
1 | ©2023 SNIA. All Rights Reserved.

Virtual Conference
September 28-29, 2021

SNIA SDXI Specification
v1.0 and beyond

Shyam Iyer
Chair, SNIA SDXI TWG

Member, SNIA Technical Council
Distinguished Engineer, Dell

2 | ©2023 SNIA. All Rights Reserved.

3 | ©2023 SNIA. All Rights Reserved.

Agenda

Compute, IO, Memory Bubble
 Current Memory to Memory Data Movement Standard

Use Cases
 Application Patterns and benefits of Data Movement & Acceleration

SNIA SDXI TWG
 Goals and Tenets
 A brief introduction to the internals of SDXI Specification

SDXI Futures
SDXI Community/Ecosystem
Summary

4 | ©2023 SNIA. All Rights Reserved.

Legacy Compute, Memory, IO Bubbles

Compute Memory

I/O

Coherency
Domain

Latency
and/or
Bandwidth
Optimized

Typically,
Non-
Coherent

Application

Data in use

Data Storage
Data Transport

Instructs
DMA

5 | ©2023 SNIA. All Rights Reserved.

Emerging Bubbles

Hot
Memory

GPUCPU ASSP(Includes
Drives, NICs)

FPGA

Non Volatile
Memory

Volatile
Memory

Capacity
Memory

Cold
Memory

Memory Links/Fabrics

Shared Design constraints
• Latency
• Bandwidth
• Coherency
• Control

Application

6 | ©2023 SNIA. All Rights Reserved.

Current Data Movement Standard

Software memcpy is the current data movement standard
Stable ISA

However,
 Takes away from application performance
 Incurs software overhead to provide context isolation.
Offload DMA engines and their interfaces are vendor-specific
Not standardized for user-level software.

7 | ©2023 SNIA. All Rights Reserved.

Agenda

Compute, IO, Memory Bubble
 Current Memory to Memory Data Movement Standard

Use Cases
 Application Patterns and benefits of Data Movement & Acceleration

SNIA SDXI TWG
 Goals and Tenets
 A brief introduction to the internals of SDXI Specification

SDXI Futures
SDXI Community/Ecosystem
Summary

8 | ©2023 SNIA. All Rights Reserved.

Application Pattern 1 (Buffer Copies)

Memory
Buffer

(source)

Application(User)

Memory
Buffer(source)

Memory
Buffer(dest)

Application(User)

Accelerator

Completion SignalDoorbell

DMAcopy()

Memcpy()

Memory
Buffer
(dest)

• Takes away from
application performance

• HW based memory copies can be
offloaded without affecting
application performance

9 | ©2023 SNIA. All Rights Reserved.

Application Pattern 2

Memory
Buffer

Persistent
Memory

Buffer

Application(User)

Accelerator

Completion
Signal

Doorbell

DMA
Memory

Buffer(Sourc
e)

Application(User)

Memcpy()

Memcpy()

Storage

DMA
Memory

Buffer(Dest)

DMA Read

Db Db
DMAWrite

Cmpl Cmpl

Memory Buffer
(source)

Application(User)

Memcpy()

Persistent
Memory Buffer
(source/dest)

Kernel
Memory

Buffer

Kernel
Memory

Buffer
Kernel
mode
Driver

Kernel

Memcpy()
Memcpy()

• Multiple data buffer copies before hardware based
data movement can occur

• Reduced buffer copies but still takes away from
application performance

• Reduced buffer copies
• HW based offloaded memory copies

10 | ©2023 SNIA. All Rights Reserved.

Application Pattern 3

DMA Write

Memcpy()

Application
User Software

Kernel

Memcpy()

I/O

Application
User Software

Kernel

I/O

DMA Read

VM1 VM2

DMA Write

Application
User Software

Kernel

Accelerator

Application
User Software

Kernel

VM1 VM2

DMA Read

• Context isolation layers introduce multiple buffer copies

• Best of both: Context isolation layers and optimized HW
based memory buffer copies

11 | ©2023 SNIA. All Rights Reserved.

Data in use Memory Expansion

Application(User)

DRAM Persistent
Memory

CXL Attached
Memory

MMIO

Accelerators

• Memory expansion expands
the memory target surface
area for accelerators

• Different tiers of memory
• Diversity in accelerator

programming methods

12 | ©2023 SNIA. All Rights Reserved.

Kernel Mode
Driver

Kernel Mode
Application

User Mode
Driver(Library)

Accelerator

User Mode
Application

Baremetal Stack View

1. Initialize
2. Discover

Capabilities

Producer
Context’s
Descriptor Ring in
Kernel Address
Space

• Producer Context’s
Descriptor Ring in User
Address Space

• Direct, Secure Access with
hardware

OS-Specific Interface to
enable a User Mode
Driver

Framework-Specific Interface to
enable a User Mode App with a
Descriptor ring, Context specific
structures

13 | ©2023 SNIA. All Rights Reserved.

Kernel Mode
Driver

Kernel Mode
Application

User Mode
Library

Accelerator

User Mode
Application

Direct HW Access, Access Memory Tiers

1. Initialize
2. Discover

Capabilities

Producer
Context’s
Descriptor Ring in
Kernel Address
Space

• Producer Context’s
Descriptor Ring in User
Address Space

• Direct, Secure Access with
hardware

OS-Specific Interface to
enable a User Mode
Driver

Framework-Specific Interface to
enable a User Mode App with a
Descriptor ring, Context specific
structures

DRAM PMEM MMIO CXL Memory

Source and Destination Memory Targets for Data transfer in
System Physical Address Space

14 | ©2023 SNIA. All Rights Reserved.

PF VF VF VF
Accelerator

Kernel Mode
Driver

Kernel Mode
Application

User Mode
Library

User Mode
Application

Address Space
A

User Mode
Application

Address Space
B

Scale Baremetal Apps – Multi-Address Space

15 | ©2023 SNIA. All Rights Reserved.

Hypervisor Kernel Mode Driver

Accelerator

User Mode
Library

Guest Kernel
Mode

Application

Guest Kernel Mode
Driver

Connection Manager

User
Mode App

Guest Kernel
Mode

Application

Guest Kernel Mode
Driver

Accelerator Virtual Device

User Mode
Library

User
Mode App

Scale with Compute Virtualization– Multi-VM address space

Connection Manager

VMA VMB

Accelerator Virtual Device

16 | ©2023 SNIA. All Rights Reserved.

Agenda

Compute, IO, Memory Bubble
 Current Memory to Memory Data Movement Standard

Use Cases
 Application Patterns and benefits of Data Movement & Acceleration

SNIA SDXI TWG
 Goals and Tenets
 A brief introduction to the internals of SDXI Specification

SDXI Futures
SDXI Community/Ecosystem
Summary

17 | ©2023 SNIA. All Rights Reserved.

SDXI(Smart Data Accelerator Interface)

Smart Data Accelerator Interface (SDXI) is a SNIA standard for
a memory to memory data movement and acceleration interface
that is -
 Extensible
 Forward-compatible
 Independent of I/O interconnect technology

SNIA SDXI TWG was formed in June 2020 and tasked to work
on this proposed standard
 23 member companies, 89 individual members

v1.0 released!
 https://www.snia.org/sdxi

https://www.snia.org/sdxi

18 | ©2023 SNIA. All Rights Reserved.

SDXI Design Tenets

 Data movement between different address spaces.
 Includes user address spaces, different virtual machines

 Data movement without mediation by privileged software.
 Once a connection has been established.

 Allows abstraction or virtualization by privileged software.
 Capability to quiesce, suspend, and resume the architectural state of a per-address-space

data mover.
 Enable “live” workload or virtual machine migration between servers.

 Enables forwards and backwards compatibility across future specification revisions.
 Interoperability between software and hardware

 Incorporate additional offloads in the future leveraging the architectural interface.
 Concurrent DMA model.

19 | ©2023 SNIA. All Rights Reserved.

SW context isolation layers

MMIO (Memory
Mapped I/O)

SCM (Storage Class
Memory)

CXL/Fabric Attached
Memory

System Physical Address
space

Security

Data mover
Acceleration
(CPU offloaded)
Security

Application(Context A) Application(Context B)

1. Leverage a standard
 specification

Direct
User
mode

2. Innovate around
 the spec

3. Add incremental
 Data acceleration
 features

Architectural Stability

GPU

FPGA

SMART IO

CPU Family B

CPU CPU Family A

DRAM
(Context A)

DRAM
(Context B)DRAM (Context B)

DRAM (Context A)

SDXI Memory-to-Memory Data Movement

SDXI

SDXI

SDXI

SDXI

SDXI

We are entering a
tiered Memory

world !

20 | ©2023 SNIA. All Rights Reserved.

Memory Structures(1) – Simplified view

SDXI
Functi

on

Function
MMIO

Context
Tables

Context Ctrl
and State

Akey
Table

Rkey
Table

Read
Index

Write
Index

Descriptor
Ring

Doorbell
Completion

Status

Buffer
1

Buffer
0

Error
Log

 All states in memory

 One standard descriptor
format

 Easy to virtualize

 Architected function setup
and control
 *layered model for interconnect

specific function management
 SDXI class code registered for

PCIe implementations

21 | ©2023 SNIA. All Rights Reserved.

Memory Structures(2) – Multiple Contexts

SDXI
Function

Function
MMIO

Rkey
Table

Context
Tables

Context Ctrl
and State

Akey
Table

Read
Index

Write
Index

Descriptor
Ring

Doorbell
Completion

Status
Buffer 1

Buffer 0

Context Ctrl
and State

Akey
Table

Read
Index

Write
Index

Descriptor
Ring

Doorbell
Completion

Status
Buffer 1

Buffer 0

 Multiple Contexts per
function

 Ring State directly
managed by user space

 One way to log errors
 Per context access to

target address
spaces(Akey)

 One way to control access
to local memory resources
from remote
functions(Rkey)

 One way to start, stop and
administer contexts

Error Log

22 | ©2023 SNIA. All Rights Reserved.

Contexts and SDXI Function Groups

23 | ©2023 SNIA. All Rights Reserved.

Descriptor Ring

ds_ring_ptr
 + (N-1) * 64

ds_ring_ptr
 + (1) * 64

ds_ring_ptr

Entry
Addresses

(Wraps every
N * 64 bytes)

Index = 0, N, 2*N, ...
Index =

N-1, 2*N-1, 3*N-1, ...
Index =

1, N+1, 2*N+1, ...

Indices
(Do not Wrap)

Read_Index:

Write_Index-1:

Write_Index:

Valid
Entry

Free
Entry

Free
Entry

Free
Entry

Free
Entry

Valid
Entry

Ring starts at memory location ds_ring_ptr
N = ds_ring_sz (Number of entries in Queue)

Indices are from 0 to (2^64)-1

EntryAddress = ds_ring_ptr + ((Index % ds_ring_sz) << 6)
Write_Index – Read_Index <= ds_ring_sz

Where consumer can
start reading enqueued
entries

Index of last enqueued entry
to be read by Consumer

Where producer can
start enqueueing

more entries

 Descriptors are processed (issued) in-
order by function.
 Executed out-of-order.
 Completed out-of-order.
 Read_Index is incremented by SDXI

function
 Function may aggressively read valid

descriptors…
 Between Read & Write indices w/o

waiting on Doorbells from producers.
 Doorbell ensures new descriptors are

recognized.
 Maximum parallelism of operations.

Quiescing & Serializing state at well-
defined boundaries.

24 | ©2023 SNIA. All Rights Reserved.

A Standard Descriptor Format (1)

*Room for lots of future operations

Completion_Ptr

Operation-Specific Descriptor Body

VOperation CTLRsvdOp Group

64-Bytes

Administrative
Minimal Atomic

DMA Base
Full Atomic

Vendor-Defined
Others …

Architecturally Registered Operation Groups:

DMA: Nop, Copy, RepCopy, WriteImm
Atomic: Bitwise Ops, Add(minimal), Sub, Swap(minimal), Min,
Max, CmpSwap(minimal), etc
Admin: Start/Stop/Update/Sync, Interrupt Function & Contexts
 (easily virtualizable)

A pointer to a 32-byte aligned region of memory containing the
Completion Status Block that contains

• Completion Signal
• Initialized by SW, Decremented by Function on Success

• Error Bit(ER) to indicate the operation encountered an error
• Other bits in the 32-byte field are reserved to support future

expansion of error codes

Rsvd

25 | ©2023 SNIA. All Rights Reserved.

Driver

SDXI Device

RepCopy Example

VMA

Dest

Source(
4KiB)

Initialize a Large Buffer with zeroes
for VM init

Kernel Application

© 2021 SNIA Persistent Memory + Computational Storage Summit. All Rights Reserved

26 | ©2023 SNIA. All Rights Reserved.

A Standard Descriptor Format (2)
A memory location is always specified as a triple:
• Address Space ID: Index to Context Address Key Table Entry
• 64-bit Address
• Cacheability Attributes
Generated Address can be HPA, HVA, GPA, GVA and always translated
through IOMMU.

• An RKey table entry controls target/receiver side resources

• Rkey index supplied by Akey table entry from requesting function’s Akey
table entry is used to index into RKey table entry in receiver’s RKey table

• Req_sfunc handle in Rkey table entry should match the req_sfunc supplied
by requesting function

Interrupt NumberTarget_sfunc(Function Handle)

Steering Tag
PASID

Access Key Table Entry

RKey

Completion Ptr

Operation-Specific Descriptor Body

Operation CTL VRsvd Operation Group

Attr AKey
Address

64-Bytes

Rsvd

Interrupt NumberReq_sfunc(Function Handle)

Steering Tag

RKey Table Entry

PASID

• An AKey table encodes all valid address spaces, PASIDs and interrupts
available to the function context.

• Akey table entries enumerate each address space, pasids and interrupts
resources

• Any descriptor within a context can reference an AKey table entry.

• An AKey is a requester side control.The Akey also encodes the Rkey to be
used by the Target address space. The Target Function uses the supplied
RKey value to index into its RKey Table and obtain an RKey Table Entry

27 | ©2023 SNIA. All Rights Reserved.

DMA Read
DMA Write

Multi-Address Space Data Movement within an SDXI function group (2)

SDXI DMA Engine

IOMMU

Target SDXI Func C
(Data Destination)

SDXI Func B
Requesting Function

Address Space A

IOMMU

Target SDXI Func A
(Data Source)

DMA ReadDMA Read
Completion

Akey(A)

Akey(C)

Producer
Address Space BAkey Table Entries

encode the valid/allowed
address spaces for
requesting fn B

Descr
RingSrc

Buf fer

IOMMU

Rkey(B’)
Rkey(C’)

Address Space C

Dest
Buf fer

Rkey(A’)
Rkey(B’)

Controls local resource
access (Receiver Access Key
Table Entries)

28 | ©2023 SNIA. All Rights Reserved.

Agenda

Compute, IO, Memory Bubble
 Current Memory to Memory Data Movement Standard

Use Cases
 Application Patterns and benefits of Data Movement & Acceleration

SNIA SDXI TWG
 Goals and Tenets
 A brief introduction to the internals of SDXI Specification

SDXI Futures/SDXI v1.1
SDXI Community/Ecosystem
Summary

29 | ©2023 SNIA. All Rights Reserved.

SDXI v1.1 investigations

 Connection manager
 New data mover operations for smart acceleration
 SDXI Host to Host investigations
 Scalability & Latency improvements
 Cache coherency models for data movers
 Security Features involving data movers
 Data mover operations involving persistent memory targets
 QoS
 CXL-related use cases
 Heterogenous environments

Draft: Subject to
Change

30 | ©2023 SNIA. All Rights Reserved.

New Data Mover Operations

Application

SDXI Device

Src Buffer Dest Buffer

Transform and
Acceleration Fns

Transform and
Acceleration fns

Trasform and
Acceleration fnsVarious

Acceleration

31 | ©2023 SNIA. All Rights Reserved.

Connection Manager

CXL Switch

Application
(e.g., VM Address

space A)

CXL Port CXL PortSDXI Function A SDXI Function B

Connection
Manager

Connection Client

Application
(e.g., VM Address

Space B)

Connection Client

SDXI Device

Inter-Function Fabric

32 | ©2023 SNIA. All Rights Reserved.

Host to Host

CXL Switch

Application
(Address space A,

Host A)

CXL Port CXL PortSDXI Function A SDXI Function B

Connection
Manager

Connection Client

Application
(Address Space B,

Host B)

Connection Client

SDXI Device

Inter-Function Fabric

DMA bus DMA bus

33 | ©2023 SNIA. All Rights Reserved.

CXL based Architectures

CPU Attached
Memory

SDXI
(CXL Device)

Device
Attached
Memory

CXL.io
CXL.Cache
CXL.memory

Application(User)

Doorbell Completion
Signal

Application(User)

SDXI (PCIe
Device) CXL.io

CXL.memory

CXL Memory
Expander

CPU
Attached
Memory

PCIe

Shared
Memory

Pooled
Memory

Doorbell Completion Signal

CPU
Attached
Memory

SDXI protocol

CXL fabric/ device

CPU
CPU

34 | ©2023 SNIA. All Rights Reserved.

Computational Storage, NVMe, and SDXI

NVMe Fn

SDXI Compute/
Data movement

NVMe Fn SDXI Fn

SDXI Compute/ Data
movement

Host

Type A Device Type B Device

Host

DeviceDevice

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational Storage Engine
(CSE)

CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM AFDM

AFDM

SDXI Driver
+CS Extensions

Future CS,
SDXI API

SD
XI

SDXI

Host

CS API

SDXI Driver +
CS Extensions

Storage Driver +
CS Extensions

Host

Host
Memory

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational Storage Engine
(CSE)

CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM AFDM

AFDM

Fabric (PCIe, Ethernet, etc)

CS API

SDXI Driver
+CS Extensions

Shared Memory Pool

Memory

Memory

Future CS,
SDXI API

SD
XI

SDXI

SD
XI

SD
XI

SD
XI

SDXI

SDXI Driver +
CS Extensions

Storage Driver +
CS Extensions

Host
Memory

SDXI

SDXI

SD
XI

SDXI

SDXI

CSEE, CSF is SDXI Producer

Host is SDXI Producer

SD
XI

SD
XI

SD
XI

SD
XI

SDXI

35 | ©2023 SNIA. All Rights Reserved.

Agenda

Compute, IO, Memory Bubble
 Current Memory to Memory Data Movement Standard

Use Cases
 Application Patterns and benefits of Data Movement & Acceleration

SNIA SDXI TWG
 Goals and Tenets
 A brief introduction to the internals of SDXI Specification

SDXI Futures/SDXI v1.1
SDXI Community/Ecosystem
Summary

36 | ©2023 SNIA. All Rights Reserved.

Additional SDXI Ecosystem activities

SDXI Software group within SDXI TWG
 Libsdxi project

 OS agnostic user space library
 Linux Upstream driver efforts

 SDXI TWG members are supporting this effort outside SNIA as a community
 SDXI emulation project investigation for ecosystem development
 Investigations to enable SDXI compliance for SW and HW interoperability

SNIA’s CS+SDXI Subgroup

37 | ©2023 SNIA. All Rights Reserved.

Agenda

Compute, IO, Memory Bubble
 Current Memory to Memory Data Movement Standard

Use Cases
 Application Patterns and benefits of Data Movement & Acceleration

SNIA SDXI TWG
 Goals and Tenets
 A brief introduction to the internals of SDXI Specification

SDXI Futures/SDXI v1.1
SDXI Community/Ecosystem
Summary

38 | ©2023 SNIA. All Rights Reserved.

Summary and Call to Action

 SNIA is developing SDXI a memory to memory data movement standard
 v1.0 released!

Multiple companies involved in the effort
 SDXI standard continues to improve with new features and use cases
 SDXI TWG is working v1.1 specification

 SDXI Software work
 SDXI TWG is working on libsdxi, an OS-agnostic library to help user space applications

use SDXI accelerated data movement operations
 Learn More:
 https://www.snia.org/sdxi

https://www.snia.org/sdxi

39 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

Q&A

40 | ©2023 SNIA. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	SNIA SDXI Specification v1.0 and beyond
	Slide Number 2
	Agenda
	Legacy Compute, Memory, IO Bubbles
	Emerging Bubbles
	Current Data Movement Standard
	Agenda
	Application Pattern 1 (Buffer Copies)
	Application Pattern 2
	Application Pattern 3
	Data in use Memory Expansion
	Baremetal Stack View
	Direct HW Access, Access Memory Tiers
	Scale Baremetal Apps – Multi-Address Space
	Scale with Compute Virtualization– Multi-VM address space
	Agenda
	SDXI(Smart Data Accelerator Interface)
	SDXI Design Tenets
	SDXI Memory-to-Memory Data Movement
	Memory Structures(1) – Simplified view
	Memory Structures(2) – Multiple Contexts
	Contexts and SDXI Function Groups
	Descriptor Ring
	A Standard Descriptor Format (1)
	RepCopy Example
	A Standard Descriptor Format (2)
	Multi-Address Space Data Movement within an SDXI function group (2)
	Agenda
	SDXI v1.1 investigations
	New Data Mover Operations
	Connection Manager
	Host to Host
	CXL based Architectures
	Computational Storage, NVMe, and SDXI
	Agenda
	Additional SDXI Ecosystem activities
	Agenda
	Summary and Call to Action
	Q&A
	Please take a moment to rate this session.

