table 118 - ACE Bit Masks (Sheet 1 of 3)

String Form Description Constant Bit Mask

"READ_OBJEC
T"

Permission to read the value of an object.

If "READ_OBJECT" is not permitted:

• A CDMI GET that requests all fields shall return all fields
with the exception of the value field.

• A CDMI GET that requests specific fields shall return the
requested fields with the exception of the value field.

• A CDMI GET for only the value field shall return an HTTP
status code of 403 Forbidden.

• A non-CDMI GET shall return an HTTP status code of 403
Forbidden.

CDMI_ACE_READ_OBJ
ECT

0x00000001

"LIST_CONTAIN
ER"

Permission to list the children of an object.

If "LIST_CONTAINER" is not permitted:

• A CDMI GET that requests all fields shall return all fields
with the exception of the children field and childrenrange
field.

• A CDMI GET that requests specific fields shall return the
requested fields with the exception of the children field and
childrenrange field.

• A CDMI GET for only the children field and/or
childrenrange field shall return an HTTP status code of 403
Forbidden.

CDMI_ACE_LIST_CONT
AINER

0x00000001

"WRITE_OBJEC
T"

Permission to modify the value of an object

If "WRITE_OBJECT" is not permitted, a PUT that requests
modification of the value of an object shall return an HTTP
status code of 403 Forbidden.

CDMI_ACE_WRITE_OB
JECT

0x00000002

"ADD_OBJECT" Permission to add a new child data object or queue object.

If "ADD_OBJECT" is not permitted, a PUT or POST that
requests creation of a new child data object or new queue
object shall return an HTTP status code of 403 Forbidden.

CDMI_ACE_ADD_OBJE
CT

0x00000002

"APPEND_DATA
"

Permission to append data to the value of a data object.

If "APPEND_DATA" is permitted and "WRITE_OBJECT" is
not permitted, a PUT that requests modification of any
existing part of the value of an object shall return an HTTP
status code of 403 Forbidden.

CDMI_ACE_APPEND_D
ATA

0x00000004

"ADD_SUBCON
TAINER"

Permission to create a child container object or domain
object.

If "ADD_SUBCONTAINER" is not permitted, a PUT that
requests creation of a new child container object or new
domain object shall return an HTTP status code of 403
Forbidden.

CDMI_ACE_ADD_SUBC
ONTAINER

0x00000004

[1]The value fields, children fields, and metadata field are considered to be non-attribute fields. All other fields are considered to be
attribute fields.
Cloud Data Management Interface Working Draft 183
Version 1.1.0d

© SNIA
"READ_METAD
ATA"

Permission to read the metadata of an object.

If "READ_METADATA" is not permitted:

• A CDMI GET that requests all fields shall return all fields
with the exception of the metadata field.

• A CDMI GET that requests specific fields shall return the
requested fields with the exception of the metadata field.

• A CDMI GET for only the metadata field shall return an
HTTP status code of 403 Forbidden.

CDMI_ACE_READ_MET
ADATA

0x00000008

"WRITE_METAD
ATA"

Permission to modify the metadata of an object.

If "WRITE_METADATA" is not permitted, a CDMI PUT that
requests modification of the metadata field of an object shall
return an HTTP status code of 403 Forbidden.

CDMI_ACE_WRITE_ME
TADATA

0x00000010

"EXECUTE" Permission to execute an object. CDMI_ACE_EXECUTE 0x00000020

"TRAVERSE_C
ONTAINER"

Permission to traverse a container object or domain object.

If "TRAVERSE_CONTAINER" is not permitted for a parent
container, all operations against all children below that
container shall return an HTTP status code of 403 Forbidden.

CDMI_ACE_TRAVERSE
_CONTAINER

0x00000020

"DELETE_OBJE
CT"

Permission to delete a child data object or child queue object
from a container object.

If "DELETE_OBJECT" is not permitted, all DELETE
operations shall return an HTTP status code of 403
Forbidden.

CDMI_ACE_DELETE_O
BJECT

0x00000040

"DELETE_SUBC
ONTAINER"

Permission to delete a child container object from a container
object or to delete a child domain object from a domain
object.

If "DELETE_SUBCONTAINER" is not permitted, all DELETE
operations shall return an HTTP status code of 403
Forbidden.

CDMI_ACE_DELETE_S
UBCONTAINER

0x00000040

"READ_ATTRIB
UTES"

Permission to read the attribute fields[1] of an object.

If "READ_ATTRIBUTES" is not permitted:

• A CDMI GET that requests all fields shall return all non-
attribute fields and shall not return any attribute fields.

• A CDMI GET that requests at least one non-attribute field
shall only return the requested non-attribute fields.

• A CDMI GET that requests only non-attribute fields shall
return an HTTP status code of 403 Forbidden.

CDMI_ACE_READ_ATT
RIBUTES

0x00000080

"WRITE_ATTRIB
UTES"

Permission to change attribute fields[1] of an object.

If "WRITE_ATTRIBUTES" is not permitted, a CDMI PUT that
requests modification of any non-attribute field shall return an
HTTP status code of 403 Forbidden.

CDMI_ACE_WRITE_ATT
RIBUTES

0x00000100

"WRITE_RETEN
TION"

Permission to change retention attributes of an object.

If "WRITE_RETENTION" is not permitted, a CDMI PUT that
requests modification of any non-hold retention metadata
items shall return an HTTP status code of 403 Forbidden.

CDMI_ACE_WRITE_RE
TENTION

0x00000200

Table 118 - ACE Bit Masks (Sheet 2 of 3)

String Form Description Constant Bit Mask

[1]The value fields, children fields, and metadata field are considered to be non-attribute fields. All other fields are considered to be
attribute fields.
184 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

39
40

41

42
43
44

45
46
47
Implementations shall use the correct string form to display permissions, if the object type is known. If the
object type is unknown, the "object" version of the string shall be used.

16.1.6 ACL Evaluation

When evaluating whether access to a particular object O by a principal P is to be granted, the server shall
traverse the object's logical ACL (its ACL after processing inheritance from parent containers) in list order,
using a temporary permissions bitmask m, initially empty (all zeroes).

• If the object still does not contain an ACL, the algorithm terminates and access is denied for all
users and groups. This condition is not expected, as CDMI implementations should require an
inheritable default ACL on all root containers.

"WRITE_RETEN
TION_HOLD"

Permission to change retention hold attributes of an object.

If "WRITE_RETENTION_HOLD" is not permitted, a CDMI
PUT that requests modification of any retention hold
metadata items shall return an HTTP status code of 403
Forbidden.

CDMI_ACE_WRITE_RE
TENTION_HOLD

0x00000400

"DELETE" Permission to delete an object.

If "DELETE" is not permitted, all DELETE operations shall
return an HTTP status code of 403 Forbidden.

CDMI_ACE_DELETE 0x00010000

"READ_ACL" Permission to read the ACL of an object.

If "READ_ACL" is not permitted:

• A CDMI GET that requests all metadata items shall return
all metadata items with the exception of the cdmi_acl
metadata item.

• A CDMI GET that requests specific metadata items shall
return the requested metadata items with the exception of
the cdmi_acl metadata item.

• A CDMI GET for only the cdmi_acl metadata item shall
return an HTTP status code of 403 Forbidden.

If "READ_ACL" is permitted and "READ_METADATA" is not
permitted, then to read the ACL, a client CDMI GET for only
the cdmi_acl metadata item shall be permitted.

CDMI_ACE_READ_ACL 0x00020000

"WRITE_ACL" Permission to write the ACL of an object.

• If "WRITE_ACL" is not permitted, a CDMI PUT that
requests modification of the cdmi_acl metadata item shall
return an HTTP status code of 403 Forbidden.

• If "WRITE_ACL" is permitted and "WRITE_METADATA" is
not permitted, then to write the ACL, a client CDMI PUT for
only the cdmi_acl metadata item shall be permitted.

CDMI_ACE_WRITE_AC
L

0x00040000

"WRITE_OWNE
R"

Permission to change the owner of an object.

• If "WRITE_OWNER" is not permitted, a CDMI PUT that
requests modification of the cdmi_owner metadata item
shall return an HTTP status code of 403 Forbidden.

• If "WRITE_OWNER" is permitted and
"WRITE_METADATA" is not permitted, then to write the
owner, a client CDMI PUT for only the cdmi_owner
metadata item shall be permitted.

CDMI_ACE_WRITE_OW
NER

0x00080000

"SYNCHRONIZ
E"

Permission to access an object locally at the server with
synchronous reads and writes.

CDMI_ACE_SYNCHRO
NIZE

0x00100000

Table 118 - ACE Bit Masks (Sheet 3 of 3)

String Form Description Constant Bit Mask

[1]The value fields, children fields, and metadata field are considered to be non-attribute fields. All other fields are considered to be
attribute fields.
Cloud Data Management Interface Working Draft 185
Version 1.1.0d

© SNIA

48

49
50

51
52
53

54
55
56

57
58

59

60
61
62
63

64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83

84
85
86
87
88
89

90
91
92
93
94
95

96
97
98
99

100

101
102
103
104
• ACEs that do not refer to the principal P requesting the operation are ignored.

• If an ACE is encountered that denies access to P for any of the requested mask bits, access is
denied and the algorithm terminates.

• If an ACE is encountered that allows access to P, the permissions mask m for the operation is
XORed with the permissions mask from the ACE. If m is sufficient for the operation, access is
granted and the algorithm terminates.

• If the end of the ACL list is reached and permission has neither been granted nor explicitly denied,
access is denied and the algorithm terminates, unless the object is a container root. In this case,
the server shall:

— allow access to the container owner, ADMINISTRATOR@, and any member of
ADMINUSERS@; and

— log an event indicating what has happened.

When permission for the desired access is not explicitly given, even ADMINISTRATOR@ and equivalents
are denied for objects that aren't container roots. When an admin needs to access an object in such an
instance, the root container shall be accessed and its inheritable ACEs changed in a way as to allow
access to the original object. The resulting log entry then provides an audit trail for the access.

When a root container is created and no ACL is supplied, the server shall place an ACL containing the
following ACEs on the container:

"cdmi_acl":
[
 {
 "acetype": "ALLOW",
 "identifier": "OWNER@",
 "aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
 "acemask": "ALL_PERMS"
 },
 {
 "acetype": "ALLOW",
 "identifier": "AUTHENTICATED@",
 "aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
 "acemask": "READ"
 }
]

As ACLs are storage system metadata, they are stored and retrieved through the metadata field included
in a PUT or GET request. The syntax is as follows, using the constant strings from Table 115, Table 117,
and Table 118, above.

ACL = { ACE [, ACE ...] }
ACE = { acetype , identifier , aceflags , acemask }
acetype = uint_t | acetypeitem
identifier = utf8string_t
aceflags = uint_t | aceflagsstring
acemask = uint_t | acemaskstring

acetypeitem = aceallowedtype |
 acedeniedtype |
 aceaudittype
aceallowedtype = "CDMI_ACE_ACCESS_ALLOWED_TYPE" | 0x0
acedeniedtype = "CDMI_ACE_ACCESS_DENIED_TYPE" | 0x01
aceaudittype = "CDMI_ACE_SYSTEM_AUDIT_TYPE" | 0x02

aceflagsstring = aceflagsitem [| aceflagsitem ...]
aceflagsitem = aceobinherititem |
 acecontinherititem |
 acenopropagateitem |
 aceinheritonlyitem

aceobinherititem = "CDMI_ACE_OBJECT_INHERIT_ACE" | 0x01
acecontinherititem = "CDMI_ACE_CONTAINER_INHERIT_ACE" | 0x02
acenopropagateitem = "CDMI_ACE_NO_PROPAGATE_INHERIT_ACE" | 0x04
aceinheritonlyitem = "CDMI_ACE_INHERIT_ONLY_ACE" | 0x08
186 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133

134
135

136
137
138
139
140
141
142
143
144

145

146

147

148

149

150

151
acemaskstring = acemaskitem [| acemaskitem ...]
acemaskitem = acereaditem | acewriteitem | 

 aceappenditem | acereadmetaitem |
 acewritemetaitem | acedeleteitem |
 acedelselfitem | acereadaclitem |
 acewriteaclitem | aceexecuteitem | 
 acereadattritem | acewriteattritem | 
 aceretentionitem

acereaditem = "CDMI_ACE_READ_OBJECT" |
 "CDMI_ACE_LIST_CONTAINER" | 0x01
acewriteitem = "CDMI_ACE_WRITE_OBJECT" |
 "CDMI_ACE_ADD_OBJECT" | 0x02
aceappenditem = "CDMI_ACE_APPEND_DATA" |
 "CDMI_ACE_ADD_SUBCONTAINER" | 0x04
acereadmetaitem = "CDMI_ACE_READ_METADATA" | 0x08
acewritemetaitem = "CDMI_ACE_WRITE_METADATA" | 0x10
acedeleteitem = "CDMI_ACE_DELETE_OBJECT" |
 "CDMI_ACE_DELETE_SUBCONTAINER" | 0x40
acedelselfitem = "CDMI_ACE_DELETE" | 0x10000
acereadaclitem = "CDMI_ACE_READ_ACL" | 0x20000
acewriteaclitem = "CDMI_ACE_WRITE_ACL" | 0x40000
aceexecuteitem = "CDMI_ACE_EXECUTE" | 0x80000
acereadattritem = "CDMI_ACE_READ_ATTRIBUTES" | 0x00080
acewriteattritem = "CDMI_ACE_WRITE_ATTRIBUTES" | 0x00100
aceretentionitem = "CDMI_ACE_SET_RETENTION" | 0x10000000

When ACE masks are presented in numeric format, they shall, at all times, be specified in hexadecimal
notation with a leading "0x". This format allows both servers and clients to quickly determine which of the
two forms of a given constant is being used. When masks are presented in string format, they shall be
converted to numeric format and then evaluated using standard bitwise operators.

When an object is created, no ACL is supplied, and an ACL is not inherited from the parent container (or
there is no parent container), the server shall place an ACL containing the following ACEs on the object:

"cdmi_acl":
[
 {
 "acetype": "ALLOW",
 "identifier": "OWNER@",
 "aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
 "acemask": "ALL_PERMS"
 }
]

16.1.7 Example ACE Mask Expressions

EXAMPLE 1

"READ_ALL" | 0x02

evaluates to 0x09 | 0x02 == 0x0

EXAMPLE 2

0x001F07FF

evaluates to 0x001F07FF == "ALL_PERMS"

EXAMPLE 3

"RW_ALL" | DELETE

evaluates to 0x000601DF | 0x00100000 == 0x000701DF
Cloud Data Management Interface Working Draft 187
Version 1.1.0d

© SNIA

152

153
154
155

156
157

158

159

160
161

162

163
164

165

166
167

168

169
170
171

172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
16.1.8 Canonical Format for ACE Hexadecimal Quantities

ACE mask expressions may be evaluated and converted to a string hexadecimal value before
transmission in a CDMI JSON body. Applications or utilities that display them to users should convert them
into a text expression before display and accept user input in text format as well.

The following technique should be used to decompose masks into strings. A table of masks and string
equivalents should be maintained and ordered from greatest to least:

Given an access mask M, the following is repeated until M == 0:

1 Select the highest mask m from the table such that M & m == m.

2 If the object is a container, select the string from the 3rd column; otherwise, select the string from
the 2nd column.

3 Bitwise subtract m from M, i.e., set M = M xor m.

The complete textual representation is then all the selected strings concatenated with ", " between them,
e.g., "ALL_PERMS, WRITE_OWNER". The strings should appear in the order they are selected.

A similar technique should be used for all other sets of hex/string equivalents.

This algorithm, properly coded, requires only one (often partial) pass through the corresponding string
equivalents table.

16.1.9 JSON Format for ACLs

ACE flags and masks are members of a 32-bit quantity that is widely understood in its hexadecimal
representations. The JSON data format does not support hexadecimal integers, however. For this reason,
all hexadecimal integers in CDMI ACLs shall be represented as quoted strings containing a leading "0x".

ACLs containing one or more ACEs shall be represented in JSON as follows:

{
 "cdmi_acl" : [
 {
 "acetype" : "0xnn",
 "identifier" : "<user-or-group-name>",
 "aceflags" : "0xnn",
 "acemask" : "0xnn"
 },
 {
 "acetype" : "0xnn",
 "identifier" : "<user-or-group-name>",
 "aceflags" : "0xnn",
 "acemask" : "0xnn"
 }
]
}

ACEs in such an ACL shall be evaluated in order as they appear.

0x001F07FF "ALL_PERMS" "ALL_PERMS"

0x0006006F "RW_ALL" "RW_ALL"

0x0000001F "RW" "RW"

...

0x00000002 "WRITE_OBJECT" "ADD_OBJECT"

0x00000001 "READ_OBJECT" "LIST_CONTAINER"
188 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

190

191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217

218
219

220
221

222
223

224
225

226

227
228

229
EXAMPLE An example of an ACL embedded in a response to a GET request is as follows:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
 "objectType" : "/application/cdmi-object",
 "objectID" : "00007ED9001086A99CC6487FEE373D82",
 "objectName" : "MyDataItem.txt",
 "parentURI" : "/MyContainer/",
 "domainURI" : "/cdmi_domains/MyDomain/",
 "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
 "completionStatus" : "Complete",
 "mimetype" : "text/plain",
 "metadata" : {
 "cdmi_size" : "17",
 "cdmi_acl" : [
 {
 "acetype" : "0x00",
 "identifier" : "EVERYONE@",
 "aceflags" : "0x00",
 "acemask" : "0x00020089"
 }
]
 },
 "valuerange" : "0-16",
 "value" : "Hello CDMI World!"
}

16.2 Support for User Metadata

All CDMI objects that support metadata shall permit the inclusion of arbitrary user-defined metadata items,
with the restriction that the name of a user-defined metadata item shall not start with the prefix "cdmi_".

• The maximum number of user-defined metadata items is specified by the capability
cdmi_metadata_maxitems.

• The maximum size of each user-defined metadata item is specified by the capability
cdmi_metadata_maxsize.

• The maximum total size of user-defined metadata items for an object is specified by the capability
cdmi_metadata_maxtotalsize.

16.3 Support for Storage System Metadata

After an object has been created, the storage system metadata, as described in Table 119, shall be
generated by the cloud storage system and shall immediately be made available to a CDMI client in the
metadata that is returned as a result of the create operation and any subsequent retrievals.

Table 119 - Storage System Metadata (Sheet 1 of 2)

Metadata Name Type Description Requirement

cdmi_size JSON
String

The number of bytes consumed by the object. This storage
system metadata item is computed by the storage
system, and any attempts to set or modify it will be
ignored.

Optional

cdmi_ctime JSON
String

The time when the object was created, in ISO-8601 point-in-
time format, as described in 5.14.

Optional
Cloud Data Management Interface Working Draft 189
Version 1.1.0d

© SNIA
cdmi_atime JSON
String

The time when the object was last accessed in ISO-8601
point-in-time format, as described in 5.14. The access or
modification of a child is not considered an access of a parent
container (access/modify times do not propagate up the tree).
For a newly created object, this value shall be set to the
creation time.

Optional

cdmi_mtime JSON
String

The time when the object was last modified, in ISO-8601 point-
in-time format, as described in 5.14. The modification of a child
is not considered a modification of a container object
(modification times do not propagate up the tree). For a newly
created object, this value shall be set to the creation time.

Optional

cdmi_acount JSON
String

The number of times that the object has been accessed since
it was originally created. Accesses include all reads, writes,
and lists. For a newly created object, this value shall be set to
the value "0".

Optional

cdmi_mcount JSON
String

The number of times that the object has been modified since it
was originally created. Modifications include all value and
metadata changes. Modifications to metadata resulting from
reads (such as updates to atime) do not count as a
modification. For a newly created object, this value shall be set
to the value "0".

Optional

cdmi_hash JSON
String

The hash of the value of the object, encoded using Base16
encoding rules described in RFC 4648. This metadata field
shall be present when the cdmi_value_hash data system
metadata for the object or a parent object indicates that the
value of the object should be hashed.

Optional

cdmi_owner JSON
String

The name of the principal that has owner privileges for the
object.

Mandatory

cdmi_acl JSON
Array of
JSON
Objects

Standard ACL metadata. If not specified when the object is
created, this metadata shall be filled in by the system.

Optional

Table 119 - Storage System Metadata (Sheet 2 of 2)

Metadata Name Type Description Requirement
190 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

230

231
232

233
234

235
16.4 Support for Data System Metadata

When specified, data system metadata provides guidelines to the cloud storage system on how to provide
storage data services for data managed through the CDMI interface.

Data system metadata (see Table 120) is inherited from parent objects to any children. If a child explicitly
contains data system metadata, the metadata value of the child data system metadata shall override the
metadata value of the parent data system metadata.

Table 120 - Data System Metadata (Sheet 1 of 6)

Metadata Name Type Description Requirement

cdmi_data_redundancy JSON
String

If this data system metadata item is present and set
to a positive numeric string, it indicates that the
client is requesting a desired number of complete
copies. Additional copies may be made to satisfy
demand for the value. When this data system
metadata item is absent, or is present and is not set
to a positive numeric string, this data system
metadata item shall not be used.

Optional

cdmi_immediate_redundancy JSON
String

If this data system metadata item is present and set
to "true", it indicates that the client is requesting that
at least the number of copies indicated in
cdmi_data_redundancy contain the newly written
value before the operation completes. This
metadata is used to make sure that multiple copies
of the data are written to permanent storage to
prevent possible data loss. When this data system
metadata item is absent, or is present and is not set
to "true", this data system metadata item shall not be
used.

If the requested number of copies cannot be created
within the HTTP timeout period, the transaction shall
complete, but the
cdmi_immediate_redundancy_provided data
system metadata shall be set to "false".

Optional

cdmi_assignedsize JSON
String

If this data system metadata item is present and set
to a positive numeric string, it indicates that the
client is specifying the size in bytes that is desired to
be reported for a container object exported via other
protocols (see 9.1.1). The system is not required to
reserve this space and may thin-provision the
requested space. Thus, the requested value may be
greater than the actual storage space consumed.
When this data system metadata item is absent, or
is present and is not set to a positive numeric string,
this data system metadata item shall not be used.

This data system metadata item is only applied
against container objects and is not inherited by
child objects.

Optional
Cloud Data Management Interface Working Draft 191
Version 1.1.0d

© SNIA
cdmi_infrastructure_redundancy JSON
String

If this data system metadata item is present and set
to a positive numeric string, it indicates that the
client is requesting a desired number of independent
storage infrastructures supporting the multiple
copies of data. This metadata is used to convey
that, of the copies specified in
cdmi_data_redundancy, these copies shall be
stored on this many separate infrastructures. When
this data system metadata item is absent, or is
present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi_data_dispersion JSON
String

If this data system metadata item is present and set
to a positive numeric string, it indicates that the
client is requesting a minimum desired distance (in
km) between the infrastructures supporting the
multiple copies of data. This metadata is used to
separate the (cdmi_infrastructure_redundancy
number of) infrastructures by a minimum geographic
distance to prevent data loss due to site disasters.
When this data system metadata item is absent, or
is present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi_geographic_placement JSON
Array
of
JSON
Strings

If this data system metadata item is present and set
to zero or more geopolitical identifiers, it indicates
that the client is requesting restrictions on the
geographic regions where the object is permitted to
be stored. Each geopolitical identifier shall be in the
form of either a string containing a valid ISO 3166
country/country-subdivision code, which indicates
that storage is permitted within that geopolitical
region, or in the form of a string starting with the "!"
character in front of a valid ISO 3166 country/
country-subdivision code, which excludes that
country/country-subdivision from the previous list of
geopolitical regions.

The list is evaluated, in order, from left to right, with
evaluation of each candidate storage location
stopping when the candidate location is a permitted
or prohibited region or is contained within a
permitted or prohibited region. In addition to the ISO
3166 codes, "*" shall indicate all regions. If a
candidate location does not match any of the entries
in the list, the candidate location shall be considered
to be prohibited.

• When this data system metadata item is absent,
this data system metadata item shall not be used.

• When this data system metadata item is present
and does not contain valid geopolitical identifiers,
the create, update, or deserialize operation shall
fail with an HTTP status code of 400 Bad
Request.

• When this data system metadata item is present
and valid, but no available storage locations are
permitted, the create, update, or deserialize
operation shall fail with an HTTP status code of
403 Forbidden.

Optional

Table 120 - Data System Metadata (Sheet 2 of 6)

Metadata Name Type Description Requirement
192 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
cdmi_retention_id JSON
String

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the string be used to tag a given
object as being managed by a specific retention
policy. This data system metadata item is not
required to place an object under retention, but is
useful when needing to be able to perform a query
to find all objects under a specific retention policy.
When this data system metadata item is absent, or
is present and an empty string, this data system
metadata item shall not be used.

Optional

cdmi_retention_period JSON
String

If this data system metadata item is present and
contains a valid ISO 8601:2004 time interval (as
described in 5.14), it indicates that the client is
requesting that an object be placed under retention
(see 17.3). When this data system metadata item is
absent, this data system metadata item shall not be
used. When this data system metadata item is
present but does not contain a valid ISO 8601:2004
time interval, the create, update, or deserialize
operation shall fail with an HTTP status code of 400
Bad Request.

If this data system metadata item is updated and the
new end date is before the current end date, the
update operation shall fail with an HTTP status code
of 403 Forbidden.

Optional

cdmi_retention_autodelete JSON
String

If this data system metadata item is present and set
to "true", it indicates that the client is requesting that
an object under retention be automatically deleted
when retention expires. When this data system
metadata item is absent, or is present and is not set
to "true", this data system metadata item shall not be
used.

Optional

cdmi_hold_id JSON
Array
of
JSON
Strings

If this data system metadata item is present and not
an empty array, it indicates that the client is
requesting that an object be placed under hold (see
17.4). Each string in the array shall contain a unique
user-specified hold identifier.

When this data system metadata item is absent, or
is present and is an empty JSON array, this data
system metadata item shall not be used.

If this data system metadata item is updated, and a
previously existing hold string has been removed or
changed in the update, the update operation shall
fail with an HTTP status code of 403 Forbidden.
(See 17.4 concerning releasing holds.)

Optional

Table 120 - Data System Metadata (Sheet 3 of 6)

Metadata Name Type Description Requirement
Cloud Data Management Interface Working Draft 193
Version 1.1.0d

© SNIA
cdmi_encryption JSON
String

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the object be encrypted while at rest.
If encrypted, all data and metadata related to the
object shall be encrypted. Supported algorithm/
mode/length values are provided by the
cdmi_encryption capability.

When this data system metadata item is absent, this
data system metadata item shall not be used.

If this data system metadata item is present but
does not contain a valid encryption algorithm/mode/
length string, the system is free to choose to ignore
the data system metadata, to fail with an HTTP
status code of 400 Bad Request, or to select an
encryption algorithm/mode/length of the system's
choice.

Supported encryption algorithms are expressed as a
string in the form of
ALGORITHM_MODE_KEYLENGTH, where:

• "ALGORITHM" is the encryption algorithm (e.g.,
"AES" or "3DES").

• "MODE" is the mode of operation (e.g., "XTS",
"CBC", or "CTR").

• "KEYLENGTH" is the key size in bytes (e.g.,
"128", "192", "256").

To improve interoperability between CDMI
implementations, the following designators should
be used for the more common encryption
combinations:

• "3DES_ECB_168" for the three-key TripleDES
algorithm, the Electronic Code Book (ECB) mode
of operation, and a key size of 168 bits;

• "3DES_CBC_168" for the three-key TripleDES
algorithm, the Cipher Block Chaining (CBC) mode
of operation, and a key size of 168 bits;

• "AES_CBC_128" for the AES algorithm, the CBC
mode of operation, and a key size of 128 bits;

• "AES_CBC_256" for the AES algorithm, the CBC
mode of operation, and a key size of 256 bits;

• "AES_XTS_128" for the AES algorithm, the XTS
mode of operation, and a key size of 128 bits; and

• "AES_XTS_256" for the AES algorithm, the XTS
mode of operation, and a key size of 256 bits.

Optional

Table 120 - Data System Metadata (Sheet 4 of 6)

Metadata Name Type Description Requirement
194 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
cdmi_value_hash JSON
String

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system hash the object value
using the hashing algorithm and length requested.
The result of the hash shall be provided in the
cdmi_hash storage system metadata item.
Supported algorithm/length values are provided by
the cdmi_value_hash capability.

When this data system metadata item is absent, this
data system metadata item shall not be used.

If this data system metadata item is present but
does not contain a valid hash algorithm/length
string, the system is free to choose to ignore the
data system metadata, to fail with an HTTP status
code of 400 Bad Request, or to select a hash
algorithm/length of the system's choice.

Supported hash algorithms are expressed as a
string in the form of ALGORITHM LENGTH, where:

• "ALGORITHM" is the hash algorithm (e.g.,
"SHA").

• "LENGTH" is the hash size in bytes (e.g., "160",
"256").

To improve interoperability between CDMI
implementations, the following designators should
be used for the more common encryption
combinations:

• "SHA160" for SHA-1, and

• "SHA256" for SHA-2.

Optional

cdmi_latency JSON
String

If this data system metadata item is present and set
to a positive numeric string, it indicates that the
client is requesting a desired maximum time to first
byte, in milliseconds. This metadata is the desired
latency (in milliseconds) to the first byte of data, as
measured from the edge of the cloud and factoring
out any propagation latency between the client and
the cloud. For example, this metadata may be used
to determine, in an interoperable way, from what
type of storage medium the data may be served.
When this data system metadata item is absent, or
is present and is not set to a positive numeric string,
this data system metadata item shall not be used.

Optional

cdmi_throughput JSON
String

If this data system metadata item is present and set
to a positive numeric string, it indicates that the
client is requesting a desired maximum data rate on
retrieve, in bytes per second. This metadata is the
desired bandwidth to the data, as measured from
the edge of the cloud and factoring out any
bandwidth capability between the client and the
cloud. This metadata is used to stage the data in
locations where there is sufficient bandwidth to
accommodate a maximum usage. When this data
system metadata item is absent, or is present and is
not set to a positive numeric string, this data system
metadata item shall not be used.

Optional

Table 120 - Data System Metadata (Sheet 5 of 6)

Metadata Name Type Description Requirement
Cloud Data Management Interface Working Draft 195
Version 1.1.0d

© SNIA
cdmi_sanitization_method JSON
String

If this data system metadata item is present and not
an empty string, it indicates that the client is
requesting that the system use a specific
sanitization method to delete data such that the data
is unrecoverable after an update or delete operation.
Supported sanitization method values are provided
by the cdmi_sanitization_method capability.

When this data system metadata item is absent, this
data system metadata item shall not be used.

If this data system metadata item is present but
does not contain a valid sanitization method string,
the system is free to choose to ignore the data
system metadata, to fail with an HTTP status code
of 400 Bad Request, or to select a sanitization
method of the system's choice.

Supported sanitization methods are defined as
system-specific strings.

Optional

cdmi_RPO JSON
String

If this data system metadata item is present and set
to a positive numeric string, it indicates that the
client is requesting a largest acceptable duration in
time between an update or create and when the
object may be recovered, specified in seconds. This
metadata is used to indicate the desired backup
frequency from the primary copy or copies of the
data to the secondary copy or copies. It is the
maximum acceptable time period before a failure or
disaster during which changes to data may be lost
as a consequence of recovery. When this data
system metadata item is absent, or is present and is
not set to a positive numeric string, this data system
metadata item shall not be used.

Optional

cdmi_RTO JSON
String

If this data system metadata item is present and set
to a positive numeric string, it indicates that the
client is requesting the largest acceptable duration
in time to restore data, specified in seconds. This
metadata is used to indicate the desired maximum
acceptable duration to restore the primary copy or
copies of the data from a secondary backup copy or
copies. When this data system metadata item is
absent, or is present and is not set to a positive
numeric string, this data system metadata item shall
not be used.

Optional

cdmi_authentication_methods JSON
Array
of
JSON
Strings

The client shall set this metadata to a list of
authentication methods requested to be enabled for
the domain.

Supported authentication method values are
indicated by the cdmi_authentication_methods
capability.

Table 120 - Data System Metadata (Sheet 6 of 6)

Metadata Name Type Description Requirement
196 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

236

237

238
16.5 Support for Provided Data System Metadata

For each metadata item in a data system, there is an actual value that the offering is able to achieve at this
time, as shown in Table 121.

Table 121 - Provided Values of Data Systems Metadata Items (Sheet 1 of 2)

Metadata Name Type Description Requirement

cdmi_data_redundancy_provided JSON
String

Contains the current number of
complete copies of the data object at
this time

Optional

cdmi_immediate_redundancy_provided JSON
String

If present and set to "true", indicates if
immediate redundancy is provided for
the object

Optional

cdmi_infrastructure_redundancy_provided JSON
String

Contains the current number of
independent storage infrastructures
supporting the data currently operating

Optional

cdmi_data_dispersion_provided JSON
String

Contains the current lowest distance
(km) between any two infrastructures
hosting the data

Optional

cdmi_geographic_placement_provided JSON
Array of
JSON
Strings

Contains an ISO-3166 identifier that
corresponds to a geopolitical region
where the object is stored

Optional

cdmi_retention_period_provided JSON
String

Contains an ISO 8601:2004 time
interval (as described in 5.14) specifying
the period the object is protected by
retention

Optional

cdmi_retention_autodelete_provided JSON
String

Contains "true" if the object will
automatically be deleted when retention
expires

Optional

cdmi_hold_id_provided JSON
Array of
JSON
Strings

Contains the user-specified hold
identifiers for active holds

Optional

cdmi_encryption_provided JSON
String

Contains the algorithm used for
encryption, the mode of operation, and
the key size. (See cdmi_encryption in
Table 120 for the format.)

Optional

cdmi_value_hash_provided JSON
String

Contains the algorithm and length being
used to hash the object value. (See
cdmi_value_hash in Table 120 for the
format.)

Optional

cdmi_latency_provided JSON
String

Contains the provided maximum time to
first byte

Optional

cdmi_throughput_provided JSON
String

Contains the provided maximum data
rate on retrieve

Optional

cdmi_sanitization_method_provided JSON
String

Contains the sanitization method used.
(See cdmi_sanitization_method in
Table 120 for the format.)

Optional

cdmi_RPO_provided JSON
String

Contains the provided duration, in
seconds, between an update and when
the update may be recovered

Optional
Cloud Data Management Interface Working Draft 197
Version 1.1.0d

© SNIA

239

240
241

242
243

244
245

246
247
248

249
250
251

252
253
254

255
256
16.6 Metadata Update Operations

CDMI permits a client to replace all metadata items or to perform operations against one or more individual
metadata items.

Replacing all metadata items is accomplished by including the metadata field in the update request body
JSON and not specifying specific metadata items in the update URI.

Adding, updating, and removing specific metadata items is accomplished by specifying the specific
metadata item names in the update URI:

• To add a new metadata item to an existing object, the metadata item name shall be included in the
update request URI, and the metadata item shall be included in the metadata field in the update
request body JSON.

• To update the value of an existing metadata item, the metadata item name shall be included in the
update request URI, and the metadata item shall be included in the metadata field in the update
request body JSON.

• To remove an existing metadata item, the metadata item name shall be included in the update
request URI, and the metadata item shall not be included in the metadata field in the update
request body JSON.

When individual metadata items are specified in the update URI, metadata items included in the metadata
field in the request body JSON that are not referred to in the update URI shall be ignored.

cdmi_RTO_provided JSON
String

Contains the provided duration, in
seconds, to restore data

Optional

cdmi_authentication_methods_provided JSON
Array of
JSON
Strings

Contains a list of authentication
methods enabled for the domain. (See
cdmi_authentication_methods in
Table 120 for the format.)

Optional

Table 121 - Provided Values of Data Systems Metadata Items (Sheet 2 of 2)

Metadata Name Type Description Requirement
198 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1

2

3
4
5
6

7
8
9

10
11

12

13

14

15

16

17
18
19

20

21
22
23

24
25

26
27
28

29
30

31
32
33
34
35

36

37

38
39
40

41
42
17 Retention and Hold Management

17.1 Introduction

A cloud storage system may optionally implement retention management disciplines into the system
management functionality of the cloud-based storage system. The implementation of retention and hold
capabilities is indicated by the presence of the cloud storage system-wide capabilities for retention and
hold capabilities.

Retention management includes implementing a retention policy, defining a hold policy to enable objects
to be held for specific purposes (e.g., litigation), and defining how the rules for deleting objects are affected
by placing either a retention policy and/or a hold on an object. CDMI™ object deletion is not a capability of
retention management, per se, but rather is a general system capability. However, this clause describes
what happens when placing either a retention policy and/or a hold on an object.

Retention management may be applied to the following object types:

• data objects,

• queue objects, and

• container objects.

17.2 Retention Management Disciplines

CDMI retention, deletion, and hold management affect any CDMI client that creates or deletes CDMI
objects, as these disciplines mandate how a cloud storage system manages CDMI objects when they are
created and until they are deleted.

CDMI retention management is comprised of three management disciplines: retention, hold, and deletion:

• CDMI retention uses retention time criteria to determine the time period during which object
deletion from the CDMI-based system is prohibited. No changes to the object are allowed, even
after the retention period has expired, except as specified below.

• CDMI hold prohibits object deletion and modification until all holds on the object have been
released.

• A CDMI-based system shall not allow the deletion of a CDMI object before the CDMI retention
time criteria are met or while holds exist. Any deletion attempts (e.g., by a CDMI application) shall
return an error.

• After the CDMI retention time criteria have been met and all holds have been released, CDMI
retention and holds shall no longer be a reason to prohibit object deletion.

• Once the retention period has started or if holds exist, changes to the object data and metadata
shall not be allowed, with the exception of extensions to the retention and hold data system
metadata. The retention data system metadata may be added or the retention period extended,
and the hold data system metadata may be added or extended with additional holds. Any other
attempt to modify the object shall return an error.

17.3 CDMI Retention

CDMI retention only allows one retention policy to be applied to an object at a time.

Retention management uses time criteria to determine the time period during which CDMI object deletion
from the CDMI-based system shall be prohibited. CDMI retention criteria shall be specified by the following
data system metadata:

• a retention criteria identifier—a CDMI client-specified string that shall identify the retention records
class (cdmi_retention_id); and
Cloud Data Management Interface Working Draft 199
Version 1.1.0d

© SNIA

43
44

45
46

47
48

49
50

51
52
53

54
55

56

57
58

59
60

61
62

63
64
65
66

67
68
69
• a retention start time and retention period time—the start time, when used together with period,
indicating when retention shall no longer be enforced (cdmi_retention_period).

When a CDMI client attempts to delete an object, the cloud storage system shall evaluate all such
retention criteria and return an error, if any retention criteria have not been met.

When copying objects with a retention policy, retention properties shall not be transferred from the source
CDMI object to the destination object, and the destination object shall not have a retention policy.

Figure 10 shows how to establish time-based retention with a retention identifier. The value of the object
data system metadata for the retention period shall not be reduced.

A specific HTTP error code (403) shall be returned on operations to objects that are under retention period
when the cloud storage system attempts to change or delete the object before the retention period criteria
are met.

A cloud storage system shall not prevent metadata changes that increase the retention period, as there
are valid business reasons to change a retention period for an object.

17.4 CDMI Hold

CDMI hold enforces read-only data object access and prohibition of object deletion. A cloud storage
system shall allow multiple holds to be applied to a single object to satisfy multiple hold orders.

While an object is on hold, a cloud storage system shall strictly enforce read-only access to the object and
prohibit object deletion.

When copying objects that are on hold, hold properties shall not be transferred from the source CDMI
object to the destination object, and the destination object shall not be on hold.

Hold management uses a hold indicator to determine the time period(s) during which CDMI object revision
(data and metadata) and deletion from the CDMI-based system shall be prohibited. CDMI hold criteria
shall be specified by data system metadata, specifically, a hold criteria identifier that is a client-specified
string that shall identify the holds and their order.

A CDMI client may place an object on hold by adding a hold identifier to the cdmi_hold_id data system
metadata item. When an object is on hold, CDMI clients shall be subject to failures or unexpected state
changes on operations, which would otherwise be successful if the object was not on hold.

Figure 10 - Object Retention

Retention enabled,
ID, start time, and

duration set

Changes and
deletion are

allowed
2011/01/01 2012/01/01

Example: Retention start date of 2010/04/28 with
 a duration of 730 days. No holds.

2010/04/28 2012/04/27

Changes and deletion are not
allowed
200 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

70

71
72
73
74

75
Figure 11 shows how placing a hold on an object affects its read-only and deletion capability.

Figure 12 shows how to establish time-based retention with a retention identifier that has a hold placed on
the object. The value of the object data system metadata for the retention period shall not be reduced, and
the value of the object data system metadata for hold identifiers shall not permit holds to be removed.
Removing holds is outside the scope of the CDMI international standard.

Figure 13 shows how placing multiple holds on an object affects its read-only and deletion capability.

Figure 11 - Object Hold

Figure 12 - Object Hold on Object with Retention

Figure 13 - Object with Multiple Holds

No retention information
is set; object stored on

2010/04/28

Changes and
deletion of object

are allowed

Changes and
deletion of object

are allowed Object
deleted on
2014/04/28

Hold placed 2012/01/01

2011/01/01 2012/01/01 2013/01/01 2014/01/01

Object is read
only; deletion is

not allowed

Example: Hold placed on the object on
2012/01/01 and removed on 2013/01/01

Hold removed 2013/01/01

2010/04/28 2014/04/28

Retention
enabled; ID,

start time, and
duration set

Changes and
deletion are

allowed

Hold placed 2011/10/21

2011/01/01 2012/01/01 2013/01/01 2014/01/01

Object is read only;
deletion is not allowed

Example: Start date of 2010/04/28 with a duration of
 730 days; hold placed on the object

Hold removed 2013/10/21

2010/04/28 2014/04/28

Changes and
deletion are not

allowed

Retention duration
completed 2012/04/27

Object
deleted on
2014/04/28

No retention
information is set;
object stored on

2010/04/28

Changes
and deletion
are allowed

Hold #1
placed

2011/01/01

2011/01/01 2012/01/01 2013/01/01 2014/01/01

Object is read only; deletion is not
allowed

Example: Object created on 2010/04/28.
 Hold #1 is placed on 2011/01/01 and removed on 2013/01/01.
 Hold #2 is placed on 2012/03/01 and removed on 2014/01/01.

Hold #1
removed

2013/01/01

2011/04/28 2014/04/28

Changes &
deletion are

allowed Object
deleted on
2014/04/28

Hold #2
placed

2012/03/01

Hold #2
removed

2014/01/01
Cloud Data Management Interface Working Draft 201
Version 1.1.0d

© SNIA

76
77

78

79
80

81
82
83

84

85
86
87

88
89
90
91
92
93
94
95

96

97
98
99

100
101

102
103
104
105

106
107
108
109

110
111
112
A cloud storage system shall maintain an on-hold object in read-only mode with respect to the application
access to data and metadata and shall prohibit deletion, either automated or explicit.

• CDMI clients shall tolerate these object on-hold failures or state changes.

• Releases from hold are not part of the CDMI standard and are typically performed out of band
using an additionally secured non-CDMI mechanism provided by the implementation.

A specific HTTP error code (403) shall be returned on operations to objects that are under a hold when the
system attempts to change the object or attempts to delete the object before the hold is removed. This
failure should be a an error to the application.

17.5 CDMI Auto-deletion

CDMI deletion controls cloud storage system actions with respect to object deletion. A cloud storage
system may automatically delete a CDMI object after the retention time and hold criteria have been met.
(See cdmi_retention_autodelete in Table 120.)

CDMI objects shall be automatically deleted by the system at the retention period expiration by setting the
data system metadata flag cdmi_retention_autodelete. The cdmi_retention_autodelete flag indicates to the
system that the object shall be made unavailable for access after the retention criteria have been satisfied.
The system shall ensure that the object is no longer available through the CDMI interface. If the system
has satisfied the retention requirement and a hold is established for the object, the object shall not be
made unavailable or deleted. When a hold and retention have been applied to an object, both need to be
satisfied (retention period expired and no holds existing) for objects to be automatically deleted from the
system.

17.6 Retention Security Considerations

The accuracy and integrity of the retention start and elapsed times depend on the accuracy and integrity of
the clock that is used to set their values. Equally important is the relative accuracy and security of the clock
that determines if the retention period has elapsed when compared to the clock that sets the start time
property. Relative time differences between these two clocks may lead to undesirable retention and
deletion management behavior.

It is important to have a reliable source from which the system clock is set. A stratum 1 time is directly
connected to a reference clock and is at the top of the time server hierarchy. Relative time differences
between the system clock and the reference clock may lead to undesirable retention timestamps and
difficulties with time action events.

EXAMPLE An object is created in a cloud storage system at time 0 with a period of 8 years and autodelete of
TRUE. At time 1 year, the system clock is adjusted forward to 9 years. Now, because the system
time is 9 years, the retention time criterion is satisfied, even though only 1 year has actually elapsed.
And, since autodelete is TRUE, the system automatically deletes the object.

The specification for accuracy and integrity of timekeeping is not within the scope of CDMI. However, to
prevent undesirable retention and deletion management consequences, systems should maintain
accurate clock time, with zero or minimal deviation to clock integrity.
202 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1

2

3
4
5

6
7
8
9

10
11

12
13

14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34

35
36

37
38
39
40
41

42
43

44
45
46
47
48
49
18 Scope Specification

18.1 Introduction

CDMI™ provides a standardized mechanism to define sets of objects that match certain characteristics.
This mechanism is known as a CDMI scope specification. Scope specifications are typically used to
provide a CDMI client with a way to indicate in what set of CDMI objects it is interested.

Each JSON object within the scope specification represents a set of conditions that shall all be true in
order for an object to be considered to match against the scope (a logical AND relationship). For queries, a
matching object would be returned in the query results. An empty scope specification is considered to
evaluate to true. Multiple JSON objects are used to express logical OR relationships, where if any JSON
object in the scope evaluates to true, then the object shall be considered to have matched against the
scope.

Each JSON object is constructed using the same structure that CDMI objects use. To show this structure,
assume the following result from a CDMI GET for a data object:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType" : "application/cdmi-object",
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",

 "parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "108263"

},
"valuerange" : "0-108262",
"value" : "..."

}

18.2 Examples

Each field inside a scope specification JSON object represents a condition that shall be met for a field.

EXAMPLE 1 A query to find all objects belonging to the domain /cdmi_domains/MyDomain/ is structured as
follows:

[
 {
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]

EXAMPLE 2 To query for all objects belonging to the domain /cdmi_domains/MyDomain/ AND are also located
within the container MyContainer, the scope specification is structured as follows:

[
 {
 "parentURI" : "== /MyContainer/",
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]

Cloud Data Management Interface Working Draft 203
Version 1.1.0d

© SNIA

50
51

52
53
54
55
56
57
58
59
60

61
62

63
64

65
66
67
68
69
70
71
72

73
74

75
76

77
78
79
80
81
82
83

84
85
86
87

88

89
90
91
92
93
94
95
96
97
98
99

100
101
EXAMPLE 3 To query for all objects created within a certain time range, the scope specification is
structured as follows:

 {
 "metadata": {
 "cdmi_ctime": [
 ">=2012-01-01T00:00:00",
 "<=2013-01-01T00:00:00"
]
 }
 }
]

When multiple matching expressions are specified for a given field or metadata item, all matching
expression must evaluate true for an object to be considered a query result.

EXAMPLE 4 To query for all objects that belong to the domain MyDomain OR are located within the container
MyContainer, the query is structured as follows:

[
 {
 "parentURI" : "== /MyContainer/",
 },
 {
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]

Queries may match on any field within an object that a cloud storage system is capable of returning as a
result of an object GET.

EXAMPLE 5 To query metadata items, the metadata object is included as an object within the query request. This
query is shown as follows:

[
 {
 "metadata" : {
 "colour" : "== blue"
 }
 }
]

This approach allows matching against arbitrarily nested metadata structures. When a JSON object is
included in the scope specification, matches are performed within that object, and when a JSON array is
included in the scope specification, matches are performed within that array. Matching against the
contents of arrays of objects is indicated by having an object within the array, as illustrated in Example 5.

EXAMPLE 6 To query all objects with an ACE associated with the user "jdoe":

[
 {
 "metadata" : {
 "cdmi_acl" : [
 {
 "identifier" : "== jdoe"
 }
]
 }
 }
]

To query the value of objects, the value field is included within the query request. Values are always
represented using base 64 encoding in queries.
204 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

102

103
104
105
106
107
108
109

110
111
EXAMPLE 7 This query is shown as follows:

{
 [
 {
 "value": "== Ymx1ZQ=="
 }
]
}

Query against the value of objects is optional and is indicated by the presence of the cdmi_query_value
capability.
Cloud Data Management Interface Working Draft 205
Version 1.1.0d

© SNIA

112

113
18.3 Query Matching Expressions

Table 122 defines the query matching expressions.

Table 122 - Query Matching Expressions (Sheet 1 of 4)

Matching Expression Description

"field" : "*" The exists matching expression tests for the existence of the field. If the field is
present, even if empty, the condition shall be considered to be met.

"field" : "!*" The not exists matching expression tests for the non-existence of the field. If the
field is absent, the condition shall be considered to be met.

"field" : "== constant" The equals matching expression tests for the equality of the value of the field and a
specified constant value. The equality test is case sensitive.

The leading space after the "==" and before the constant value is not included in the
comparison. If the constant value matches the value of the field, the condition shall
be considered to be met.

If the matching expression starts with a "#" character (e.g., "#=="), the value of the
field is considered to be numeric for the purposes of comparison. Numeric constant
strings shall be processed according to the JSON number representation described
in RFC 4627. A numeric matching expression shall be considered to be non-
matching against a non-numeric field value.

"field" : "!= constant" The not equals matching expression tests for the non-equality of the value of the
field and a specified constant value. The not-equals test is case sensitive.

The leading space character after the "!=" and before the constant value is not
included in the comparison. If the constant value does not match the value of the
field, the condition shall be considered to be met.

If the matching expression starts with a "#" character (e.g., "#!="), the value of the
field is considered to be numeric for the purposes of comparison. Numeric constant
strings shall be processed according to the JSON number representation described
in RFC 4627. A numeric matching expression shall be considered to be non-
matching against a non-numeric field value.

"field" : "> constant" The greater than matching expression tests if the value of the field is
lexicographically greater than a specified constant value. The greater than test is
case sensitive.

The leading space character after the ">" and before the constant value is not
included in the comparison.

If the constant value is greater than the value of the field, the condition shall be
considered to be met. If the matching expression starts with a "#" character (e.g.,
"#>"), the value of the field is considered to be numeric for the purposes of
comparison. Numeric constant strings shall be processed according to the JSON
number representation described in RFC 4627. A numeric matching expression
shall be considered to be non-matching against a non-numeric field value.

"field" : ">= constant" The greater than or equals to matching expression tests if the value of the field is
lexicographically greater than or equal to a specified constant value. The greater
than or equals to test is case sensitive.

The leading space character after the ">=" and before the constant value is not
included in the comparison.

If the constant value is greater than or equal to the value of the field, the condition
shall be considered to be met. If the matching expression starts with a "#" character
(e.g., "#>="), the value of the field is considered to be numeric for the purposes of
comparison. Numeric constant strings shall be processed according to the JSON
number representation described in RFC 4627. A numeric matching expression
shall be considered to be non-matching against a non-numeric field value.
206 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
"field" : "< constant" The less than operator tests if the value of the field is lexicographically less than a
specified constant value. The less than test is case sensitive.

The leading space character after the "<" and before the constant value is not
included in the comparison.

If the constant value is less than the value of the field, the condition shall be
considered to be met. If the matching expression starts with a "#" character (e.g.,
"#<"), the value of the field is considered to be numeric for the purposes of
comparison. Numeric constant strings shall be processed according to the JSON
number representation described in RFC 4627. A numeric matching expression
shall be considered to be non-matching against a non-numeric field value.

"field" : "<= constant" The less than or equals to matching expression tests if the value of the field is
lexicographically less than or equal to a specified constant value. The less than or
equal test is case sensitive.

The leading space character after the "<=" and before the constant value is not
included in the comparison.

If the constant value is less than or equal to the value of the field, the condition shall
be considered to be met. If the matching expression starts with a "#" character (e.g.,
"#<="), the value of the field is considered to be numeric for the purposes of
comparison. Numeric constant strings shall be processed according to the JSON
number representation described in RFC 4627. A numeric matching expression
shall be considered to be non-matching against a non-numeric field value.

"field" : "starts constant" The starts with matching expression tests if the field value starts with a specified
constant value.

The leading space character after the "starts" and before the constant value is not
included in the comparison. The starts with test is case sensitive.

If the constant value is equal to the start of the value of the field, the condition shall
be considered to be met.

"field" : "!starts constant" The not starts with matching expression tests if the field value does not start with a
specified constant value.

The leading space character after the "!starts" and before the constant value is not
included in the comparison. The not starts with test is case sensitive.

If the constant value is not equal to the start of the value of the field, the condition
shall be considered to be met.

"field" : "ends constant" The ends with matching expression tests if the field value ends with a specified
constant value.

The leading space character after the "ends" and before the constant value is not
included in the comparison. The ends with test is case sensitive.

If the constant value is equal to the end of the value of the field, the condition shall
be considered to be met.

"field" : "!ends constant" The not ends with matching expression tests if the field value does not end with a
specified constant value.

The leading space character after the "!ends" and before the constant value is not
included in the comparison. The not ends with test is case sensitive.

If the constant value is not equal to the end of the value of the field, the condition
shall be considered to be met.

Table 122 - Query Matching Expressions (Sheet 2 of 4)

Matching Expression Description
Cloud Data Management Interface Working Draft 207
Version 1.1.0d

© SNIA
"field" : "contains constant" The contains matching expression tests if the field value contains a specified
constant value.

The leading space character after the "contains" and before the constant value is
not included in the comparison. The contains test is case sensitive.

If the constant value is found as a substring within the value of the field, the
condition shall be considered to be met. The contains operator is only supported if
the cdmi_query_contains capability is present.

"field" : "!contains constant" The not contains matching expression tests if the field value does not contain a
specified constant value.

The leading space character after the "!contains" and before the constant value is
not included in the comparison. The not contains test is case sensitive.

If the constant value is not found as a substring within the value of the field, the
condition shall be considered to be met. The not contains operator is only supported
if the cdmi_query_contains capability is present.

"field" : "tag constant" The tag matching expression tests if the field value contains a specified constant tag
value.

The leading space character after the "tag" and before the constant value is not
included in the comparison. The tag test is not case sensitive.

If the constant value is found as a tag substring within the value of the field, the
condition shall be considered to be met. Tag substrings start at the beginning of the
value or a ",", and end at the next "," or the end of the string. Whitespace before and
after "," characters shall be stripped for the purpose of comparisons.

Tag matching expressions are only supported if the cdmi_query_tags capability is
present.

"field" : "!tag constant" The not tag matching expression tests if the field value does not contain a specified
constant tag value.

The leading space character after the "!tag" and before the constant value is not
included in the comparison. The not tag test is not case sensitive.

If the constant value is not found as a tag substring within the value of the field, the
condition shall be considered to be met. Tag substrings start at the beginning of the
value or a ",", and end at the next "," or the end of the string. Whitespace before and
after "," characters shall be stripped for the purpose of comparisons.

Tag matching expressions are only supported if the cdmi_query_tags capability is
present.

"field" : "=~ constant" The regular expression matching expression tests if the field value matches a
specified constant regular expression value.

The leading space character after the "=~" and before the constant value is not
included in the comparison. If the regular expression evaluates to true against the
value, the condition shall be considered to be met.

Regular expression strings shall be processed according to the POSIX Extended
Regular Expression (ERE) standard, as specified in IEEE Std 1003.1.

Regex matching expressions are only supported if the cdmi_query_regex capability
is present.

Table 122 - Query Matching Expressions (Sheet 3 of 4)

Matching Expression Description
208 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

114
115

116
117
118

119
120

121
122
123
124
125

126

127
128
129
130
131

132

133
134
135
136
137

138

139
140
141
142
143

144
145
All fields in objects that are not included in the scope specification shall be ignored for the purpose of
matching objects.

When a URI is used as the constant for the equals and not equals operators against the parentURI,
domainURI, and capabilitiesURI, either a URI by path or URI by object ID can be specified and are
considered interchangeable.

EXAMPLE 8 In a query to find all objects belonging to a specific domain, the following two query scopes are
considered identical:

[
 {
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]

and

[
 {
 "domainURI" : "== /cdmi_objectid/00007E7F001074C86AD256DA5C67180D/"
 }
]

EXAMPLE 9 Likewise, a query to find all objects with a given parent container would have two equivalent forms:

[
 {
 "parentURI" : "== /MyContainer/"
 }
]

and

[
 {
 "parentURI" : "== /cdmi_objectid/00007ED900100E358C3B312DB652C201/"
 }
]

If an object ID is used in a query scope in the objectID field or the parentID field, all object IDs shall be
processed such that they are case insensitive.

"field" : "!~ constant" The not regular expression matching expression tests if the field value does not
match a specified constant regular expression value.

The leading space character after the "!~" and before the constant value is not
included in the comparison. If the regular expression evaluates to false against the
value, the condition shall be considered to be met.

Regular expression strings shall be processed according to the POSIX Extended
Regular Expression (ERE) standard, as specified in IEEE Std 1003.1.

Regex matching expressions are only supported if the cdmi_query_regex capability
is present.

Table 122 - Query Matching Expressions (Sheet 4 of 4)

Matching Expression Description
Cloud Data Management Interface Working Draft 209
Version 1.1.0d

© SNIA

1

2

3
4
5

6
7

8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31
32

33
34
35
36
37
38
39
40

41

42
43
44
45
46
47

48
49
50
19 Results Specification

19.1 Introduction

CDMI™ provides a standardized mechanism to define subsets of object contents. This mechanism is
known as a CDMI results specification. Results specifications are typically used to provide a CDMI client
with a way to indicate on what subset of the contents of CDMI objects it intends to retrieve or operate.

Each JSON object within the results specification represents a set of fields that are returned for each
matching object.

The results JSON object shall be constructed using the same structure as is used for CDMI objects. To
show this, assume the following result from a CDMI GET for a data object:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType" : "application/cdmi-object",
"objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",

 "parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "108263"

},
"valuerange" : "0-108262",
"value" : "..."

}

19.2 Examples

Each field inside a results specification JSON object indicates that the field shall be included in the results.

EXAMPLE 1 The following results specification requests that the objectID and cdmi_size metadata fields be
returned in the results:

{
 "cdmi_results_specification" : {
 "objectID" : "",
 "metadata" : {
 "cdmi_size" : ""
 }
 }
}

EXAMPLE 2 If an object is matched, the result JSON is enqueued as follows:

{
 "objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
 "metadata" : {
 "cdmi_size" : "108263"
 }
}

For most common use cases, clients request either the objectID, the objectName and parentURI, or all
three fields in the cdmi_results_specification. If the parentURI or objectName is requested, the field shall
only be returned for objects existing in a container object.
210 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

51
52

53
54
55
56
57

58
59

60
61
62

63
64
65
EXAMPLE 3 To request all metadata items be returned for each matching object, the following
cdmi_results_specification shall be used:

{
 "cdmi_results_specification" : {
 "metadata" : ""
 }
}

EXAMPLE 4 To request all fields and all metadata items be returned for each matching object, the following
cdmi_results_specification shall be used:

{
 "cdmi_results_specification" : ""
}

The value field is always returned in base 64 encoding when included in a query result, where the
valuetransferencoding field indicates the encoding that should be expected if a GET to read the object is
performed.
Cloud Data Management Interface Working Draft 211
Version 1.1.0d

© SNIA

1

2

3

4

5

6

7
8

9
10
11
12

13
14
15

16

17
18
19

20
21

22

23

24

25

26

27

28

29

30
31
32
33
34

35
36
37
38
20 Logging

20.1 Overview

CDMI™ logging is divided into functional areas, each with differing levels of detail. These areas are:

• object logging,

• security logging, and

• data management logging.

This international standard does not define the format of log messages. It is anticipated that future logging
standards will address this area.

A CDMI client may access log data by creating a logging queue that indicates the scope of log messages
that the client wishes to receive, as described in 20.5. If the user has sufficient permissions to create a
logging queue, all log messages to which he or she has subscribed shall be enqueued into the queue,
which may be accessed for processing and archival storage.

If multiple logging queues are defined, each logging queue shall get the log entry for a subscribed event. If
no logging queues are defined that subscribe to a given log message or class of log messages, these
messages do not have to be retained by the cloud storage system.

20.2 Object Logging

If the cloud storage system supports logging, then all operations performed on CDMI objects (data objects,
container objects, domain objects, queue objects, and capability objects) shall be persistently stored into
all defined logging queues.

Log messages shall contain a minimum of the following information, in a format specified by the
implementor:

• a timestamp in ISO-8601 format (see 5.14);

• the domain in which the operation was performed;

• the operation being performed;

• the URI of the object against which the operation was performed;

• the principal of the entity by which the operation was performed; and

• the result of the operation.

Operations logged should include operations performed to a CDMI-exported file system.

20.3 Security Logging

All security-sensitive events, including establishing sessions, authenticating and authorizing users, and
modifying and delegating domains, shall be logged as security events. Security logging includes managing
credentials (i.e., validating revocation lists) and managing users and domains. Security logging should also
include out-of-band operations that affect the security of a cloud storage system (e.g., modifying security
properties of a CDMI domain via an administrative GUI).

If the cloud storage system supports a queue type of cdmi_logging_queue and a cdmi_logging_class of
cdmi_security_logging as shown in 20.5, this metadata indicates that the system supports audit logging.
Consequently, the system-wide capability of cdmi_security_audit specified in Table 101 of 12.1.3 shall be
set to "true". Otherwise, cdmi_security_audit shall not be present.
212 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

39

40
41
42
43
44

45

46

47
48
49
50
51

52
53
54

55
56
57
58

59
60
61
62

63
20.4 Data Management Logging

In addition to log messages associated with changing metadata when changing data system metadata,
logging should also include all conditions where the specified or actual data system metadata for objects
change. For example, if the number of requested replicas was changed by a client, this change shall
generate a log message indicating this change. A corresponding change in the actual number of replicas
by the system shall also generate a log message.

This class of logging shall also contain object holds and retention policy log messages.

20.5 Logging Queues

Logging queues allow CDMI clients to get detailed logging information about the actions related to the
operation of a cloud storage system. As queue data is persistent, no session state needs to be retained by
the client. If different logging queues are used for different clients, then each client operates independently
from the others (e.g., an analysis application may retrieve information about actions performed in a specific
domain or set of objects using a logging queue that is uniquely configured to its specific needs).

Logging queues differ from notification queues (see Clause 21) in that the information provided is at a
much more detailed level than notifications and is typically restricted to a smaller, privileged subset of
clients.

When a client wishes to receive logging information, it may first check if the system is capable of providing
logging by checking for the presence of the cdmi_logging capability in the root container capabilities. If this
capability is not present, creating a logging queue shall be successful, but no logging entries shall be
enqueued into the logging queue.

When creating a logging queue, the metadata described in Table 123 shall be provided. Attempts to
change metadata in this table shall result in an HTTP status code of 403 Forbidden. Once a logging
queue has been created, with the exception of cdmi_queue_type, the metadata items in this table cannot
be changed. cdmi_queue_type can only be removed, indicating to the system that the logging queue shall
no longer receive log messages and shall be treated as a regular CDMI queue object.

Table 123 - Required Metadata for a Logging Queue (Sheet 1 of 2)

Metadata Name Type Description Requirement

cdmi_queue_type JSON
String

The queue type indicates how the cloud storage
system shall manage the queue object. The type of
cdmi_logging_queue is defined for logging queues.

Mandatory
Cloud Data Management Interface Working Draft 213
Version 1.1.0d

© SNIA

64

65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80
81

82
83
EXAMPLE 1 An example of the metadata associated with a logging queue is as follows:

{
 "metadata" : {
 "cdmi_queue_type" : "cdmi_logging_queue",
 "cdmi_logging_class" : [
 "cdmi_object_logging",
 "cdmi_security_logging"
],
 "cdmi_scope_specification" : [
 {
 "domainURI" : "== /cdmi_domains/MyDomain/"
 }
]
 }
}

When logging messages are dequeued from a logging queue, the contents of each queue value shall
contain a JSON object and have a mimetype field value of "application/json". This JSON object contains
one or more JSON strings or objects, each representing a single log message.

Log messages are only included in a logging queue if the user who created the logging queue is able to
access the object associated with the log message, (i.e., user has any ACE from 16.1.5).

cdmi_logging_class JSON
Array of
JSON
Strings

Contains a JSON array that indicates which log
messages are to be enqueued. Defined values are:

• cdmi_object_logging - Receive logging messages
related to object operations;

• cdmi_datasystem_logging - Receive logging
messages related to data system metadata state
changes; and

• cdmi_security_logging - Receive logging messages
related to security events.

Clients may include the desired classes of log
messages in the cdmi_logging_class JSON array. If all
log messages are desired, an empty JSON array shall
be used.

Mandatory

cdmi_scope_specification JSON
Array of
JSON
Objects

The scope specification determines the set of objects
for which associated log messages shall be
enqueued. If logging is desired for all objects, include
an empty JSON array. For security logging, the scope
specification is ignored. See Clause 18 for how to
construct a scope specification.

Mandatory

Table 123 - Required Metadata for a Logging Queue (Sheet 2 of 2)

Metadata Name Type Description Requirement
214 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

84
85
86

87

88

89
90
91
92
93
94

95
96
97
EXAMPLE 2 If the administrator created the logging queue, then all matching objects, without restriction, are
included in the results. If user "jdoe" created the logging queue, then only logging messages for
objects that "jdoe" is allowed to access are included in the results.

Table 124 describes the system-created metadata that provides details on the status of the logging queue.

20.6 Logging Security Considerations

The timestamp accuracy and integrity of the log entries depend on the accuracy and integrity of the clock
that is used to set their timestamp values. Accurate timestamps are essential to troubleshooting, forensic
analysis of distributed attacks, dispute resolution, and proof of time-sensitive transactions. In essence,
debugging, security, audit, and authentication are founded on the basis of event correlation (i.e., what
happened when and whether the action occurred on the client or server side), and these security
considerations depend on good time synchronization.

While specifying the accuracy and integrity of timekeeping is not within the scope of this international
standard, to demonstrate that log timestamps are trustworthy, timestamps should be traceable to a
standard time, and it should be demonstrated that system time may not be arbitrarily changed.

Table 124 - Logging Status Metadata

Metadata Name Type Description Requirement

cdmi_logging_status JSON
String

A string indicating the state of the logging queue. Defined
values are:

• Processing - Indicates that the logging queue is
scanning for results;

• Halted - Indicates that new log messages will no longer
be enqueued;

• Current - Indicates that the logging queue contained all
log messages that can be found at this time; and

• Error - Indicates that the logging queue metadata is not
valid, or other errors were encountered that prevented
logging messages from being enqueued. Arbitrary
vendor-defined text may follow the string "Error".

Mandatory
Cloud Data Management Interface Working Draft 215
Version 1.1.0d

© SNIA

1

2
3
4

5
6
7
8
9

10
11
12
13

14
15
16
17

18
19
20

21
22
23
24
25
21 Notification Queues

A cloud storage system may optionally implement notification functionality. The implementation of
notification is indicated by the presence of the cloud storage system-wide capabilities for notification and
requires support for CDMI™ queues.

Notification queues allow CDMI clients to efficiently discover what changes have occurred to the system.
As queue data is persistent, no session state needs to be retained by the client. If different notification
queues are used for different clients, then each client operates independently from the others (e.g., a
storage management application may use a notification queue to keep its database current without having
to do full scans of a container to discover what data objects have been added, modified, or removed).

When a client wishes to receive notifications, it may first check if the system is capable of providing
notifications by checking for the presence of the cdmi_notification capability in the root container
capabilities. If this capability is not present, creating a notification queue shall be successful, but no
notifications shall be enqueued into the notification queue.

To create a notification queue, the client creates a regular CDMI queue and adds metadata instructing the
storage system to treat the queue as a notification queue. This added metadata also instructs the system
about what types of notifications shall be generated and what information shall be included with each
notification.

After the notification queue is created, all subsequent matching events after the queue creation time shall
result in notification results being enqueued into the queue. CDMI does not mandate any specific ordering
of events, and clients must be able to handle events that arrive out of order.

When creating a notification queue, the metadata described in Table 125 shall be provided. Attempts to
change metadata in this table shall result in an HTTP status code of 403 Forbidden. After a notification
queue has been created, with the exception of cdmi_queue_type, the metadata items in this table cannot
be changed. cdmi_queue_type can only be removed, indicating to the system that the notification queue
shall no longer receive notifications and shall be treated as a regular CDMI queue object.

Table 125 - Required Metadata for a Notification Queue (Sheet 1 of 2)

Metadata Name Type Description Requirement

cdmi_queue_type JSON
String

The queue type indicates how the cloud storage
system shall manage the queue object. The type of
cdmi_notification_queue is defined for notification
queues.

Mandatory

cdmi_notification_events JSON
Array of
JSON
Strings

The notification events metadata contains a JSON
array that indicates which events generate
notifications. Defined values are:

• cdmi_create_processing - Notifications are
generated when a new object is created but is still in
the "Processing" completion status.

• cdmi_create_complete - Notifications are generated
when a new object is created immediately or when a
new object in the process of being created
transitions from the "Processing" completion status.

• cdmi_read - Notifications are generated when an
object is read.

• cdmi_modify_processing - Notifications are
generated when an existing object is modified but is
still in the "Processing" completion status.

Mandatory
216 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
• cdmi_modify_complete - Notifications are generated
when an existing object is modified and is in the
"Complete" completion status. This notification is
also generated when an existing object being
modified transitions from "Processing" to
"Complete".

• cdmi_rename - Notifications are generated when an
object is renamed as part of a move operation.

• cdmi_copy - Notifications are generated for the
newly created copied object when the copy is
completed.

• cdmi_reference - Notifications are generated when a
reference is created.

• cdmi_delete - Notifications are generated when an
object is deleted.

• cdmi_export - Notifications are generated when a
container is exported.

• cdmi_snapshot - Notifications are generated when a
container snapshot is created.

• <implementor-specific events>

Clients may include the desired notification event types
in the cdmi_notification_events JSON array. If all
notifications events are desired, an empty JSON array
shall be used.

cdmi_scope_specification JSON
Array of
JSON
Objects

The scope specification determines the set of objects
on which operations trigger the generation of
notifications. If notifications are desired for all objects,
include an empty JSON array.

See Clause 18 for how to construct a scope
specification.

Mandatory

cdmi_results_specification JSON
Object

The results specification contains the JSON fields to
be returned for each object that matches the
notification scope specification. See Clause 19 for how
to construct a results specification.

In addition to the fields defined in Clause 19, for
notifications, four additional fields are defined:

• cdmi_event - Indicates the event as specified in the
cdmi_notification_events field that triggered the
notification;

• cdmi_event_result - Indicates the status result of the
event that triggered the notification. The status is the
same as the status that was returned over the HTTP
request, i.e., 200 OK, 404 Not Found, etc.;

• cdmi_event_time - Indicates the time of the event
that triggered the notification. The time will be
formatted in ISO-8601 time (see 5.14 and ISO
8601:2004); and

• cdmi_event_user - Indicates the principal (ACL
name) of the user that caused the event that
triggered the notification. If the system triggered the
event, the name will be left as an empty string.

Mandatory

Table 125 - Required Metadata for a Notification Queue (Sheet 2 of 2)

Metadata Name Type Description Requirement
Cloud Data Management Interface Working Draft 217
Version 1.1.0d

© SNIA

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58

59

60
61
62
63
64
65
66
67
68

69
70

71
72
73
EXAMPLE 1 The metadata associated with a notification queue is as follows:

{
 "metadata" : {
 "cdmi_queue_type" : "cdmi_notification_queue",
 "cdmi_notification_events" : [
 "cdmi_create_complete",
 "cdmi_read",
 "cdmi_modify_complete",
 "cdmi_delete"
],
 "cdmi_scope_specification" : [
 {
 "domainURI" : "== /cdmi_domains/MyDomain/",
 "parentURI" : "starts /sandbox",
 "metadata" : {
 "cdmi_size" : ">+100000"
 }
 }
],
 "cdmi_results_specification" : {
 "cdmi_event" : "",
 "cdmi_event_result" : "",
 "cdmi_event_time" : "",
 "objectID" : "",
 "metadata" : {
 "cdmi_size" : ""
 }
 }
 }
}

When notification results are stored in a notification queue, each enqueued value shall consist of a JSON
object of MIME type "application/json". This JSON object contains the specified values requested in the
cdmi_results_specification of the notification queue metadata.

EXAMPLE 2 A notification result JSON object is as follows:

{
 "cdmi_event" : "cdmi_read",
 "cdmi_event_result" : "200 OK",
 "cdmi_event_time" : "2010-11-15T13:12:52.342324Z",
 "objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
 "metadata" : {
 "cdmi_size" : "108263"
 }
}

Objects shall only be included in the notification results if the user who created the notification queue is
able to read the matching object.

If the administrator created the notification queue, then all matching objects that the administrator is
allowed to read are included in the results. If user "jdoe" created the notification queue, then only matching
objects that "jdoe" is allowed to read are included in the results.
218 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

74

75
Table 126 describes the system-created metadata that provides details on the status of the notification
queue.

Table 126 - Notification Status Metadata

Metadata Name Type Description Requirement

cdmi_notification_status JSON
String

A string indicating the state of the notification
queue. Defined values are:

• Processing - Indicates that the notification
queue is scanning for results;

• Halted - Indicates that new notifications will no
longer be enqueued;

• Current - Indicates that the notification queue
contained all notifications that can be found at
this time; and

• Error - Indicates that the notification queue
metadata is not valid, or other errors were
encountered that prevented notification
messages from being enqueued. Arbitrary
vendor-defined text may follow the string
"Error".

If this metadata item does not exist, then
notifications have not yet started being
enqueued.

Mandatory
Cloud Data Management Interface Working Draft 219
Version 1.1.0d

© SNIA

1

2

3
4
5

6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22
23
24
25

26

27

28
29
30
31
32
22 Query Queues

22.1 Overview

A cloud storage system may optionally implement metadata and/or full-text query functionality. The
implementation of query is indicated by the presence of the cloud storage system-wide capabilities for
query and requires support for CDMI™ queues.

Query queues allow CDMI clients to efficiently discover what content matches a given set of metadata
query criteria or full-content search criteria. Clients create or update a query queue by specifying metadata
that defines the matching criteria (known as the query scope), along with what results should be returned
for matching objects (known as the query results). The CDMI offering shall then perform the query using
the content existing at the time the query is being processed, storing the query results in the query queue.
As query results are found, they are added to the queue, and when the query is complete, the
cdmi_query_status metadata of the queue is changed to indicate that the query has completed. Any
matching objects created or modified while the query is being performed may or may not be included in the
query results (e.g., as a consequence of eventual consistency).

When a client wishes to perform queries, it may first check if the system is capable of providing query
functionality by checking for the presence of the cdmi_query capability in the root container capabilities. If
this capability is not present, creating a query queue shall be successful, but no query results shall be
enqueued into the query queue.

When creating a query queue, the metadata described in Table 127 shall be provided. Attempts to change
metadata in this table shall result in an HTTP status code of 403 Forbidden. After a query queue has
been created, with the exception of cdmi_queue_type, the metadata items in this table cannot be changed.
If the value of cdmi_queue_type is changed from "cdmi_query_queue", this change indicates to the system
that an in-process query shall be stopped, the query queue shall no longer receive query results, and the
query queue shall be treated as a regular CDMI queue object. To start a new query with an existing queue,
the value of the cdmi_queue_type shall be changed back to "cdmi_query_queue". This international

standard does not define a mechanism to pause a running query or resume a stopped query.

EXAMPLE 1 An example of the metadata associated with a query queue is as follows:

{
 "metadata" : {
 "cdmi_queue_type" : "cdmi_query_queue",
 "cdmi_scope_specification" : [
 {

Table 127 - Required Metadata for a Query Queue

Metadata Name Type Description Requirement

cdmi_queue_type JSON
String

The queue type indicates how the cloud storage
system shall manage the queue object. The type of
cdmi_query_queue is defined for query queues.

Mandatory

cdmi_scope_specification JSON
Array of
JSON
Objects

The scope specification determines which objects are
included in the query results. This scope specification
is similar to a "WHERE" clause in SQL-like languages.
To query all objects, specify an empty JSON array.
See Clause 18 for how to construct a scope
specification.

Mandatory

cdmi_results_specification JSON
Object

The results specification contains the JSON fields to
be returned for each object that matches the query.
This results specification is similar to a "SELECT"
clause in SQL-like languages. See Clause 19 for how
to construct a results specification.

Mandatory
220 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50

51

52
53
54
55
56
57

58

59
60
 "domainURI" : "== /cdmi_domains/MyDomain/",
 "parentURI" : "starts /sandbox",
 "metadata" : {
 "cdmi_size" : "#> 100000"
 }
 }
],
 "cdmi_results_specification" : {
 "objectID" : "",
 "metadata" : {
 "cdmi_size" : ""
 }
 }
 }
}

When results are stored in a query queue, each enqueued value shall consist of a JSON object of MIME
type "application/json". This JSON object contains the specified values requested in the
cdmi_results_specification of the query queue metadata.

EXAMPLE 2 An example of a query result JSON object is as follows:

{
 "objectID" : "00007E7F0010EB9092B29F6CD6AD6824",
 "metadata" : {
 "cdmi_size" : "108263"
 }
}

Table 128 describes the system-created metadata that provides details on the status of the query queue.

Objects shall only be included in the query results if the user who created the query queue is able to read
the matching objects or metadata.

Table 128 - Query Status Metadata

Metadata Name Type Description Requirement

cdmi_query_status JSON
String

When present, this metadata item indicates the
state of the query queue. Defined values are:

• Processing - Indicates that the query queue is
scanning for results;

• Halted - Indicates that new query results will no
longer be enqueued;

• Current - Indicates that the query queue
contained all query results that can be found at
this time; and

• Error - Indicates that the query queue metadata
was not valid, or other errors were encountered
that prevented all query results from being
enqueued. Arbitrary vendor-defined text may
follow the string "Error".

Mandatory
Cloud Data Management Interface Working Draft 221
Version 1.1.0d

© SNIA

61
62
63

64

65
66
67

68
69
EXAMPLE 3 If the administrator created the query queue, then all matching objects that the administrator is
allowed to read are included in the results. If user "jdoe" created the query queue, then only
matching objects that "jdoe" is allowed to read are included in the results.

22.2 Extending CDMI Query

An implementor of a CDMI server may extend CDMI query by adding vendor-specific matching
expressions. When an implementor adds vendor-specific metadata fields, these fields shall be queried
using the standard query queue functionality.

An implementor of a CDMI server may extend CDMI query by allowing the creation of vendor-specific
query queues with a type other than cdmi_query_queue.
222 Working Draft Cloud Data Management Interface
Version 1.1.0d

Section IV

CDMI Annexes

© SNIA

1

2

3

4
5
6

7

8
9

10

11

12
13

14
15
16
17

18
19
20

21

22

23
24

25

26

27

28
29

30
31
32
33

34
35
36
37

38
39

40
41

42
43
Annex A
(normative)

Transport Security

A.1 Introduction

For most CDMI™ implementations, the Hypertext Transfer Protocol (HTTP) is the underlying
communications protocol used to transfer CDMI messages. This appendix identifies the details associated
with securing this underlying transport.

A.2 General Requirements for HTTP Implementations

The security requirements for HTTP implementations apply to both CDMI servers and clients. A CDMI
client shall comply with all security requirements for HTTP that apply to clients. The following general
requirements support security when using HTTP.

• Either HTTP basic authentication or HTTP digest authentication should be implemented.

• To minimize compromising user identities and credentials, such as passwords, implementations
should use HTTP basic authentication ONLY in conjunction with Transport Layer Security (TLS).

• A user identity and credential used with one type of HTTP authentication (i.e., basic or digest)
should never be subsequently used with the other type of HTTP authentication. To avoid
compromising the integrity of a stronger scheme, established good security practices avoid the
reuse of identity and credential information across schemes of different strengths.

• TLS 1.0 shall be implemented by CDMI entities, and a more current version of TLS (e.g., v1.1 and
v1.2) is strongly encouraged. The use of TLS by CDMI entities is optional but should be used to
protect sensitive data.

• Although HTTP shall be implemented by all CDMI entities, its use is optional.

The following requirements for implementations and optional use of HTTP over TLS (HTTPS) apply:

• The following cipher suites shall be supported to ensure a minimum level of security and
interoperability between implementations:

— TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA (mandatory for TLS 1.0),

— TLS_RSA_WITH_AES_128_CBC_SHA (mandatory for TLS 1.1/1.2), and

— TLS_RSA_WITH_NULL_SHA (for TLS without encryption).

Note: Implementors are free to include additional cipher suites, but there is no guarantee of
interoperability when they are used.

• For clients and servers to communicate, they need to be using a consistent approach to security.
Properly configured clients and servers may fail to communicate, if one is relying on port 80 and
the other on port 443. Clients that fail to connect to a CDMI server via HTTP over TLS on TCP port
443 should retry with HTTP on TCP port 80 if their security policy allows it.

• Servers may accelerate discovery that a secure channel is needed by responding to HTTP
contacts on TCP port 80 with a HTTP REDIRECT to the appropriate HTTPS: URI (HTTP over TLS
on TCP port 443) to avoid the need for clients to time out the HTTP contact attempt. Clients should
honor such redirects in this situation.

— All certificates, including CA Root Certificates used by clients for certificate validation, shall be
replaceable.

— The DER-encoded X.509, base 64-encoded X.509, and PKCS#12 certificate formats shall be
supported.

— Certificate Revocation Lists shall be supported in the DER-encoded X.509 and base 64-
encoded X.509 formats.
224 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

44
45
46

47

48
49

50
51
52

53
54
55
56
57
58
59
60

61
62
63
64
65

66
67
68

69

70
71
72
73
74

75
76
77
78
79
80
81

82

83
84
85

86
87
88
89
Note: Since there are no absolutes when it comes to security, when specified versions are found
to be vulnerable and/or inadequate, CDMI implementations should move to a newer
version of TLS and stronger cipher suites as soon as possible.

A.3 Basic HTTP Security

HTTP is the mandatory transport mechanism for this version of CDMI. It is important to note that HTTP, by
itself, offers no confidentiality or integrity protections.

CDMI clients may be responsible for initiating user authentication for each CDMI server that a user
accesses. The CDMI server functions as the authenticator, and it receives the user credentials from the
HTTP authentication operations.

IETF RFC 2616 and IETF RFC 2617 define requirements for HTTP authentication, which generally starts
with an HTTP client request, such as <GET Request-URI> (where Request-URI is the resource
requested). If the client request does not include an "Authorization" header line and authentication is
required, the server responds with an HTTP status code of 401 Unauthorized and a WWW-
Authenticate header line. The HTTP client shall then respond with the appropriate Authorization header
line in a subsequent request. The format of the WWW-Authenticate and Authorization header lines varies
depending on the type of authentication required‚ basic authentication, or digest authentication. If the
authentication is successful, the server shall respond with an HTTP status code of 200 OK.

Basic authentication involves sending the user name and password in the clear, and it should only be used
on a secure network or in conjunction with a mechanism that ensures confidentiality, such as TLS. (See
A.4). Digest authentication sends a secure digest of the user name and password (and other information
including a nonce value), so that the password is not revealed. HTTP status codes of 401
Unauthorized should not include a choice of authentication.

Client authentication to the CDMI server is based on an authentication service (local and/or external).
Differing authentication schemes may be supported, including host-based authentication, Kerberos, PKI,
or other; the authentication service is out scope of this international standard.

A.4 HTTP over TLS (HTTPS)

CDMI may also include a mechanism to secure HTTP communications, such that data sent between the
clients and servers are encrypted before being sent over the network. This security is achieved by
transmitting HTTP over TLS (also known as HTTPS); the URI of a secure connection shall begin with
https:// instead of http://. It is also important to note that a CDMI client communicates with a CDMI server
via HTTPS on TCP port 443 (TCP port 80 is used for HTTP). A.5 provides important details on TLS.

When TLS is used to secure HTTP, the client and server typically perform some form of entity
authentication. However, the specific nature of this entity authentication depends on the cipher suite
negotiated; a cipher suite specifies the encryption algorithm and digest algorithm to use on a TLS
connection. A very common scenario involves the use of server-side certificates, which the client trusts, as
the basis for unidirectional entity authentication. It is possible that no authentication will occur (e.g.,
anonymous authentication) or on the other extreme, mutual authentication involving both client-side and
server-side certificates may be required.

A.5 Transport Layer Security (TLS)

CDMI servers shall implement the TLS protocol; however, its use by clients is optional. TLS 1.0, which
shall be implemented, is specified in RFC 2246, and the TLS 1.1 and TLS 1.2 should be implemented as
specified in RFC 4346 and RFC 5246, respectively.

The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating
applications. TLS allows client/server applications to communicate in a way that is designed to prevent
eavesdropping, tampering, or message forgery. TLS is layered on top of some reliable transport protocol
(e.g., TCP) and is used for encapsulating various higher-level protocols (e.g., HTTP).
Cloud Data Management Interface Working Draft 225
Version 1.1.0d

© SNIA

90
91
92
93
94

95

96

97

98

99
100
101
102

103

104
105
106

107
108
109

110
111
112
113
114
115
116
117
118

119
120

121
122
123

124
125

126
127
128

129
130
131

132

133

134
135
136
TLS provides endpoint authentication and communications privacy over the network using cryptography.
Typically, only the server is authenticated (i.e., its identity is ensured), while the client remains
unauthenticated, which means the end users (whether individuals or applications) have a measure of
assurance with whom they are communicating. Mutual authentication (the identities of both endpoints are
verified) requires, with few exceptions, the deployment of digital certificates on the client.

TLS involves three basic phases:

• peer negotiation for algorithm support;

• key exchange and authentication; and

• symmetric cipher encryption and message authentication.

During the first phase, the client and server negotiate cipher suites (see A.5.1), which determine the
ciphers to be used, the key exchange, authentication algorithms, and the message authentication codes
(MACs). The key exchange and authentication algorithms are typically public key algorithms. The MACs
are made up from a keyed-Hash Message Authentication Code, or HMAC.

A.5.1 Cipher Suites

TLS packages one key establishment, confidentiality, signature and hash algorithm into a "cipher suite." A
registered 16-bit (4 hexadecimal digit) number, called the cipher suite index, is assigned for each defined
cipher suite.

EXAMPLE RSA key agreement, RSA signature, Advanced Encryption Standard (AES) using Cipher Block
Chaining (CBC) confidentiality, and the Secure Hash Algorithm (SHA-1) hash are assigned the
hexadecimal value {0x002F} for TLS.

The client always initiates the TLS session and starts cipher suite negotiation by transmitting a handshake
message that lists the cipher suites (by index value) that it will accept. The server responds with a
handshake message indicating which cipher suite it selected from the list or an "abort" as described below.
Although the client is required to order its list by increasing "strength" of cipher suite, the server may
choose ANY of the cipher suites proposed by the client. Therefore, there is NO guarantee that the
negotiation will select the strongest suite. If no cipher suites are mutually supported, the connection is
aborted. When the negotiated options, including optional public key certificates and random data for
developing keying material to be used by the cryptographic algorithms, are complete, messages are
exchanged to place the communications channel in a secure mode.

To ensure a minimum level of security and interoperability between implementations, all CDMI clients and
servers shall support:

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite (hexadecimal value {0x0013}), which
is also the mandatory cipher suite for TLS 1.0 (see RFC 2246 Section 9, Mandatory Cipher
Suites).

• TLS_RSA_WITH_AES_128_CBC_SHA cipher suite (hexadecimal value {0x002F}) shall be
implemented, which is the mandatory cipher suite for TLS 1.2.

• TLS_RSA_WITH_NULL_SHA cipher suite (hexadecimal value {0x0002}) shall be supported by
both CDMI clients and servers to implement authenticated, non-encrypted communications. When
this cipher suite is used, HTTP basic authentication shall not be used.

• TLS_RSA_WITH_AES_128_CBC_SHA256 cipher suite (hexadecimal value {0x003C}) should be
included with all recommended TLS 1.2 implementations to meet the transition to a security
strength of 112 bits.

Implementors are free to include additional cipher suites.

A.5.2 Digital Certificates

CDMI clients and servers may be attacked by setting up a false CDMI server to capture userids and
passwords or to insert itself as an undetected proxy between a CDMI client and server. The most effective
countermeasure for this attack is the controlled use of server certificates with TLS, matched by client
226 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

137
138
139

140
141
142
143

144
145
146
147
148

149
150
151
152

153
154
155
156
157
158
159
160
161
162
163

164
165
166
167
168
169
170
171

172

173
174
175

176

177

178

179

180
181

182
183
184
controls on certificate acceptance on the assumption that the false server will be unable to obtain an
acceptable certificate. Specifically, this may be accomplished by configuring clients to always use TLS
underneath HTTP authentication and to only accept certificates from a specific local certificate authority.

When used by CDMI, TLS shall use X.509 version 3 public key certificates that conform to the Certificate
and Certificate Extension Profile defined in Section 4 of RFC 3280 (X.509v3 Certificate and CRL). This
certificate and certificate revocation list (CRL) profile specifies the mandatory fields that shall be included
in the certificate, as well as optional fields and extensions that may be included in the certificate.

Server certificates shall be supported by all CDMI servers, and client certificates may be supported by
CDMI clients. The server presents a server certificate to authenticate the server to the client; likewise, the
client presents a client certificate to authenticate itself to the server. For public websites offering secure
communications via TLS, server certificate usage is quite common, but client certificates are rarely used,
because the client is typically authenticated by other means.

EXAMPLE An e-commerce site will authenticate a client by a credit card number, user name/password, etc.,
when a purchase is made. It is much more of a trust issue that the client (purchaser) be assured of
the identity of the e-commerce site, and for this reason, server certificates are much more commonly
encountered in practice.

These X.509 certificates use a digital signature to bind together a public key with an identity. These
signatures will often be issued by a certification authority (CA) that is associated with an internal or external
public key infrastructure (PKI); however, an alternate approach uses self-signed certificates (the certificate
is digitally signed by the very same key-pair whose public part appears in the certificate data). The trust
models associated with these two approaches are very different. In the case of PKI certificates, a hierarchy
of trust and a trusted third party may be consulted in the certificate validation process, which enhances
security at the expense of increased complexity. The self-signed certificates may be used to form a web of
trust (trust decisions are in the hands of individual users/administrators), but is considered less secure, as
there is no central authority for trust (e.g., no identity assurance or revocation). This reduction in overall
security, which may still offer adequate protections for some environments, is accompanied by an easing
of the overall complexity of implementation.

With PKI certificates, it is often necessary to traverse the hierarchy or chain of trust in search of a root of
trust or trust anchor (a trusted CA). This trust anchor may be an internal CA, which has a certificate signed
by a higher ranking CA, or it may be the end of a certificate chain as the highest ranking CA. This highest
ranking CA is the ultimate attestation authority in a particular PKI scheme, and its certificate, known as a
root certificate, may only be self-signed. Establishing a trust anchor at the root certificate level, especially
for commercial CAs, may have undesirable side effects resulting from the implicit trust afforded all
certificates issued by that commercial CA. Ideally, the trust anchor should be established with the lowest
ranking CA that is practical.

A.5.2.1 Certificate Validation

CDMI clients and servers shall perform basic path validation, extension path validation, and CRL validation
as specified in Section 6 of RFC 3280 for all presented certificates. These validations include, but are not
limited to, the following:

• The certificate is a validly constructed certificate.

• The signature is correct for the certificate.

• The date of its use is within the validity period (i.e., it has not expired).

• The certificate has not been revoked (applies only to PKI certificates).

• The certificate chain is validly constructed (considering the peer certificate plus valid issuer
certificates up to the maximum allowed chain depth (applies only to PKI certificates).

When CDMI clients and servers use CRLs, they shall use X.509 version 2 CRLs that conform to the CRL
and CRL Extension Profile defined in Section 5 of RFC 3280. (This requirement also only applies to PKI
certificates.)
Cloud Data Management Interface Working Draft 227
Version 1.1.0d

© SNIA

185
186
187
188
189

190

191

192

193

194

195
196
197
198
199

200

201
202

203

204

205
206
207
208

209
210
211

212
213
214
215

216

217
218
219

220
221
222
223
224
225

226
227
228
229
When PKI certificates and self-signed certificates are used together in a single management domain, it is
important to recognize that the level of security is lowered to that afforded by self-signed certificates. Self-
signed certificates by themselves only offer the keying materials to allow confidentiality and integrity in
communications. The only identity assurances for self-signed certificates lie in the processes governing
their acceptance as described below.

A.5.2.2 Certificate Formats

All interfaces for certificate configuration (import in particular) shall support the following certificate formats:

• DER-encoded X.509. See ISO/IEC 9594-8:2008 for specification and technical corrigenda.

• Base 64-encoded X.509 (often called PEM). See Section 6.8 of RFC2045.

• PKCS#12. See PKS12 for specification and technical corrigenda.

All certificate validation software shall support local certificate revocation lists and at least one list per CA
root certificate. Support is required for both DER-encoded X.509 and base 64-encoded X.509 formats, but
this support may be provided by using one format in the software and providing a tool to convert lists from
the other format. Online Certificate Status Protocol (OCSP) and other means of immediate online
verification of certificate validity are optional, as connectivity to the issuing CA may not be assured.

A.5.2.3 Certificate Management

All certificates and their associated private keys shall be replaceable. CDMI clients and servers shall either
have the ability to

• import an externally generated certificate and corresponding private key, or

• generate and install a new self-signed certificate along with its corresponding private key.

When CDMI clients and servers use PKI certificates, the implementations shall include the ability to import,
install/store, and remove the CA root certificates; support for multiple trusted issuing CAs shall be included.
CA certificates are used to verify that a certificate has been signed by a key from an acceptable
certification authority.

All certificate interfaces required above shall support access restrictions that permit access only by suitably
privileged administrators. A suitably privileged security administrator shall be able to disable functionality
for acceptance of unrecognized certificates described in A.5.2.1 and A.5.2.2.

Support for PKCS#7 certificate format was deliberately omitted from the requirements. This format is
primarily used for online interaction with certificate authorities; such functionality is not appropriate to
require of all CDMI software, and tools are readily available to convert PKCS#7 certificates to or from other
certificate formats.

A.5.2.4 Digital Certificate Guidance for TLS

To facilitate the use of certificates, CDMI implementations should include configurable mechanisms that
allow for one of the following mutually exclusive operating modes to be in force at any time for end-entity
certificates (i.e., not CA certificates):

• Unverifiable end-entity (self-signed) certificates are automatically installed as trust anchors when
they are presented; such certificates shall be determined to not be CA root certificates before
being installed as trust anchors and shall not serve as trust anchors to verify any other certificates.
If a CA certificate is presented as an end-entity certificate in this mode, it shall be rejected. For
CDMI clients, a variant of this option, which consults the user before taking action, should be
implemented and used when possible.

Note: The use of this operating mode should be limited to a learning or enrollment period during
which communication is established with all other cloud storage systems with which
security communication is desired. Use of a timeout to force automatic exit from this mode
is recommended.
228 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

230
231
232
233

234
235
236
237
238

239
240
241
242
243

244
245
246
• Unverifiable end-entity (self-signed) certificates may be manually imported and installed as trust
anchors (in a fashion similar to manually importing and installing a CA root certificate), but they are
not automatically added when initially encountered. Administrative privilege may be required to
import and install an end-entity certificate as a trust anchor.

• This operating mode is considered commonplace. All certificate acceptance policies for CDMI
clients and servers shall be configurable. The configurable mechanisms determine how the CDMI
implementation handles presented certificates. Under normal operating mode, CDMI servers
should not accept certificates from unknown trust authorities (i.e., the CA root certificate has not
been installed).

Interactive clients should provide a means to query the user about acceptance of a certificate from an
unrecognized CA (where no corresponding CA root certificate is installed on the client) and to accept
responses allowing the use of the certificate presented or the use of all certificates from the issuing CA.
Servers should not support acceptance of unrecognized certificates; it is expected that a limited number of
CAs will be acceptable for client certificates in any site that uses them.

Pre-configuring root certificates from widely used CAs is optional but simplifies initial configuration of
certificate-based security, as certificates from those CAs will be accepted. These CA root certificates may
be exported from widely available web browsers.
Cloud Data Management Interface Working Draft 229
Version 1.1.0d

© SNIA

1

2

3

4

5
6
7

8

9

10

11
12
13

14
15
16

17
18
Annex B
(informative)
Extensions

B.1 Summary Metadata for Bandwidth

B.1.1 Overview

Domain summaries provide summary measurement information about domain usage and billing. Some
systems may track additional usage and billing information related to network bandwidth. This extension
proposes a set of additional, optional contents for domain summary objects.

B.1.2 Changes to CDMI 1.1

The changes proposed are a set of additional, optional contents for domain summary objects.

1 Insert into Clause 3 "Terms".

3.x
private network segment
a single IP address or range of IP addresses that are considered internal (e.g., LAN)

3.x
public network segment
a single IP address or range of IP addresses that are considered external (e.g., WAN)

2 Add table entries to the end of Table 63 "Contents of Domain Summary Objects" in 10.1.2 "Domain
Object Summaries" as follows:

Metadata Name Type Description Requirement

cdmi_summary_network_bytes JSON
String

Total number of bytes read/written to/from
public/private network segments

Optional

cdmi_summary_reads_private JSON
String

Total number of bytes read from private
network segment

Optional

cdmi_summary_reads_private_min JSON
String

Minimum number of bytes read from private
network segment for the given interval

Optional

cdmi_summary_reads_private_max JSON
String

Maximum number of bytes read from private
network segment for the given interval

Optional

cdmi_summary_reads_private_avg JSON
String

Average number of bytes read from private
network segment for the given interval

Optional

cdmi_summary_writes_private JSON
String

Total number of bytes written to private
network segment

Optional

cdmi_summary_writes_private_min JSON
String

Minimum number of bytes written to private
network segment for the given interval

Optional

cdmi_summary_writes_private_max JSON
String

Maximum number of bytes written to private
network segment for the given interval

Optional

cdmi_summary_writes_private_avg JSON
String

Average number of bytes written to private
network segment for the given interval

Optional

cdmi_summary_reads_public JSON
String

Total number of bytes read from public
network segment

Optional

cdmi_summary_reads_public_min JSON
String

Minimum number of bytes read from public
network segment for the given interval

Optional
230 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA
cdmi_summary_reads_public_max JSON
String

Maximum number of bytes read from public
network segment for the given interval

Optional

cdmi_summary_reads_public_avg JSON
String

Average number of bytes read from public
network segment for the given interval

Optional

cdmi_summary_writes_public JSON
String

Total number of bytes written to public
network segment

Optional

cdmi_summary_writes_public_min JSON
String

Minimum number of bytes written to public
network segment for the given interval

Optional

cdmi_summary_writes_public_max JSON
String

Maximum number of bytes written to public
network segment for the given interval

Optional

cdmi_summary_writes_public_avg JSON
String

Average number of bytes written to public
network segment for the given interval

Optional

cdmi_summary_reads_total JSON
String

Total number of bytes read from both public
and private network segments

Optional

cdmi_summary_writes_total JSON
String

Total number of bytes written to both public
and private network segments

Optional

Metadata Name Type Description Requirement
Cloud Data Management Interface Working Draft 231
Version 1.1.0d

© SNIA

19

20

21
22
23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42
43
44
B.2 Expiring Access Control Entries (ACEs)

B.2.1 Overview

A common trait of cloud storage services is the ability to share an object with other clients for a limited
time. This extension adds an attribute of ACEs used in ACLs that imposes a time limit (expiration) on the
ACE. Once the ACE expires, the ACE is no longer valid or included in the authorization calculation for the
object.

B.2.2 Changes to CDMI 1.1

1 Insert into 16.1.6 "ACL Evaluation":

After the bullet item:

• ACEs that do not refer to the principal P requesting the operation are ignored.

Insert bullet:

• ACEs that have an expiration value less than the current time are ignored.

2 Change 16.1.6 "ACL Evaluation":

Original text:
ACE = { acetype , identifier , aceflags , acemask , acetime }

Revised text:
ACE = { acetype , identifier , aceflags , acemask , acetime, expiration }

3 Insert into 16.1.6 "ACL Evaluation" after "acemask = uint_t | acemaskstring":

expiration = uint_t

4 Insert into 16.1.6 "ACL Evaluation" after "When ACE masks...":

When ACE expiration is presented in string format, it shall be specified in ISO-8601 point-in-time
format as described in 5.14.

5 Insert a new subclause 16.1.x - ACE Expiration.

An ACE may have an optional expiration associated with it. The expiration is a point-in-time value, in
ISO-8601 point-in-time format, as described in 5.14, which specifies that the ACE is no longer valid
and shall be ignored after the time specified.
232 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

45

46

47
48
49

50
51

52

53

54
B.3 Group Storage System Metadata

B.3.1 Overview

ACLs in CDMI can refer to the owner of an object by specifying an ACE Who of "OWNER@". This
reference corresponds to the contents of the cdmi_owner storage system metadata. However, no
cdmi_group storage system metadata corresponds to an ACE Who of "GROUP@".

This extension defines a new storage system metadata item, cdmi_group, that allows an object to be
associated with a group for ACL evaluation purposes.

B.3.2 Changes to CDMI 1.1

1 Add a table enty to the end of Table 103 in 12.1.3 "Data System Metadata Capabilities".

2 Add a table entry below "cdmi_owner" in Table 119 of 16.3 "Support for Storage System Metadata".

Capability Name Type Definition

cdmi_group JSON String If present and "true", this capability indicates that the cloud storage
system supports group storage system metadata to indicate a group
associated with the object.

Metadata Name Type Description Requirement

cdmi_group JSON String The name of the group that is associated with the
object.

Optional
Cloud Data Management Interface Working Draft 233
Version 1.1.0d

© SNIA

55

56

57
58

59

60

61

62
63
64
65

66
67
68

69

70

71
72

73

74

75
76
77
78
79

80
81
82

83
84
85

86

87
88

89
90
B.4 Multi-Part MIME Transfers

B.4.1 Overview

CDMI provides three methods by which the value of a data object may be transferred between CDMI
clients and servers:

• UTF-8 encoding in JSON using a CDMI content type request/response;

• Base64 encoding in JSON using a CDMI content type request/response; and

• raw binary using a non-CDMI content type request/response.

UTF-8 encoding is sufficient for most text use cases, and using raw binary transfer provided by the non-
CDMI PUT and GET operations is sufficient for some binary use cases. However, there is a need to be
able to efficiently transfer binary data alongside CDMI object metadata without incurring the overhead of
the UTF-8 or Base64 encoding and validation required to represent binary data in JSON.

This proposed extension adds the ability to use a multi-part MIME body with CDMI to allow the value to be
included as raw binary data in a separate MIME part of a single CDMI content type request/response that
does not require any encoding or validation of the data.

B.4.2 Changes to CDMI 1.1 - Clause 2 "Normative References"

1 Insert into Clause 2 "Normative References".

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types - http://www.ietf.org/rfc/
rfc2046.txt.

B.4.3 Changes to CDMI 1.1 - Clause 8 "Data Object Resource Operations"

1 Append to end of 8.1 "Overview".

The value of a data object may also be specified and retrieved using multi-part MIME, where the CDMI
JSON is transferred in the first MIME part, and the raw object value is transferred in the second MIME part.
Each MIME part, including any header fields, shall conform to RFC 2045, RFC 2046, and RFC 2616. The
length of each part may optionally be specified by a Content-Length header in addition to the MIME
boundary delimiter.

Multiple non-overlapping ranges of the value of a data object may also be accessed or updated in a multi-
part MIME operation by transferring one MIME part for each range of the value. The byte ranges for these
operations shall be specified as per Section 14.35.1 of RFC 2616.

Multi-part MIME enables the efficient transfer of binary data alongside CDMI object metadata without
incurring the overhead of the UTF-8 or Base64 encoding and validation required to represent binary data
in JSON.

2 Append to end of 8.2.3 "Capabilities".

• Support for the ability to create the value of a new data object in specified byte ranges is indicated
by the presence of the "cdmi_create_value_range" capability in the parent container.

• Support for the ability to create a new data object using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.
234 Working Draft Cloud Data Management Interface
Version 1.1.0d

http://cloud.example.com/MyContainer/0000706D0010B84FAD185C425D8B537E

© SNIA

91
92

93
94
3 Modify 8.2.4 "Request Headers", Table 7 "Request Headers for Creating a CDMI Data Object using
CDMI Content Type".

4 Modify 8.2.5 "Request Message Body", Table 8 "Request Message Body - Create a Data Object
using CDMI Content Type".

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-object" or "multipart/mixed"

If "multipart/mixed" and the deserializevalue field is not specified, the
body shall consist of at least two MIME parts, where the first part shall
contain a body of content-type "application/cdmi-object", and the
second and subsequent parts shall contain one or more byte ranges of
the value as described in 8.3 "Create a Data Object using a Non-
CDMI Content Type". If multiple byte ranges are included and the
Content-Range header is omitted for a part, the data in the part shall be
appended to the data in the preceding part, with the first part having a
byte offset of zero.

If multipart/mixed and the deserializevalue field is specified with the
value of the MIME boundary parameter, the body shall consist of two or
three MIME parts, where the first part shall contain a body of content-
type "application/cdmi-object", the second part shall contain the
serialized data object, and the third part shall optionally contain the
value as described in 8.3 "Create a Data Object using a Non-
CDMI Content Type".

Mandatory

Field Name Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of the
data object

• This field may be included when creating by value or
when deserializing, serializing, copying, and moving a
data object.

• If this field is not included and multi-part MIME is not
being used, the value of "text/plain" shall be assigned as
the field value.

• If this field is not included and multi-part MIME is being
used, the value of the Content-Type header of the second
MIME part shall be assigned as the field value.

• This field shall be stored as part of the object.

• This mimetype value shall be converted to lowercase
before being stored.

• This field shall not be included when creating a reference.

Optional

deserializevalue JSON
String

A data object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

If multi-part MIME is being used and this field contains the
value of the MIME boundary parameter, the contents of the
second MIME part shall be assigned as the field value. If the
serialized data object in the second MIME part does not
include a value field, the contents of the third MIME part
shall be assigned as the field value of the value field.

Optionala
Cloud Data Management Interface Working Draft 235
Version 1.1.0d

© SNIA

95

96

97
98
99

100
101
102
103
104
105
106
107
5 Append to end of 8.2.9 "Examples".

EXAMPLE 1 PUT to the container URI the data object name and binary contents using multi-part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
 "domainURI": "/cdmi_domains/MyDomain/",

valuetransferencoding JSON
String

The value transfer encoding used for the data object value.
Two value transfer encodings are defined.

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8 string
in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and it shall be transported as
a base 64-encoded string in the value field. Setting the
contents of the data object value field to any value other
than a valid base 64 string shall result in an HTTP status
code of 400 Bad Request being returned to the client.

This field shall only be included when creating a data object
by value.

• If this field is not included and multi-part MIME is not being
used, the value of "utf-8" shall be assigned as the field
value.

• If this field is not included and multi-part MIME is being
used, the value of "utf-8" shall be assigned as the field
value if the Content-Type header of the second and all
subsequent MIME parts includes the charset parameter as
defined in RFC 2046 of "utf-8" (e.g., ";charset=utf-8").
Otherwise, the value of "base64" shall be assigned as the
field value. This field applies only to the encoding of the
value when represented in JSON; the Content-Transfer-
Encoding header of the part specifies the encoding of the
value within a multi-part MIME request, as defined in RFC
2045.

• This field shall be stored as part of the object.

Optional

value JSON
String

The data object value.

• If this field is not included and multi-part MIME is not being
used, an empty JSON String (i.e., "") shall be assigned as
the field value.

• If this field is not included and multi-part MIME is being
used, the contents of the second MIME part shall be
assigned as the field value.

• If the valuetransferencoding field indicates UTF-8
encoding, the value shall be a UTF-8 string escaped using
the JSON escaping rules described in RFC 4627.

• If the valuetransferencoding field indicates base64
encoding, the value shall be first encoded using the base
64 encoding rules described in RFC 4648.

Optionala

Field Name Type Description Requirement
236 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

108
109
110
111
112
113
114
115
116
117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

167

168
169
170
 "metadata": {
 "colour": "blue"
 }
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-object",
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

}
}

EXAMPLE 2 PUT to the container URI the data object name and binary contents using multi-part MIME with
optional content-lengths for the parts:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object
Content-Length: 82

{
"domainURI": "/cdmi_domains/MyDomain/",
"metadata": {
"colour": "blue"

}
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Length: 37

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1
Cloud Data Management Interface Working Draft 237
Version 1.1.0d

© SNIA

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224

225
226
227
228
229
230
231
232
233
234
235
{
"objectType": "application/cdmi-object",
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

}
}

EXAMPLE 3 PUT to the container URI a serialized data object using multi-part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"deserializevalue" : "gc0p4Jq0M2Yt08j34c0p"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"objectType": "application/cdmi-object",
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "text/plain",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

},
"valuerange" : "0-36",
"valuetransferencoding" : "utf-8",
"value" : "This is the Value of this Data Object"

}

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-object",
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
238 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

236
237
238
239
240
241
242
243

244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "text/plain",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

}
}

EXAMPLE 4 PUT to the container URI a serialized data object and binary contents using multi-part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"deserializevalue" : "gc0p4Jq0M2Yt08j34c0p"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"objectType": "application/cdmi-object",
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

},
"valuerange" : "0-36",
"valuetransferencoding" : "base64"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-object",
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
Cloud Data Management Interface Working Draft 239
Version 1.1.0d

© SNIA

301
302
303
304
305

306

307
308

309
310

311

312
313

314
315

316
317
"metadata": {
"cdmi_size": "37",
"colour": "blue"

}
}

6 Append to end of 8.3.2 "Capability".

• Support for the ability to create the value of a new data object in specified byte ranges is indicated
by the presence of the "cdmi_create_value_range" capability in the parent container.

7 Modify 8.3.3 "Request Headers", Table 12 "Request Headers - Create a CDMI Data Object using
a Non-CDMI Content Type".

8 Append to end of 8.4.2 "Capabilities".

• Support for the ability to read a data object using multi-part MIME is indicated by the presence of
the "cdmi_multipart_mime" system-wide capability.

9 Modify 8.4.3 "Request Headers", Table 14 "Request Headers - Read a CDMI Data Object using
CDMI Content Type".

10 Modify 8.4.5 "Response Headers", Table 15 "Response Headers - Read a CDMI Data Object using
CDMI Content Type".

Header Type Description Requirement

Content-
Range

Header
String

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

Header Type Description Requirement

Accept Header
String

"application/cdmi-object" or "multipart/mixed" Mandatory

Header Type Description Requirement

Content-
Type

Header
String

"application/cdmi-object" or "multipart/mixed"

If "multipart/mixed", the body shall consist of at least two MIME parts,
where the first part shall contain a body of content-type "application/
cdmi-object" and the second and subsequent parts shall contain the
requested byte ranges of the value as described in 8.5 "Read a
Data Object using a Non-CDMI Content Type". If multiple byte
ranges are included and the Content-Range header is omitted for a
part, the data in the part shall be appended to the data in the
preceding part, with the first part having a byte offset of zero.

Mandatory
240 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

318
319

320

321

322
323
324
325

326

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
11 Modify 8.4.6 "Response Message Body", Table 16 "Response Message Body - Read a Data Object
using CDMI Content Type".

12 Append to end of 8.4.8 "Examples".

EXAMPLE 1 GET to the data object URI to read the data object using multi-part MIME:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"objectType": "application/cdmi-object",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

},
"valuerange": "0-36",
"valuetransferencoding": "base64"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p—

Header Type Description Requirement

value JSON
String

The data object value

• If the valuetransferencoding field indicates UTF-8 encoding, the
value field shall contain a UTF-8 string using JSON escaping rules
described in RFC 4627.

• If the valuetransferencoding field indicates base64 encoding, the
value field shall contain a base 64-encoded string as described in
RFC 4648.

• The value field shall not be provided when using multi-part MIME.

• The value field shall only be provided when the completionStatus
field contains "Complete".

• When reading a value, zeros shall be returned for any gaps resulting
from non-contiguous writes.

Conditional
Cloud Data Management Interface Working Draft 241
Version 1.1.0d

© SNIA

359
360

361
362
363
364

365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

400
401

402
403
404
405

406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
EXAMPLE 2 GET to the data object URI to read the data object using multi-part MIME, with optional content-
lengths for the parts:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object
Content-Length: 505

{
"objectType": "application/cdmi-object",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "MyDataObject.txt",
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

},
"valuerange": "0-36",
"valuetransferencoding": "base64"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Length: 37

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p—

EXAMPLE 3 GET to the data object URI to read the metadata and multiple byte ranges of the binary contents
using multi-part MIME:

GET /MyContainer/MyDataObject.txt?metadata;value:0-10;value:21-24 HTTP/1.1
Host: cloud.example.com
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"metadata": {
"cdmi_size": "37",
"colour": "blue"

}
}

242 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

437

438
439

440
441

442
443

444

445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Range: bytes 0-10/37

<11 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Range: bytes 21-24/37

<4 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

13 Append to end of 8.6.2 "Capabilities".

• Support for the ability to modify an existing data object using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.

14 Modify 8.6.3 "Request Headers", Table 21 "Request Headers - Update a CDMI Data Object using
CDMI Content Type".

15 Modify 8.6.4 "Request Message Body", Table 22 "Request Message Body - Update a CDMI Data
Object using CDMI Content Type".

16 Append to end of 8.6.8 "Examples".

EXAMPLE 1 PUT to the data object URI to set new field values and the binary contents using multi-part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"metadata": {
"colour": "red",
"number": "7"

}
}

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" or "multipart/mixed"

If multipart/mixed and the deserializevalue field is not specified, the
body shall consist of at least two MIME parts, where the first part
shall contain a body of content-type "application/cdmi-object" and the
second and subsequent parts shall contain one or more byte ranges
of the value as described in 8.7. If multiple byte ranges are included
and the "Content-Range" header is omitted for a part, the data in the
part shall be appended to the data in the preceding part, with the first
part having a byte offset of zero.

If multipart/mixed and the deserializevalue field is specified with the
value of the MIME boundary parameter, the body shall consist of two
or three MIME parts, where the first part shall contain a body of
content-type "application/cdmi-object", the second part shall contain
the serialized data object, and the third part shall optionally contain
the value as described in 6.7.

Mandatory
Cloud Data Management Interface Working Draft 243
Version 1.1.0d

© SNIA

461
462
463
464
465
466
467

468

469

470
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500

501

502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the data object URI to replace just one metadata item and update multiple byte ranges within
the binary contents of the data object using multi-part MIME:

PUT /MyContainer/BinaryObject.txt?metadata:colour HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"metadata": {
"colour": "green"

}
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Range: bytes 0-10/37

<11 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Range: bytes 21-24/37

<4 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 3 PUT to the data object URI a serialized data object using multi-part MIME:

PUT /MyContainer/BinaryObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"deserializevalue": "gc0p4Jq0M2Yt08j34c0p"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"objectType": "application/cdmi-object",
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3",
"objectName": "MyDataObject.txt",
244 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

538

539

540

541

542
543
544

545
546
547

548
549

550
551
"parentURI": "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "text/plain",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

},
"valuerange" : "0-36",
"valuetransferencoding" : "utf-8",
"value" : "This is the Value of this Data Object"

}

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

B.4.4 Changes to CDMI 1.1 - Clause 9 "Container Object Resource Operations"

1 Append to end of 9.9.2 "Capability".

• If the new data object is being created in "/cdmi_objectid/", support for the ability to create the
value of the new data object in specified byte ranges is indicated by the presence of the
"cdmi_create_value_range_by_ID" system capability.

• If the new data object is being created in a container object, support for the ability to create the
value of the new data object in specified byte ranges is indicated by the presence of the
"cdmi_create_value_range" capability in the parent container.

• Support for the ability to create a new data object by ID using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.

2 Modify 9.8.4 "Request Headers", Table 49 "Request Headers - Create a New Data Object using
CDMI Content Type".

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" or "multipart/mixed"

If multipart/mixed and the deserializevalue field is not specified, the
body shall consist of at least two MIME parts, where the first part
shall contain a body of content-type "application/cdmi-object" and the
second and subsequent parts shall contain one or more byte ranges
of the value as described in 8.3. If multiple byte ranges are included
and the "Content-Range" header is omitted for a part, the data in the
part shall be appended to the data in the preceding part, with the first
part having a byte offset of zero.

If multipart/mixed and the deserializevalue field is specified with the
value of the MIME boundary parameter, the body shall consist of two
or three MIME parts, where the first part shall contain a body of
content-type "application/cdmi-object", the second part shall contain
the serialized data object, and the third part shall optionally contain
the value as described in 8.3.

Mandatory
Cloud Data Management Interface Working Draft 245
Version 1.1.0d

© SNIA

552
553
3 Modify 9.8.5 "Request Message Body", Table 50 "Request Message Body - Create a New Data
Object using CDMI Content Type".

Header Type Description Requirement

mimetype JSON
String

MIME type of the data contained within the value field of the data
object

• This field may be included when creating by value or when
deserializing, serializing, copying, or moving a data object.

• If this field is not included and multi-part MIME is not being used,
the value of "text/plain" shall be assigned as the field value.

• If this field is not included and multi-part MIME is being used, the
value of the "Content-Type" header of the second MIME part shall
be assigned as the field value.

• This field shall be stored as part of the object.

• This mimetype value shall be converted to lowercase before being
stored.

• This field shall not be included when creating a reference.

Optional

deserializeval
ue

JSON
String

A data object serialized as specified in Clause 15 and encoded using
base 64 encoding rules described in RFC 4648.

If multi-part MIME is being used and this field contains the value of
the MIME boundary parameter, the contents of the second MIME part
shall be assigned as the field value. If the serialized data object in the
second MIME part does not include a value field, the contents of the
third MIME part shall be assigned as the field value of the value field.

Optionala

valuetransfer
encoding

JSON
String

The value transfer encoding used for the data object value. Two
value transfer encodings are defined.

• "utf-8" indicates that the data object contains a valid UTF-8 string,
and it shall be transported as a UTF-8 string in the value field.

• "base64" indicates that the data object may contain arbitrary binary
sequences, and it shall be transported as a base 64-encoded
string in the value field. Setting the contents of the data object
value field to any value other than a valid base 64 string shall result
in an HTTP status code of 400 Bad Request being returned to
the client.

This field shall only be included when creating a data object by value.

• If this field is not included and multi-part MIME is not being used,
the value of "utf-8" shall be assigned as the field value.

• If this field is not included and multi-part MIME is being used, the
value of "utf-8" shall be assigned as the field value if the "Content-
Type" header of the second and all subsequent MIME parts
includes the charset parameter as defined in RFC 2046 of "utf-8"
(e.g., ";charset=utf-8"). Otherwise, the value of "base64" shall be
assigned as the field value. This field applies only to the encoding
of the value when represented in JSON; the "Content-Transfer-
Encoding" header of the part specifies the encoding of the value
within a multi-part MIME request, as defined in RFC 2045.

This field shall be stored as part of the object.

Optional
246 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

554

555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

579

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
4 Append to end of 9.8.9 "Examples".

EXAMPLE 1 POST to the object ID URI the data object fields and binary contents using multi-part MIME:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"domainURI": "/cdmi_domains/MyDomain/",
"metadata": {
"colour": "blue"

}
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/00007ED90010C2414303B5C6D4F83170
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-object",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "application/octet-stream",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

}
}

value JSON
String

The data object value

• If this field is not included and multi-part MIME is not being used,
an empty JSON String (i.e., "") shall be assigned as the field value.

• If this field is not included and multi-part MIME is being used, the
contents of the second MIME part shall be assigned as the field
value.

• If the valuetransferencoding field indicates UTF-8 encoding, the
value shall be a UTF-8 string escaped using the JSON escaping
rules described in RFC 4627.

• If the valuetransferencoding field indicates base64 encoding, the
value shall be first encoded using the base 64 encoding rules
described in RFC 4648.

Optionala

Header Type Description Requirement
Cloud Data Management Interface Working Draft 247
Version 1.1.0d

© SNIA

597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

631

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

649

650
651
652

653
654
655
EXAMPLE 2 POST to the object ID URI a serialized data object using multi-part MIME:

POST /cdmi_objectid/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"deserializevalue": "gc0p4Jq0M2Yt08j34c0p"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"objectType": "application/cdmi-object",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "text/plain",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

},
"valuerange" : "0-36",
"valuetransferencoding" : "utf-8",
"value" : "This is the Value of this Data Object"

}

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/00007ED90010C2414303B5C6D4F83170
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-object",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus": "Complete",
"mimetype": "text/plain",
"metadata": {
"cdmi_size": "37",
"colour": "blue"

}
}

5 Append to end of 9.10.3 "Capabilities".

• If the new data object is being created in "/cdmi_objectid/", support for the ability to create the
value of the new data object in specified byte ranges is indicated by the presence of the
"cdmi_create_value_range_by_ID" system capability.

• If the new data object is being created in a container object, support for the ability to create the
value of the new data object in specified byte ranges is indicated by the presence of the
"cdmi_create_value_range" capability in the parent container.
248 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

656
657

658

659
660

661
662

663
664

665

666

667
668
669
670
671
672
673
674
675
676
677
678
679
6 Modify 9.10.4 "Request Headers", Table 54 "Request Header - Create a New Data Object using a
Non-CDMI Content Type".

7 Append to end of 9.10.3 "Capabilities".

• Support for the ability to create a queue object using multi-part MIME is indicated by the presence
of the "cdmi_multipart_mime" system-wide capability.

8 Modify 9.10.4 "Request Headers", Table 57 "Request Headers - Create a New Queue Object using
CDMI Content Type".

9 Modify 9.10.5 "Request Message Body", Table 58 "Request Message Body - Create a New Queue
Object using CDMI Content Type".

10 Append to end of 9.10.9 "Example"

EXAMPLE 1 POST to the container object URI a serialized queue object using multi-part MIME:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
"deserializevalue": "gc0p4Jq0M2Yt08j34c0p"

}

Header Type Description Requirement

Content-
Range

Header
String

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" or "multipart/mixed"

If multipart/mixed and the deserializevalue field is specified with the
value of the MIME boundary parameter, the body shall consist of two
or more MIME parts, where the first part shall contain a body of
content-type "application/cdmi-queue", the second part shall contain
the serialized queue object, and optionally the third and subsequent
parts shall each contain a queue value as described in 8.5 "Read a
Data Object using a Non-CDMI Content Type".

Mandatory

Field Name Type Description Requirement

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

If multi-part MIME is being used and this field contains the
value of the MIME boundary parameter, the contents of the
second MIME part shall be assigned as the field value. If the
serialized queue object in the second MIME part does not
include a value field, the contents of the third and
subsequent MIME parts shall be assigned as the field value
of the value field.

Optionala
Cloud Data Management Interface Working Draft 249
Version 1.1.0d

© SNIA

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
"objectType": "application/cdmi-queue",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "00007ED90010C2414303B5C6D4F83170",
"parentURI": "/MyContainer/",
"parentID" : " 00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata" : {},
"queueValues" : "0-1",
"mimetype" : [
"text/plain",
"text/plain"

],
"valuetransferencoding" : [
"utf-8",
"utf-8"

],
 "value" : [
 "First Enqueued Value",

"Second Enqueued Value"
]

}

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response:

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1
Location: http://cloud.example.com/MyContainer/00007ED90010C2414303B5C6D4F83170

{
"objectType": "application/cdmi-queue",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "00007ED90010C2414303B5C6D4F83170",
"parentURI": "/MyContainer/",
"parentID" : " 00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "0-1"

}

EXAMPLE 2 POST to the container object URI a serialized queue object and its values using multi-part MIME:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
"deserializevalue": "gc0p4Jq0M2Yt08j34c0p"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{

250 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

788

789

790
791
792
793
794

795

796
797
"objectType": "application/cdmi-queue",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "00007ED90010C2414303B5C6D4F83170",
"parentURI": "/MyContainer/",
"parentID" : " 00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "0-1"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response:

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1
Location: http://cloud.example.com/MyContainer/00007ED90010C2414303B5C6D4F83170

{
"objectType": "application/cdmi-queue",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "00007ED90010C2414303B5C6D4F83170",
"parentURI": "/MyContainer/",
"parentID" : " 00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "0-1"

}

B.4.5 Changes to CDMI 1.1 - Clause 11 "Queue Object Resource Operations"

1 Append to end of 11.1 "Overview".

The value of a queue object may also be specified and retrieved using multi-part MIME, where the CDMI
JSON is transferred in the first MIME part and the raw queue values are transferred in the subsequent
MIME parts. Each MIME part, including any header fields, shall conform to RFC 2045, RFC 2046, and
RFC 2616, and the length of each part may optionally be specified by a Content-Length header in addition
to the MIME boundary delimiter.

2 Append to end of 11.2.3 "Capabilities".

• Support for the ability to create a queue object using multi-part MIME is indicated by the presence
of the "cdmi_multipart_mime" system-wide capability.
Cloud Data Management Interface Working Draft 251
Version 1.1.0d

© SNIA

798
799

800
801

802

803
804

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
3 Modify 11.2.4 "Request Headers", Table 81 "Request Headers - Create a Queue Object using
CDMI Content Type".

4 Modify11.2.5 "Request Message Body", Table 82 "Request Message Body - Create a Queue
Object using CDMI Content Type".

5 Append to end of 11.2.9 "Examples".

EXAMPLE 3 PUT to the container object URI the queue object name and a serialized queue object and its values
using multi-part MIME:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue
{
"deserializevalue": "gc0p4Jq0M2Yt08j34c0p"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
"objectType": "application/cdmi-queue",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "MyQueue",
"parentURI": "/MyContainer/",
"parentID" : " 00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "0-1"

}

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" or "multipart/mixed"

If "multipart/mixed" and the deserializevalue field is specified with the
value of the MIME boundary parameter, the body shall consist of two
or more MIME parts, where the first part shall contain a body of
content-type "application/cdmi-queue", the second part shall contain
the serialized queue object, and optionally the third and subsequent
parts shall each contain a queue value as described in 8.5 "Read a
Data Object using a Non-CDMI Content Type".

Mandatory

Field Name Type Description Requirement

deserializevalue JSON
String

A queue object serialized as specified in Clause 15 and
encoded using base 64 encoding rules described in RFC
4648.

If multi-part MIME is being used and this field contains the
value of the MIME boundary parameter, the contents of the
second MIME part shall be assigned as the field value. If the
serialized queue object in the second MIME part does not
include a value field, the contents of the third and
subsequent MIME parts shall be assigned as the field value
of the value field.

Optionala
252 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

832
833
834
835
836
837
838
839
840
841
842
843
844
845

846

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

863

864
865

866
867

868
869
--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response:

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-queue",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "MyQueue",
"parentURI": "/MyContainer/",
"parentID" : " 00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "0-1"

}

6 Append to end of 11.3.2 "Capabilities"

• Support for the ability to read a queue object using multi-part MIME is indicated by the presence of
the "cdmi_multipart_mime" system-wide capability.

7 Modify 11.3.3 "Request Headers", Table 86 "Request Headers - Read a Queue Object using CDMI
Content Type".

8 Modify 11.3.5 "Response Headers", Table 87 "Response Headers - Read a Queue Object using
CDMI Content Type".

Header Type Description Requirement

Accept Header
String

"application/cdmi-queue" or "multipart/mixed" Mandatory

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" or "multipart/mixed"

If "multipart/mixed", the body shall consist of one or more MIME parts,
where the first part shall contain a body of content-type "application/
cdmi-queue", and the second and subsequent parts shall each
contain a queue value as described in 8.5 "Read a Data Object
using a Non-CDMI Content Type".

Mandatory
Cloud Data Management Interface Working Draft 253
Version 1.1.0d

© SNIA

870
871

872

873

874
875
876
877

878

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
9 Modify 11.3.6 "Response Message Body", Table 88 "Response Message Body - Read a Queue
Object using CDMI Content Type".

10 Append to end of 11.3.8 "Examples".

EXAMPLE 1 GET to the queue object URI to read the queue object using multi-part MIME:

GET /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
"objectType": "application/cdmi-queue",
"objectID": "00007ED9001035E14BD1BA70C2EE98FC",
"objectName": "MyQueue",
"parentURI": "/MyContainer/",
"parentID" : " 00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "1-2",
"mimetype": [
"application/octet-stream",
"application/octet-stream"

],
"valuerange": [
"0-19",
"0-36"

],
"valuetransferencoding": [
"base64",
"base64"

]
}

--gc0p4Jq0M2Yt08j34c0p

Field Name Type Description Requirement

value JSON
Array of
JSON
Strings

The oldest enqueued queue object values.

• The values in the JSON array are returned in order from
oldest to newest.

• If the valuetransferencoding field indicates UTF-8
encoding, the corresponding value field shall contain a
UTF-8 string using JSON escaping rules described in
RFC 4627.

• If the valuetransferencoding field indicates base64
encoding, the corresponding value field shall contain a
base 64-encoded string as described in RFC 4648.

• The value field shall not be provided when using multi-
part MIME.

• The value field shall only be provided when the
completionStatus field contains "Complete".

Conditional
254 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

912
913
914
915
916
917
918
919
920
921
922
923

924

925
926

927
928

929
930

931

932

933
934
935
936
937
938
939
940
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

11 Append to end of 11.4.2 "Capability"

• Support for the ability to modify an existing queue object using multi-part MIME is indicated by the
presence of the "cdmi_multipart_mime" system-wide capability.

12 Modify 11.4.3 "Request Headers", Table 90 "Request Headers - Update a Queue Object using
CDMI Content Type".

13 Modify 11.4.4 "Request Message Body", Table 91 "Request Message Body - Update a Queue
Object using CDMI Content Type".

14 Append to end of 11.4.8 "Examples".

EXAMPLE 1 PUT to the queue object URI a serialized queue object and its values using multi-part MIME:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-queue" or "multipart/mixed"

If multipart/mixed and the deserializevalue field is specified with the
value of the MIME boundary parameter, the first part shall contain a
body of content-type "application/cdmi-queue", the second part shall
contain the serialized queue object, and the subsequent parts shall
optionally contain the queue values as described in 8.5 "Read a
Data Object using a Non-CDMI Content Type".

Mandatory

Field Name Type Description Requirement

deserializevalue JSON
String

URI of a serialized CDMI queue object that shall be
deserialized to update an existing queue object. The object
ID of the serialized queue object shall match the object ID of
the destination queue object.

All enqueued items in the serialized queue object shall be
added to the destination queue object.

If multi-part MIME is being used and this field contains the
value of the MIME boundary parameter, the contents of the
second MIME part shall be assigned as the field value. If the
serialized queue object in the second MIME part does not
include a value field, the contents of the third and
subsequent MIME parts shall be assigned as the field value
of the value field.

Optionala
Cloud Data Management Interface Working Draft 255
Version 1.1.0d

© SNIA

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

974

975

976

977
978

979
980
{
"deserializevalue": "gc0p4Jq0M2Yt08j34c0p"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
"objectType": "application/cdmi-queue",
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "MyQueue",
"parentURI": "/MyContainer/",
"parentID" : " 00007ED90010C2414303B5C6D4F83170",
"domainURI": "/cdmi_domains/MyDomain/",
"capabilitiesURI": "/cdmi_capabilities/queue/",
"completionStatus": "Complete",
"metadata": {},
"queueValues": "0-1"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

15 Append to end of 11.6.2 "Capability".

• Support for the ability to modify the value of an existing queue object using multi-part MIME is
indicated by the presence of the "cdmi_multipart_mime" system-wide capability.

16 Modify 11.6.3 "Request Headers", Table 96 "Request Headers - Enqueue a New Queue Object
Value using CDMI Content Type".

Header Type Description Requirement

Content-Type Header
String

"application/cdmi-object" or "multipart/mixed"

If "multipart/mixed", the first part shall contain a body of content-type
"application/cdmi-queue", and the subsequent parts shall contain the
queue values as described in 8.3.

Mandatory
256 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

981
982
17 Modify 11.6.4 "Request Message Body", Table 97 "Request Message Body - Enqueue a New
Queue Object Value using CDMI Content Type".

Field Name Type Description Requirement

mimetype JSON
Array of
JSON
Strings

MIME type of the data to be enqueued into the queue
object.

• This field shall be stored as part of the object.

• If this field is not included and multi-part MIME is not
being used, the value of "text/plain" shall be assigned as
the field value.

• If this field is not included and multi-part MIME is being
used, the value of the "Content-Type" header of the
corresponding MIME part shall be assigned as the field
value.

• The same number of array elements shall be present as
is present in the value field, and the mimetype shall be
associated with the value in the corresponding position.

• This mimetype value shall be converted to lowercase
before being stored.

Optional

valuetransferencoding JSON
Array of
JSON
Strings

The value transfer encoding used for the queue object
value. Two value transfer encodings are defined.

• "utf-8" indicates that the data object contains a valid
UTF-8 string, and it shall be transported as a UTF-8
string in the value field.

• "base64" indicates that the data object may contain
arbitrary binary sequences, and it shall be transported
as a base 64-encoded string in the value field. Setting
the contents of the data object value field to any value
other than a valid base 64 string shall result in an HTTP
status code of 400 Bad Request being returned to the
client.

• If this field is not included and multi-part MIME is not
being used, the value of "utf-8" shall be assigned as the
field value.

• If this field is not included and multi-part MIME is being
used, the value of "utf-8" shall be assigned as the field
value if the "Content-Type" header of the corresponding
MIME part includes the charset parameter as defined in
RFC 2046 of "utf-8" (e.g., ";charset=utf-8"). Otherwise,
the value of "base64" shall be assigned as the field
value. This field applies only to the encoding of the
value when represented in JSON; the "Content-
Transfer-Encoding" header of the part specifies the
encoding of the value within a multi-part MIME request,
as defined in RFC 2045.

• This field shall be stored as part of the object.

Optional
Cloud Data Management Interface Working Draft 257
Version 1.1.0d

© SNIA

983

984

985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007

1008

1009

1010
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
18 Append to end of Table 11.6.8 "Examples".

EXAMPLE 1 POST to the queue object URI the binary contents of two new values using multi-part MIME:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No content

EXAMPLE 2 POST to the queue object URI the mime types and binary contents of two new values using multi-
part MIME:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
"mimetype" : [
"application/pdf",
"image/jpeg"

]
}

value JSON
Array of
JSON
Strings

Data to be enqueued into the queue object.

• If this field is not included and multi-part MIME is being
used, the contents of the MIME parts shall be assigned
as the field value.

• If the corresponding valuetransferencoding field
indicates UTF-8 encoding, the value shall be a UTF-8
string escaped using the JSON escaping rules
described in RFC 4627.

• If the corresponding valuetransferencoding field
indicates base64 encoding, the value shall be first
encoded using the base 64 encoding rules described in
RFC 4648.

Optionala

Field Name Type Description Requirement
258 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1040

1041

1042

1043
1044

1045
--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No content

B.4.6 Changes to CDMI 1.1 - Clause 12 "Capability Object Resource Operations"

1 Insert into 12.1.1 "Cloud Storage System-Wide Capabilities", Table 101 "System-Wide
Capabilities".

2 Insert into 12.1.5 "Container Capabilities", Table 105 "Capabilities for Containers".

Capability Name Type Definition

cdmi_multipart_mime JSON
String

If present and "true", this capability indicates that the cloud storage
system supports storing and retrieving the value of data and queue
objects using multi-part MIME.

cdmi_create_value_range_by_ID JSON
String

If present and "true", this capability indicates that the system allows
a new data object’s value to be created with byte ranges through "/
cdmi_objectid/".

Capability Name Type Definition

cdmi_create_value_range JSON
String

If present and "true", this capability indicates that the container
allows a new data object’s value to be created with byte ranges.
Cloud Data Management Interface Working Draft 259
Version 1.1.0d

© SNIA

1046

1047

1048
1049
1050
1051
1052

1053
1054

1055

1056

1057

1058
1059
1060

1061
1062
1063

1064
1065
1066

1067
1068
1069

1070

1071

1072
1073
1074
1075

1076

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
B.5 Versioning

B.5.1 Overview

This CDMI extension adds the ability to request that data objects be versioned and defines how versions
are accessed and managed. Version-enabled data objects provide access to and retention of historical
versions of a data object and can provide compliance functionality and revision history. Version-enabled
data objects also help applications handle multiple concurrent writers in disconnected distributed
environments.

Versioning is based on the snapshot concept introduced in CDMI 1.0 (see Clause 14 "Snapshots") and
follows the same architectural pattern. It should be reviewed in this context.

Note: Reviewers: Please start reading at Clause "23 Data Object Versions" on page 265.

B.5.2 Changes to CDMI 1.1

1 Insert into Clause 3 "Terms".

3.x
current data object version
the most recent version of a version-enabled data object

3.x
data object version
either the current data object version or an historical data object version

3.x
historical data object version
a non-current state of a version-enabled data object

3.x
version-enabled data object
a CDMI data object with versioning enabled

2 Insert into 8.4.8 "Examples" at the end of the clause.

EXAMPLE 1 GET to the URI to read a newly-created data object with a current version:

GET /MyContainer/MyVersionedDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType" : "application/cdmi-object",
"objectID" : "00007ED900100DA32EC94351F8970400",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "33",
"cdmi_versioning" : "user",
"cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
260 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1095
1096
1097
1098
1099
1100
1101
1102
1103

1104

1105
1106
1107
1108

1109

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

1137

1138
1139
1140
1141

1142

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
"cdmi_version_current" : "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA",
"cdmi_version_oldest" : [
"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"

]
},
"valuerange" : "0-32",
"valuetransferencoding" : "utf-8",
"value" : "First version of this Data Object"

}

EXAMPLE 2 GET to the URI to read a data object with two historical versions:

GET /MyContainer/MyVersionedDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType" : "application/cdmi-object",
"objectID" : "00007ED900100DA32EC94351F8970400",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "33",
"cdmi_versioning" : "user",
"cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [
"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"

]
},
"valuerange" : "0-32",
"valuetransferencoding" : "utf-8",
"value" : "Third version of this Data Object"

}

EXAMPLE 3 GET to the URI of a data object version:

GET /cdmi_objectid/00007ED9001005192891EEBE599D94BB HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType" : "application/cdmi-object",
"objectID" : "00007ED9001005192891EEBE599D94BB",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
"completionStatus" : "Complete",
Cloud Data Management Interface Working Draft 261
Version 1.1.0d

© SNIA

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

1173
1174

1175
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "34",
"cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [
"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"

],
"cdmi_version_parent" : "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA",
"cdmi_version_children" : [
"/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC"

]
},
"valuerange" : "0-33",
"valuetransferencoding" : "utf-8",
"value" : "Second version of this Data Object"

}

3 Insert into 12.1.3 "Data System Metadata Capabilities", Table 103 "Capabilities for Data System
Metadata".

4 Insert into 16.3 "Support for Storage System Metadata", Table 119 "Storage System Metadata".

Capability Name Type Description

cdmi_versioning JSON
Array of
JSON
Strings

If present, this capability indicates that the cloud storage system shall
support versioning of data objects and contains a list of which versioning
behaviors are supported. The following values are defined:

• "value" indicates that the system shall support the versioning of the
object value.

• "user" indicates that the system shall support the versioning of the object
value and user metadata.

• "all" indicates that the system shall support the versioning of all updates
made to a data object.

When present, the system shall support the following storage system
metadata: cdmi_version_object, cdmi_version_current,
cdmi_version_oldest, cdmi_version_parent, and cdmi_version_children as
indicated by the corresponding storage system metadata capabilities.

cdmi_versions_count JSON
String

If present, this capability specifies the maximum number of historical
versions that may be specified. If absent, restrictions on the number of
historical versions specified shall be ignored.

cdmi_version_age JSON
String

If present, this capability specifies the maximum age of historical versions
that may be specified. If absent, restrictions on the age of historical
versions specified shall be ignored.

cdmi_versions_size JSON
String

If present, this capability specifies the maximum total size of historical
versions that may be specified. If absent, restrictions on the size of
historical versions specified shall be ignored.

Metadata Name Type Description Requirement

cdmi_version_object JSON String If present and "true", this capability indicates that the
cloud storage system shall generate a
cdmi_version_object storage system metadata for
each version-enabled data object and data object
version.

Conditional

cdmi_version_current JSON String If present and "true", this capability indicates that the
cloud storage system shall generate a
cdmi_version_current storage system metadata for
each version-enabled data object and data object
version.

Conditional
262 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1176
 5 Insert into 16.4 "Support for Data System Metadata", Table 120 "Data System Metadata".

cdmi_version_oldest JSON Array
of JSON
Strings

If present and "true", this capability indicates that the
cloud storage system shall generate a
cdmi_version_oldest storage system metadata for
each version-enabled data object and data object
version.

Conditional

cdmi_version_parent JSON String If present and "true", this capability indicates that the
cloud storage system shall generate a
cdmi_version_parent storage system metadata for
each data object version that has a previous version.

Conditional

cdmi_version_children JSON Array
of JSON
Strings

If present and "true", this capability indicates that the
cloud storage system shall generate a
cdmi_version_children storage system metadata for
each data object version.

Conditional

Metadata Name Type Description Requirement

cdmi_versioning JSON String If present, this metadata item indicates that
versioning is requested to be enabled for the data
object.

• If set to the value "value", versions shall be created
when the value is updated.

• If set to the value "user", versions shall be created
when the value and/or user metadata is updated.

• If set to the value "all", versions shall be created
when any update is performed against the version-
enabled data object.

This data system metadata item shall not be present
in data object versions.

Optional

cdmi_versions_count JSON String This metadata item contains the maximum number of
historical versions requested to be retained.

• If cdmi_versions_count is not present, no limit
should be placed on the number of versions that
are retained.

• If cdmi_versions_count is present and has a value
of zero, only the current version should be
retained.

• If cdmi_versions_count is present and has a value
greater than zero, up to the specified number of
historical versions should be retained.

• If the number of historical versions exceeds the
value specified, historical versions should be
deleted from the oldest to the newest until the
number of historical versions equals the value
contained in cdmi_versions_count.

Optional

Metadata Name Type Description Requirement
Cloud Data Management Interface Working Draft 263
Version 1.1.0d

© SNIA

1177
1178
6 Insert into 16.5 "Support for Provided Data System Metadata", Table 121 "Provided Values of Data
Systems Metadata Items".

cdmi_versions_age JSON String This metadata item contains the maximum age of the
oldest historical version requested to be retained,
specified as the number of seconds before the
current time.

• If cdmi_versions_age is not present, no limit should
be placed on the age of versions that are retained.

• If cdmi_versions_age is present, historical versions
should be retained until their age is greater than
the value contained in cdmi_versions_age.

• If the age of a historical version exceeds the value
specified, that historical version should be deleted.

Optional

cdmi_versions_size JSON String This metadata item contains the maximum amount of
space requested to be used to retain historical
versions, specified in bytes.

• If "cdmi_versions_size is not present, no limit
should be placed on the size of versions that are
retained.

• If cdmi_versions_size is present, historic versions
should be retained until the total storage
consumption of the historical versions exceeds the
value contained in cdmi_versions_size.

• If the total size consumed by historical versions
exceeds the value specified, historical versions
should be deleted from the oldest to the newest
until the total storage consumption of historical
versions is equal or less than the value contained
in cdmi_versions_count.

Optional

Metadata Name Type Description Requirement

cdmi_versioning_provided JSON
String

Contains the value "value", "user", or "all" if
versioning is enabled for the data object.

Conditional

cdmi_versions_count_provided JSON
String

Contains the maximum number of historical
versions that will be retained.

Optional

cdmi_versions_age_provided JSON
String

Contains the oldest age of a historical version that
will be retained, in seconds before the current time.

Optional

cdmi_versions_size_provided JSON
String

Contains the maximum amount of space that can be
used to retain historical versions, in bytes.

Optional

Metadata Name Type Description Requirement
264 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1179

1180

1181

1182
1183
1184

1185
1186
1187
7 Insert new clause after Clause 22 "Query Queues".

23 Data Object Versions

23.1 Overview

Version-enabled data objects allow the previous state of a data object to be retained when an update is
performed. In a non-version-enabled data object, each update changes the state of the object, and the
previous state is lost. This state change is shown in Figure 14.

When a data object has versioning enabled, each update creates a new "current version" with the same
contents of the version-enabled data object, and the previous current version becomes a historical version.
All versions can be accessed via separate URIs and are immutable. The version-enabled data object

Figure 14 - Updates to a Non-Version-Enabled Data Object

/a.txt
ID 400

“value” : “First”

CDMI Client
PUT /a.txt“value” : “First”

CDMI Server

HTTP 201 CREATED

/a.txt
ID 400

“value” : “Second”

PUT /a.txt“value” : “Second”

HTTP 204 NO

CONTENT

/a.txt
ID 400

“value” : “Third”

PUT /a.txt“value” : “Third”

HTTP 204 NO

CONTENT

Non-Versioned Data Object
Cloud Data Management Interface Working Draft 265
Version 1.1.0d

© SNIA

1188
1189

1190
1191
1192
1193

1194
1195

1196
1197
1198

1199
1200

1201
1202
1203
1204

1205

1206
1207

1208
1209

1210
1211
1212
1213
1214
1215

1216
1217
continues to be mutable and has the same behaviors to clients as a non-version-enabled data object. This
behavior is shown in Figure 15 from the perspective of a client.

Using this approach, CDMI clients that are not aware of versioning can continue to access version-enabled
data objects the same way as non-version-enabled data objects, while CDMI clients that are aware of
versioning can access and manage the immutable versions associated with the version-enabled data
object.

Versioning is enabled for a data object by adding a data system metadata item that indicates that
versioning is desired.

Version-enabled data objects and all associated versions contain additional storage system metadata
items. These metadata items allow a client to discover the versions that are associated with a version-
enabled data object and to iterate through these versions.

The maximum number of versions to be retained, maximum age of versions to be retained, and the
maximum space that can be consumed by versions is controlled by data system metadata.

When a data object is version enabled, it always contains at least one version, the "current version". The
current version has the same contents as the version-enabled data object but has a different identifier (URI
and Object Identifier) and is immutable. When a version-enabled data object is changed, a new current
version is created, and the previous current version becomes a historical version.

Versioning has multiple client use cases:

• Clients that need to preserve all data written to a data object over time can use versions to retain
all updates made to a data object.

• Clients can restore the contents of a historical version by copying it to the version-enabled data
object.

• Clients that retrieve a large data object across multiple parallel or sequential transactions or that
need to be able to resume a retrieval at a later time can retrieve the URI for the current version of
the data object. Clients can then use that URI to retrieve the data object itself. As the current
version is immutable and retains its identifier, even if an update occurs (where the current version
becomes a historical version), the client will always receive the same results and will not receive a
mixture of the older and newer data object contents.

• Clients can iterate through historical versions to detect where concurrent updates have occurred
and can access any overwritten data.

Figure 15 - Updates to a Version-Enabled Data Object

Current VersionVersion-Enabled Data Object

CDMI Client
PUT /b.txt“value” : “First”

CDMI Server

HTTP 201 CREATED

PUT /b.txt“value” : “Second”

HTTP 204 NO

CONTENT

PUT /b.txt“value” : “Third”

HTTP 204 NO

CONTENT

/b.txt
ID 500

“value” : “First”

/b.txt
ID 500

“value” : “Second”

/b.txt
ID 500

“value” : “Third”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Second”

/cdmi_objectid/503
ID 503

“value” : “Third”

Historical Versions

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Second”

=

=

=

266 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1218
1219

1220

1221
1222

1223
1224

1225
1226
1227

1228
1229

1230
1231
1232

1233
1234

1235
1236

1237

1238
1239

1240
1241

1242
1243

1244
1245
• Distributed CDMI implementations can also use versions to merge concurrent changes made on
different, eventually consistent nodes without resulting in data loss.

23.2 Traversing Version-Enabled Data Objects

Version-enabled data objects have multiple metadata items that allow a client to traverse through the data
object versions.

When a client enables versioning for a data object, the following metadata items shall be added to the
version-enabled data object:

• a cdmi_version_object metadata item that contains the URI to the corresponding version-enabled
data object. This metadata item allows a client to detect that a given object is a version-enabled
data object and not a data object version.

• a cdmi_version_current field that contains the URI to the current version of the version-enabled
data object.

• a cdmi_version_oldest field that contains the URI of one or more of the oldest versions. More than
one version can exist in this metadata item as explained in "23.3 Concurrent Updates and
Version-Enabled Data Objects".

Each data object version shall contain the above three fields, with the same values as found in the version-
enabled data object. Each data object version shall also contain the following two fields:

• a cdmi_version_parent field that contains the URI of the previous version. If the data object version
does not have a parent, this field is omitted.

• cdmi_version_children field that contains the URI

• s of the versions created by modifying this version. If the data object version does not have any
children, this metadata item shall be empty.

To visualize how these fields allow a client to traverse data object versions, the linkages between the
version-enabled data object and data object versions in the final state of Figure 15 is shown in Figure 16.

A client accessing the version-enabled data object (/b.txt) can traverse to the current version and to the
oldest version.

A client accessing a data object version can traverse to the version-enabled data object, to the current
version, to the parent version, to child versions, and to the oldest version.

Figure 16 - Linkages Between a Version-Enabled Data Object and Data Object Versions

/b.txt
ID 500

“value” : “Third”
/cdmi_objectid/502

ID 502
“value” : “Second”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/503
ID 503

“value” : “Third”

cdmi_versions_current

cdmi_versions_parent

cdmi_versions_current

cdmi_versions_object

cdmi_versions_oldest

cdmi_versions_children

cdmi_versions_parent

cdmi_versions_children

cdmi_versions_current
Cloud Data Management Interface Working Draft 267
Version 1.1.0d

© SNIA

1246

1247
1248
1249

1250
1251

1252
1253
1254
1255
23.3 Concurrent Updates and Version-Enabled Data Objects

When multiple concurrent updates are performed against a version-enabled data object, each update is
performed against the state of the object at the time the update starts. The change to the state resulting
from the update to the object becomes visible to clients at the time the update completes.

Two different types of concurrent updates can occur: overlapping updates and nested updates. Figure 17
and Figure 18 show the update sequence and resulting version linkages for overlapping updates:

In the sequence shown in Figure 17, both the "Second" and "Third" updates are performed against the
"First" state. As the "Third" update completes last, it becomes the current version. In this example,
historical version 501 would have two children, versions 502 and 503. Both versions 502 and 503 would
have the same parent 501.

Figure 17 - Overlapping Concurrent Updates

Figure 18 - Linkages for Overlapping Updates

Current VersionVersion-Enabled Data ObjectCDMI Client A
PUT /b.txt“value” : “First”

CDMI Server

HTTP 201 CREATED

PUT /b.txt“value” : “Second”

HTTP 204 NO

CONTENT

/b.txt
ID 500

“value” : “first”

/b.txt
ID 500

“value” : “Second”

/b.txt
ID 500

“value” : “Third”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Second”

/cdmi_objectid/503
ID 503

“value” : “Third”

Historical Versions

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Second”

CDMI Client B

PUT /b.txt

“value” : “Third”

HTTP 204 NO CONTENT

/b.txt
ID 500

“value” : “Third”
/cdmi_objectid/502

ID 502
“value” : “Second”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/503
ID 503

“value” : “Third”

cdmi_versions_current

cdmi_versions_parent

cdmi_versions_current

cdmi_versions_object

cdmi_versions_oldest

cdmi_versions_children

cdmi_versions_parent

cdmi_versions_children

cdmi_versions_current
268 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1256

1257
1258
1259
1260

1261
Figure 19 and Figure 20 show the update sequence and resulting version linkages for nested updates:

In the sequence shown in Figure 16, both the "Second" and "Third" updates are performed against the
"First" state. As the "Second" update completes last, it becomes the current version. In this example,
historical version 501 would have two children, versions 502 and 503. Both versions 502 and 503 would
have the same parent 501.

Both of these data structures are equivalent, with the only difference being which update completed last.

v

Figure 19 - Nested Concurrent Updates

Figure 20 - Linkages for Nested Updates

Current VersionVersion-Enabled Data Object

CDMI Client A
PUT /b.txt“value” : “First”

CDMI Server

HTTP 201 CREATED

PUT /b.txt“value” : “Second”

HTTP 204 NO

CONTENT

/b.txt
ID 500

“value” : “First”

/b.txt
ID 500

“value” : “Third”

/b.txt
ID 500

“value” : “Second”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Third”

/cdmi_objectid/503
ID 503

“value” : “Second”

Historical Versions

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/502
ID 502

“value” : “Third”

CDMI Client B

PUT /b.txt

“value” : “Third”

HTTP 204 NO CONTENT

/b.txt
ID 500

“value” : “Second”
/cdmi_objectid/502

ID 502
“value” : “Third”

/cdmi_objectid/501
ID 501

“value” : “First”

/cdmi_objectid/503
ID 503

“value” : “Second”

cdmi_versions_current

cdmi_versions_parent

cdmi_versions_current

cdmi_versions_object

cdmi_versions_oldest

cdmi_versions_children

cdmi_versions_parent

cdmi_versions_children

cdmi_versions_current
Cloud Data Management Interface Working Draft 269
Version 1.1.0d

© SNIA

1262

1263
1264

1265
1266

1267

1268
1269

1270

1271

1272

1273
1274

1275

1276

1277

1278

1279
1280

1281
1282

1283
1284
23.4 Capabilities for Version-Enabled Data Objects

The relationship between version-enabled data objects, data object versions, and capabilities is shown in
Figure 21.

Data object versions are immutable but may be deleted by a client or by the system, depending on the data
system metadata specified.

23.5 Updates Triggering Version Creation

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version-enabled
data object to "value", the following updates will trigger the creation of a new version:

• changing the mimetype,

• changing the value, or

• changing the valuetransferencoding.

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version-enabled
data object to "user", the following updates will trigger the creation of a new version:

• changing the mimetype,

• changing the value,

• changing the valuetransferencoding, or

• adding, modifying, or removing user metadata.

If versioning is enabled by setting the value of the cdmi_versions metadata item in the version-enabled
data object to "all", then all updates to the data object will trigger the creation of a new version.

The effective ACL, owner, and domain of the data object versions shall be the ACL, owner, and domain of
the version-enabled data object.

Modifications performed with the X-CDMI-Partial header shall not trigger the creation of a new version until
the completionStatus is changed from "Processing" to "Complete".

Figure 21 - Version to capabilityURI Relationships

capabilitiesURI

capabilitiesURI

capabilitiesURI

capabilitiesURI

“/” Root URI “cdmi_capabilities /”

“dataobject_version/”

“dataobject/”/b.txt
ID 500

Historical Version
ID 501

capabilitiesURI

Historical Version
ID 502

Current Version
ID 503
270 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1285

1286
1287

1288
1289
1290

1291
1292

1293
1294

1295
1296
1297

1298
1299

1300
1301
1302
1303

1304
1305
1306

1307

1308

1309
1310

1311
1312
1313
1314

1315
1316

1317
1318
1319

1320
1321

1322
1323

1324
1325

1326
1327
23.6 Operations against Version-Enabled Data Objects

Moving a version-enabled data object within a system is considered to be an update to the name and/or
parentURI fields.

Moving a version-enabled data object between systems moves all data object versions associated with the
version-enabled data object and preserves all identifiers. If the destination name and/or URI are different,
the move is considered to be an update to the name and/or parentURI fields.

Copying a version-enabled data object shall only copy the version-enabled data object itself. Versions of
the version-enabled data object are not copied.

Deleting a version-enabled data object shall also delete all versions associated with that version-enabled
data object.

Disabling versioning for a version-enabled data object shall preserve all versions. Previously existing
versioning metadata shall remain present while versioning is disabled. Re-enabling versioning for a data
object that previously was version-enabled shall result in the creation of a new current version.

If a version-enabled data object is placed under retention or hold, the retention behaviors of the version-
enabled data object shall be applied to the data object versions.

No additional log messages or notifications are defined for version-enabled data objects. When a version-
enabled data object is updated, an additional creation log message and/or notification message shall be
generated for the created data object version. Likewise, when a data object version is accessed or deleted,
a log and/or notification message is generated.

If a limited number, size, or age for versions is requested and a change to a version-enabled data object
results in a version being automatically deleted, then the system shall generate a corresponding deletion
log and/or notification message for the deleted data object version.

23.7 Operations against Data Object Versions

A data object version is presented to the client as a standard CDMI data object.

Moving, copying over, deserializing over, and updating a data object version shall not be permitted and
shall result in an HTTP status code of 403 Forbidden.

Copying a data object version is permitted. For example, to promote a version to become the current
version of a version-enabled data object, the URI of the data object version is used in the copy field when
performing an update to the URI of the version-enabled data object. Updates can also be performed as
part of the copy operation.

Deleting a historical data object version shall be permitted if the client has ACL permissions to delete the
version-enabled data object and the version-enabled data object.

Deleting the current version of a version-enabled data object shall revert the current version to the current
version's parent. If there is no parent version, deleting the current version shall result in an HTTP status
code of 403 Forbidden.

When an intermediate historical version is deleted, the parent and children metadata items of the parent
and all child data object versions of the data object version being deleted must be updated.

EXAMPLE In a version chain "C" -> "B" -> "A", where "C" is the newest and "A" is the oldest, deleting version
"B" shall produce the following results:

• The cdmi_version_parent metadata item of "C" is set to the URI contained in the
cdmi_version_parent metadata item of "B".

• The URI of "B" in the cdmi_version_children metadata item of "A" is replaced with the URIs
contained in the cdmi_version_children metadata item of "B".
Cloud Data Management Interface Working Draft 271
Version 1.1.0d

© SNIA

1328

1329

1330

1331

1332
1333

1334
1335

1336
1337

1338

1339

1340
1341

1342

1343
1344
1345
1346

1347

1348
1349
1350
1351

1352

1353
1354
1355
1356

1357

1358
1359
1360
1361
1362

1363

1364
1365
1366
1367

1368

1369
1370
In pseudocode, the above translates to:

C->cdmi_version_parent = B->cdmi_version_parent

A->cdmi_version_children[B] = B->cdmi_version_children

Delete B

If the oldest version of a version-enabled data object is deleted and there are two or more children of that
version, both of the children of the deleted oldest version will become the new oldest version.

When accessing a data object version, the cdmi_acount and cdmi_atime of the data object version shall be
updated if present.

When accessing a historical version of a version-enabled data object, the ACL, owner, and domainURI of
the version-enabled data object shall be in effect.

Standard log and notification messages are sent when data object versions are accessed and deleted.

23.8 Query of Data Object Versions

As data object versions are regular CDMI objects, they will be included in query results unless explicitly
excluded.

Querying for data object versions is performed by including the scope:

"metadata" :
{
"cdmi_version_children" : "*"

}

Querying for version-enabled data objects (but not their versions) is performed by including the scope:

"metadata" :
{
"cdmi_versioning" : "*"

}

Querying for non-versioned data objects with no versions is performed by including the scope:

"metadata" :
{
"cdmi_version_current" : "!*"

}

Querying for non-versioned data objects with versions is performed by including the scope:

"metadata" :
{
"cdmi_versioning" : "!*",
"cdmi_version_current" : "*"

}

23.9 Version-Enabled Data Object Serialization

Serializing a version-enabled data object shall serialize the data object, the versioning-related metadata,
the current version, and all historical versions. The current version and all historical versions shall be
serialized as data objects contained within a JSON array. These data objects shall replace the contents of
the value field of the serialized representation of the version-enabled data object.

EXAMPLE A version-enabled data object with three versions is serialized.

{
"objectType" : "application/cdmi-object",
272 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
"objectID" : "00007ED900100DA32EC94351F8970400",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {
"cdmi_size" : "33",
"cdmi_versioning" : "user",
"cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [
"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"

]
},
"value" : [
{
"objectType" : "application/cdmi-object",
"objectID" : "00007ED90010F077F4EB1C99C87524CC",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "33",
"cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [
"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"

],
"cdmi_version_parent" : "/cdmi_objectid/00007ED9001005192891EEBE599D94BB",
"cdmi_version_children" : [
]

},
"valuerange" : "0-32",
"valuetransferencoding" : "utf-8",
"value" : "Third version of this Data Object"

},
{
"objectType" : "application/cdmi-object",
"objectID" : "00007ED9001005192891EEBE599D94BB",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "34",
"cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [
"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"

],
"cdmi_version_parent" : "/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA",
"cdmi_version_children" : [
"/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC"

]
},
"valuerange" : "0-33",
"valuetransferencoding" : "utf-8",
"value" : "Second version of this Data Object"

},
{

Cloud Data Management Interface Working Draft 273
Version 1.1.0d

© SNIA

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466

1467
1468
1469
1470
1471

1472
1473

1474

1475
1476
1477
1478
"objectType" : "application/cdmi-object",
"objectID" : "00007ED90010512EB55A9304EAC5D4AA",
"objectName" : "MyVersionedDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"domainURI" : "/cdmi_domains/MyDomain/",
"capabilitiesURI" : "/cdmi_capabilities/dataobject/dataobject_version/",
"completionStatus" : "Complete",
"mimetype" : "text/plain",
"metadata" : {

"cdmi_size" : "33",
"cdmi_version_object" : "/cdmi_objectid/00007ED900100DA32EC94351F8970400",
"cdmi_version_current" : "/cdmi_objectid/00007ED90010F077F4EB1C99C87524CC",
"cdmi_version_oldest" : [
"/cdmi_objectid/00007ED90010512EB55A9304EAC5D4AA"

],
"cdmi_version_children" : [
"/cdmi_objectid/00007ED9001005192891EEBE599D94BB"

]
},
"valuerange" : "0-32",
"valuetransferencoding" : "utf-8",
"value" : "First version of this Data Object"

}
]

}

Serializing a non-version-enabled data object that has versions shall serialize the data object, the
versioning-related metadata, and all historical versions. The contents of the value field of the data object,
the current version, and all historical versions serialized as data objects shall be contained within a JSON
array. These data objects shall replace the contents of the value field of the serialized representation of the
version-enabled data object.

Deserializing either a version-enabled data object or a non-version-enabled data object with versions shall
restore the data object and all serialized versions.

Serializing and deserializing a data object version shall not be permitted.

Attempting to deserialize a serialized version-enabled data object or non-version-enabled data object with
versions onto a system that does not support versions shall result in an HTTP status code of 400 Bad
Request. This error code results because a CDMI system that does not support versions expects a JSON
string for the value field of a serialized data object, not a JSON array.
274 Working Draft Cloud Data Management Interface
Version 1.1.0d

© SNIA

Cloud Data Management Interface Working Draft 275
Version 1.1.0d

Annex C
(informative)
Bibliography

CRC, Williams, Ross, "A Painless Guide to CRC Error Detection Algorithms", Chapter 16, August 1993,
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

OCCI, "Open Cloud Computing Interface", Version 1.1, June 2011. Specification - http://occi-wg.org/about/
specification/

PKS12, RSA Laboratories, PKCS #12: Personal Information Exchange Syntax, Version 1.0, June 1999.
Specification and Technical Corrigendum - http://www.rsa.com/rsalabs/node.asp?id=2138

REST, "Representational State Transfer" - http://www.ics.uci.edu/~fielding/pubs/dissertation/
rest_arch_style.htm

RESTful Web, Richardson, Leonard and Sam Ruby, RESTful Web Services, O'Reilly, 2007.

INCITS 464-2010, Information Technology - Information Management - Extensible Access Method
(XAM™)

1

2

3
4

5
6

7
8

9
10

11

12
13

http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://occi-wg.org/about/specification/
http://occi-wg.org/about/specification/
http://www.rsa.com/rsalabs/node.asp?id=2138
http://www.rsa.com/rsalabs/node.asp?id=2138

	Cloud Data Management Interface (CDMI™)
	Contents
	Figures
	Tables

	Introduction

	1 Scope
	2 Normative References
	3 Terms
	4 Conventions
	4.1 Interface Format
	4.2 Typographical Conventions
	4.3 Request and Response Body Requirements
	4.4 Key Word Requirements

	5 Overview of Cloud Storage
	5.1 Introduction
	5.2 What is Cloud Storage?
	5.3 Data Storage as a Service
	5.4 Data Management for Cloud Storage
	5.5 Data and Container Management
	5.6 Reference Model for Cloud Storage Interfaces
	5.7 Cloud Data Management Interface
	5.8 Object Model for CDMI
	5.9 CDMI Metadata
	5.10 Object ID
	5.11 CDMI Object ID Format
	5.12 Security
	5.13 Required HTTP Support
	5.13.1 RFC 2616 Support Requirements
	5.13.2 Content-Type Negotiation
	5.13.3 Range Support
	5.13.4 URI Escaping
	5.13.5 Use of URIs
	5.13.6 Reserved Characters

	5.14 Time Representations
	5.15 Backwards Compatibility
	5.15.1 Value Transfer Encoding
	5.15.2 Container Export Capabilities

	6 Common Operations
	6.1 Overview
	6.2 Discover the Capabilities of a Cloud Storage Provider
	6.3 Create a New Container
	6.4 Create a Data Object in a Container
	6.5 List the Contents of a Container
	6.6 Read the Contents of a Data Object
	6.7 Read Only the Value of a Data Object
	6.8 Delete a Data Object

	7 Interface Standard
	7.1 HTTP Status Codes
	7.2 Object References

	8 Data Object Resource Operations
	8.1 Overview
	8.1.1 Data Object Metadata
	8.1.2 Data Object Consistency
	8.1.3 Data Object Representations

	8.2 Create a Data Object Using CDMI Content Type
	8.2.1 Synopsis
	8.2.2 Delayed Completion of Create
	8.2.3 Capabilities
	8.2.4 Request Headers
	8.2.5 Request Message Body
	8.2.6 Response Headers
	8.2.7 Response Message Body
	8.2.8 Response Status
	8.2.9 Examples

	8.3 Create a Data Object using a Non-CDMI Content Type
	8.3.1 Synopsis
	8.3.2 Capability
	8.3.3 Request Headers
	8.3.4 Request Message Body
	8.3.5 Response Headers
	8.3.6 Response Message Body
	8.3.7 Response Status
	8.3.8 Example

	8.4 Read a Data Object using CDMI Content Type
	8.4.1 Synopsis
	8.4.2 Capabilities
	8.4.3 Request Headers
	8.4.4 Request Message Body
	8.4.5 Response Headers
	8.4.6 Response Message Body
	8.4.7 Response Status
	8.4.8 Examples

	8.5 Read a Data Object using a Non-CDMI Content Type
	8.5.1 Synopsis
	8.5.2 Capabilities
	8.5.3 Request Header
	8.5.4 Request Message Body
	8.5.5 Response Headers
	8.5.6 Response Message Body
	8.5.7 Response Status
	8.5.8 Examples

	8.6 Update a Data Object using CDMI Content Type
	8.6.1 Synopsis
	8.6.2 Capabilities
	8.6.3 Request Headers
	8.6.4 Request Message Body
	8.6.5 Response Header
	8.6.6 Response Message Body
	8.6.7 Response Status
	8.6.8 Examples

	8.7 Update a Data Object using a Non-CDMI Content Type
	8.7.1 Synopsis
	8.7.2 Capabilities
	8.7.3 Request Headers
	8.7.4 Request Message Body
	8.7.5 Response Header
	8.7.6 Response Message Body
	8.7.7 Response Status
	8.7.8 Examples

	8.8 Delete a Data Object using CDMI Content Type
	8.8.1 Synopsis
	8.8.2 Capability
	8.8.3 Request Header
	8.8.4 Request Message Body
	8.8.5 Response Headers
	8.8.6 Response Message Body
	8.8.7 Response Status
	8.8.8 Example

	8.9 Delete a Data Object using a Non-CDMI Content Type
	8.9.1 Synopsis
	8.9.2 Capability
	8.9.3 Request Headers
	8.9.4 Request Message Body
	8.9.5 Response Headers
	8.9.6 Response Message Body
	8.9.7 Response Status
	8.9.8 Example

	9 Container Object Resource Operations
	9.1 Overview
	9.1.1 Container Metadata
	9.1.2 Reserved Container Names
	9.1.3 Container Object Addressing
	9.1.4 Container Object Representations

	9.2 Create a Container Object using CDMI Content Type
	9.2.1 Synopsis
	9.2.2 Delayed Completion of Create
	9.2.3 Capabilities
	9.2.4 Request Headers
	9.2.5 Request Message Body
	9.2.6 Response Headers
	9.2.7 Response Message Body
	9.2.8 Response Status
	9.2.9 Example

	9.3 Create a Container Object using a Non-CDMI Content Type
	9.3.1 Synopsis
	9.3.2 Capability
	9.3.3 Request Headers
	9.3.4 Request Message Body
	9.3.5 Response Headers
	9.3.6 Response Message Body
	9.3.7 Response Status
	9.3.8 Example

	9.4 Read a Container Object using CDMI Content Type
	9.4.1 Synopsis
	9.4.2 Capabilities
	9.4.3 Request Headers
	9.4.4 Request Message Body
	9.4.5 Response Headers
	9.4.6 Response Message Body
	9.4.7 Response Status
	9.4.8 Examples

	9.5 Update a Container Object using CDMI Content Type
	9.5.1 Synopsis
	9.5.2 Delayed Completion of Snapshot
	9.5.3 Capabilities
	9.5.4 Request Headers
	9.5.5 Request Message Body
	9.5.6 Response Header
	9.5.7 Response Message Body
	9.5.8 Response Status
	9.5.9 Examples

	9.6 Delete a Container Object using CDMI Content Type
	9.6.1 Synopsis
	9.6.2 Capability
	9.6.3 Request Header
	9.6.4 Request Message Body
	9.6.5 Response Headers
	9.6.6 Response Message Body
	9.6.7 Response Status
	9.6.8 Example

	9.7 Delete a Container Object using a Non-CDMI Content Type
	9.7.1 Synopsis
	9.7.2 Capability
	9.7.3 Request Headers
	9.7.4 Request Message Body
	9.7.5 Response Headers
	9.7.6 Response Message Body
	9.7.7 Response Status
	9.7.8 Example

	9.8 Create (POST) a New Data Object using CDMI Content Type
	9.8.1 Synopsis
	9.8.2 Delayed Completion of Create
	9.8.3 Capabilities
	9.8.4 Request Headers
	9.8.5 Request Message Body
	9.8.6 Response Headers
	9.8.7 Response Message Body
	9.8.8 Response Status
	9.8.9 Examples

	9.9 Create (POST) a New Data Object using a Non-CDMI Content Type
	9.9.1 Synopsis
	9.9.2 Capability
	9.9.3 Request Header
	9.9.4 Request Message Body
	9.9.5 Response Header
	9.9.6 Response Message Body
	9.9.7 Response Status
	9.9.8 Examples

	9.10 Create (POST) a New Queue Object using CDMI Content Type
	9.10.1 Synopsis
	9.10.2 Delayed Completion of Create
	9.10.3 Capabilities
	9.10.4 Request Headers
	9.10.5 Request Message Body
	9.10.6 Response Headers
	9.10.7 Response Message Body
	9.10.8 Response Status
	9.10.9 Example

	10 Domain Object Resource Operations
	10.1 Overview
	10.1.1 Domain Object Metadata
	10.1.2 Domain Object Summaries
	10.1.3 Domain Object Membership
	10.1.4 Domain Usage in Access Control
	10.1.5 Domain Object Representations

	10.2 Create a Domain Object using CDMI Content Type
	10.2.1 Synopsis
	10.2.2 Capabilities
	10.2.3 Request Headers
	10.2.4 Request Message Body
	10.2.5 Response Headers
	10.2.6 Response Message Body
	10.2.7 Response Status
	10.2.8 Example

	10.3 Read a Domain Object using CDMI Content Type
	10.3.1 Synopsis
	10.3.2 Capabilities
	10.3.3 Request Headers
	10.3.4 Request Message Body
	10.3.5 Response Headers
	10.3.6 Response Message Body
	10.3.7 Response Status
	10.3.8 Examples

	10.4 Update a Domain Object using CDMI Content Type
	10.4.1 Synopsis
	10.4.2 Capability
	10.4.3 Request Headers
	10.4.4 Request Message Body
	10.4.5 Response Header
	10.4.6 Response Message Body
	10.4.7 Response Status
	10.4.8 Example

	10.5 Delete a Domain Object using CDMI Content Type
	10.5.1 Synopsis
	10.5.2 Capability
	10.5.3 Request Headers
	10.5.4 Request Message Body
	10.5.5 Response Headers
	10.5.6 Response Message Body
	10.5.7 Response Status
	10.5.8 Example

	11 Queue Object Resource Operations
	11.1 Overview
	11.1.1 Queue Object Metadata
	11.1.2 Queue Object Addressing
	11.1.3 Queue Object Representations

	11.2 Create a Queue Object using CDMI Content Type
	11.2.1 Synopsis
	11.2.2 Delayed Completion of Create
	11.2.3 Capabilities
	11.2.4 Request Headers
	11.2.5 Request Message Body
	11.2.6 Response Headers
	11.2.7 Response Message Body
	11.2.8 Response Status
	11.2.9 Examples

	11.3 Read a Queue Object using CDMI Content Type
	11.3.1 Synopsis
	11.3.2 Capabilities
	11.3.3 Request Headers
	11.3.4 Request Message Body
	11.3.5 Response Headers
	11.3.6 Response Message Body
	11.3.7 Response Status
	11.3.8 Examples

	11.4 Update a Queue Object using CDMI Content Type
	11.4.1 Synopsis
	11.4.2 Capability
	11.4.3 Request Headers
	11.4.4 Request Message Body
	11.4.5 Response Header
	11.4.6 Response Message Body
	11.4.7 Response Status
	11.4.8 Examples

	11.5 Delete a Queue Object using CDMI Content Type
	11.5.1 Synopsis
	11.5.2 Capability
	11.5.3 Request Header
	11.5.4 Request Message Body
	11.5.5 Response Headers
	11.5.6 Response Message Body
	11.5.7 Response Status
	11.5.8 Example

	11.6 Enqueue a New Queue Value using CDMI Content Type
	11.6.1 Synopsis
	11.6.2 Capability
	11.6.3 Request Headers
	11.6.4 Request Message Body
	11.6.5 Response Headers
	11.6.6 Response Message Body
	11.6.7 Response Status
	11.6.8 Examples

	11.7 Delete a Queue Object Value using CDMI Content Type
	11.7.1 Synopsis
	11.7.2 Capability
	11.7.3 Request Header
	11.7.4 Request Message Body
	11.7.5 Response Headers
	11.7.6 Response Message Body
	11.7.7 Response Status
	11.7.8 Example

	12 Capability Object Resource Operations
	12.1 Overview
	12.1.1 Cloud Storage System-Wide Capabilities
	12.1.2 Storage System Metadata Capabilities
	12.1.3 Data System Metadata Capabilities
	12.1.4 Data Object Capabilities
	12.1.5 Container Capabilities
	12.1.6 Domain Object Capabilities
	12.1.7 Queue Object Capabilities
	12.1.8 Capability Object Representations

	12.2 Read a Capabilities Object using CDMI Content Type
	12.2.1 Synopsis
	12.2.2 Capability
	12.2.3 Request Headers
	12.2.4 Request Message Body
	12.2.5 Response Headers
	12.2.6 Response Message Body
	12.2.7 Response Status
	12.2.8 Examples

	13 Exported Protocols
	13.1 Overview
	13.2 Exported Protocol Structure
	13.2.1 Mapping Names from CDMI to Another Protocol
	13.2.1.1 Capabilities
	13.2.1.2 Domains
	13.2.1.3 Caching
	13.2.1.4 Groups
	13.2.1.5 Synopsis

	13.2.2 Administrative Users
	13.2.3 User and Groupname Mapping Syntax and Evaluation Rules

	13.3 Discovering and Mounting Containers via Foreign Protocols
	13.4 NFS Exported Protocol
	13.5 CIFS Exported Protocol
	13.6 OCCI Exported Protocol
	13.7 iSCSI Export Modifications
	13.7.1 Read Container
	13.7.2 Create and Update Containers
	13.7.3 Modify an Export

	13.8 WebDAV Exported Protocol

	14 Snapshots
	15 Serialization/Deserialization
	15.1 Overview
	15.2 Exporting Serialized Data
	15.3 Importing Serialized Data
	15.3.1 Canonical Format
	15.3.2 Example JSON Canonical Serialized Format

	16 Metadata
	16.1 Access Control
	16.1.1 ACL and ACE Structure
	16.1.2 ACE Types
	16.1.3 ACE Who
	16.1.4 ACE Flags
	16.1.5 ACE Mask Bits
	16.1.6 ACL Evaluation
	16.1.7 Example ACE Mask Expressions
	16.1.8 Canonical Format for ACE Hexadecimal Quantities
	16.1.9 JSON Format for ACLs

	16.2 Support for User Metadata
	16.3 Support for Storage System Metadata
	16.4 Support for Data System Metadata
	16.5 Support for Provided Data System Metadata
	16.6 Metadata Update Operations

	17 Retention and Hold Management
	17.1 Introduction
	17.2 Retention Management Disciplines
	17.3 CDMI Retention
	17.4 CDMI Hold
	17.5 CDMI Auto-deletion
	17.6 Retention Security Considerations

	18 Scope Specification
	18.1 Introduction
	18.2 Examples
	18.3 Query Matching Expressions

	19 Results Specification
	19.1 Introduction
	19.2 Examples

	20 Logging
	20.1 Overview
	20.2 Object Logging
	20.3 Security Logging
	20.4 Data Management Logging
	20.5 Logging Queues
	20.6 Logging Security Considerations

	21 Notification Queues
	22 Query Queues
	22.1 Overview
	22.2 Extending CDMI Query

	Annex A (normative) Transport Security
	A.1 Introduction
	A.2 General Requirements for HTTP Implementations
	A.3 Basic HTTP Security
	A.4 HTTP over TLS (HTTPS)
	A.5 Transport Layer Security (TLS)
	A.5.1 Cipher Suites
	A.5.2 Digital Certificates

	Annex B (informative) Extensions
	B.1 Summary Metadata for Bandwidth
	B.1.1 Overview
	B.1.2 Changes to CDMI 1.1

	B.2 Expiring Access Control Entries (ACEs)
	B.2.1 Overview
	B.2.2 Changes to CDMI 1.1

	B.3 Group Storage System Metadata
	B.3.1 Overview
	B.3.2 Changes to CDMI 1.1

	B.4 Multi-Part MIME Transfers
	B.4.1 Overview
	B.4.2 Changes to CDMI 1.1 - Clause 2 "Normative References"
	B.4.3 Changes to CDMI 1.1 - Clause 8 "Data Object Resource Operations"
	B.4.4 Changes to CDMI 1.1 - Clause 9 "Container Object Resource Operations"
	B.4.5 Changes to CDMI 1.1 - Clause 11 "Queue Object Resource Operations"
	B.4.6 Changes to CDMI 1.1 - Clause 12 "Capability Object Resource Operations"

	B.5 Versioning
	B.5.1 Overview
	B.5.2 Changes to CDMI 1.1

	Annex C (informative) Bibliography

