
1 | ©2022 Storage Networking Industry Association. All Rights Reserved.

A Event

Accelerating FaaS/Container
Image Construction via IPU
Presented by

Ziye Yang, Cloud Software Engineer, Intel
Yadong Li, Principal Engineer, Intel
Zeng Jun, Cloud Software Engineer, Intel

2 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Agenda

Motivation and Background
 IPU Introduction & Use of IPU in FaaS/Container Acceleration
Detailed Design for Accelerating FaaS/Container Image Operations

using an IPU
A Simple RunC Example to Illustrate the Design and Flows
Summary

3 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Motivation and Background

4 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Motivation & Background

Serverless computing & containers is one of the 4 emerging cloud-
native trends, according to Gartner (posted in CNCF’ blog).
 Gartner analysts foresee the development of serverless computing in particular,

i.e. function-as-a-service (FaaS).
 FaaS service are usually deployed in containers.

What is FaaS? (From Wikipedia)
 A category of cloud computing services that provides a platform allowing

customers to develop, run, and manage application functionalities without the
complexity of building and maintaining the infrastructure typically associated with
developing and launching an app

https://www.cncf.io/blog/2022/01/05/top-4-cloud-native-trends-in-2022-shaping-the-future-of-business/
https://en.wikipedia.org/wiki/Function_as_a_service
https://en.wikipedia.org/wiki/Cloud_computing#Service_models
https://en.wikipedia.org/wiki/Computing_platform

5 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Motivation & Background (cont.)

 FaaS are usually the short programs (functions), it’s critical to execute such a
function in a fast way without any unnecessary overhead of preparations.
 The main overhead comes from compiling the code into executable binary,

pack the executable binary with required libraries into a file system, and then
get the container environment up running.
 For FaaS deployed in containers, the following are the main places for

optimizations to reduce the overhead of preparations:
1. Quickly build the FaaS/Container related images.
2. Get container execution environment ready asap, including unpacking the image of

FaaS into a file system.
3. Expose the bundle to the container, then execute the FaaS applications in the

selected container.

6 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Motivation & Background (cont.)

As noted earlier, one of the main overhead of container comes from the
preparation work, including
 Image pulling & file system bundle (e.g., rootfs) preparation.
 Start runtime shim.
 The selected runtime class started to run (e.g., RUNC).

We think IPU can help here. IPU can be used to accelerate container
image pulling & file system bundle preparation.
 The container image related operations can be moved into IPU.
 IPU accelerators can be used for image decompression, decryption, etc.
 IPU can cache the images and enable sharing of the unpacked image layers.

7 | ©2022 Storage Networking Industry Association. All Rights Reserved.

IPU Introduction & Use of IPU in
FaaS/Container Acceleration

8 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Mount Evans
Intel’s 200G IPU

Hyperscale
Ready

Technology
Innovation

Software

Co-designed with Google
Integrated learnings from multiple gen. of FPGA sNIC/IPU
High performance under real world load
Security and isolation from the ground up

Best-in-Class Programmable Packet Processing Engine
NVMe storage interface scaled up from Intel Optane Tech
Next Generation Reliable Transport
Advanced crypto and compression accel.

SW/HW/Accel co-design
P4 Studio based on Barefoot technology
Linux OS leveraging DPDK, SPDK & IPDK eco-systems
VMWare’s Project Monterey for telco & enterprise

9 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Mount Evans NVMe over TCP Initiator
 NVMe HW (NPI) provides Host NVMe virtualization layer
 Store-and-forward data flow

 NPI auto fetches NVMe CMDs into SoC memory.
 SoC SW uses QAT/LCE DMA engine to fetch PRP lists

and move data payloads.
 As part of the DMA flow, QAT/LCE chained ops available

for compression, crypto and CRC offloads.
 Fully integrated with IPDK and SPDK NVMe-oF SW

stack
 NPI Transport to interface with NVMf layer
 NPI Transport uses NVMe Initiator Config Driver for device

configurations and CMDs processing.
 IPU Storage Management Agent (SMA) from SPDK

provides a consistent and simplified API for integration with
orchestration frameworks.

Compute/SoC

SPDK Framework

NVMe over TCP
Initiator

BDEV Layer

NVMe Target

Intel® Xeon®

Linux Kernel

nvme driver

Linux VM

nvme driver

NVMe Protocol Initiator
(NPI)

PF VF VF

RDMA

Processing pipeline

LAN
 APF

N
VM

e
CPF

LCE/
Q

AT

NVMe over TCP Initiator Flow

Mount Evans IPU

NVMe
Initiator
Config
Driver

QAT SDK

Configure

CMDs

NPI Transport

Ethernet MAC

IPU SMA

10 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Big Spring Cannon (BSC) Introduction (Hardware)

 2*25 Gbps SmartNIC Platform

 Intel® Xeon® D processor

 Intel® Stratix® 10 DX FPGA

 ½ length, full height PCIe card

 75W TDP for key workloads

Features

 Intel® Xeon® D
processor and FPGA
SmartNIC platform

 Virtual networking
and storage combined

 Software and hardware
programmable

Benefits
 Large software ecosystem
 High performance

 Versatile and efficient
 Open Vswitch (OvS) with

virtio-net, virtio-blk

 Resilient to future change
 Customizable

11 | ©2022 Storage Networking Industry Association. All Rights Reserved. 11

BSC Introduction Bare Metal (Software)

Host SW

• Converged virtio-net/blk vdpa driver

• UEFI OptionROM virtio driver probe and boot

• SPDK backend for cloud remote boot

• Elastic PFs (device hotplug)

BSC

• Virtio-net/blk FPGA back end

• Host-SoC bridge with FPGA

• Elastic Host PFs hotplug by Elastic EP IP

• Bare metal management SW package

• OptionROM for host UEFI virtio-net/blk driver

12 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Ingredients for the Solution
Ingredient IPU Support Benefit from IPU based solution

Block Device Interface to Host NVMe, virtio-blk interfaces Fully leverage on IPU based storage
disaggregation solution

Block device Hot-plug Yes, IPU designed for bare-metal and
virtualization usages

Align with IPU/DPU’s long term strategy
as a control point in data center

Container image pulling & caching Download container images from image
registry and cache images

IPU as a control point is the idea choice
to manage container images

Container Rootfs construction Construct the rootfs in an assigned bdev
provided by the block service target in
the IPU

IPU can offload such work from the host

Unpacking rootfs or sharing filesystem
among containers

Leverage the snapshot or cloning
features of the bdev in block service
target are required.

IPU can offload such work efficiently
because of integrated accelerators such
as decompress engines.

Control path communication between
IPU and container runtime software

Provide related RPC service to interact
with container management software.

Such RPC service is supported in IPU’s
architecture and design

13 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Detailed Design for Accelerating FaaS/Container
Image Operations using an IPU

14 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Host

IPU

Container in VM(Kata-agent)

PF VF

Container in Bare-metal
(RunC)

/dev/sdX

VF/PF Transport (e.g., NPI transport)

Service target (e.g., NVMe-oF, virtio)

Abstract BDEVs

Container
Base

images
(Cached)

Ba se
Container

Image
Registry

Container
Dynamic
Images

(Cached)

Dynamic
Container

Image (e.g,
For FaaS app)

BDev0

Rootfs

Orchestrator
(e.g., K8S)

Rootfs
BDev1
Rootfs

BDev2
Rootfs

Image-mgmt service

To be developed

Key software components and flows

/dev/sdX
Rootfs

Image-mgmt client Containerd

control path

(1)

(2)
(2)

(3)

(4)

(5)

SPDK framework

15 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Steps to construct FaaS/container images
 There will be the following steps to construct the execution environment for

FaaS/Container usage scenario:
1) The Orchestrator (e.g., K8S/containerd/runC|Kata Containers) communicates with the IPU after receiving

the FaaS running request. Then the IPU receives the requirements from upper running software in the
host.

2) The image-mgnt service downloads the dynamic images and base image from each image registry
3) The image-mgnt service unpacks the images into an assigned Bdev (e.g., Bdev2 in the diagram)
4) Then the virtual block device target service (e.g., NVMe-oF, virtio) with designated transports (e.g., NPI for

NVMe) exports this bdev via a VF or PF to the host. And IPU notifies the container software via RPC.
5) When the VM or host kernel sees the VF/PF, it finally gets a block device after loading the related device

drivers. Then container management software mounts the block device (e.g., /dev/sdX) to a specific
mounting point.

 Finally, containers can be started with the rootfs bundle contained in the block
device

16 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Steps to destroy FaaS/container images by IPU
 There are the following steps to destroy the resources when the

IPU receives the request from the host,
1) Containerd like software communicates with the image-mgnt service in

IPU that the container is shutdown.
2) Image-mgnt service in IPU communicates with block service target to

locate the bdev which used by the container.
3) Block service target in IPU hot removes the VF/PF device related with the

bdev to the host, and there is an event sent to host. Meanwhile, it also
destroys the bdev.

17 | ©2022 Storage Networking Industry Association. All Rights Reserved.

A Simple runC Example to Illustrate the Design
and Flows

18 | ©2022 Storage Networking Industry Association. All Rights Reserved.

3 steps to run a simple container by RunC in a host

RunC: a CLI tool for spawning and running containers on Linux according to
the OCI specification.
We use busybox:latest container image as an example
 The following shows the 3 steps to start a container in a host:

1. # skopeo copy docker://busybox:latest oci:busybox:latest
2. # umoci unpack --image busybox:latest busybox_bundle (destination folder)
3. # runc run test --bundle busybox_bundle

19 | ©2022 Storage Networking Industry Association. All Rights Reserved.

4 steps in IPU to run a simple container by RunC

 Step1: Download or cache the images in the IPU. We can still use skopeo to
download the images and cache it.
 Step2: Unpack the images into a bdev exported by the block service target.
 Then the rootfs can be viewed and operated in the host side. For bdevs with snapshot

and clone feature, it can be helpful to share basic root file systems among different
containers.

 Step3: Hotplug bdev into host and notify container management software.
 The container management software can view the rootfs folder inside the block device

after mounting.
 Step4: Use RunC to run the container with the rootfs in the mounting point.

20 | ©2022 Storage Networking Industry Association. All Rights Reserved.

IPU

Work in progress: Container image offloading with Kata
Containers

VMM
(QEMU/Cloud-hypervisor)

CRIO
containerd

kata-shim-v2

kata-agent

Image mgmt

ocicrypt

Restricted API
via vsock

kubelet

umoci

skopeo

Container
Image

Registry
Optional

VMM
(QEMU/Cloud hypervisor)

CRIO
containerd

kata-shim-v2

kata-agent

Container
Image rootfs
(Pod scope)

Image-mgmt
Service

Restricted API
via vsock

kubelet

umoci

Skopeo

Container
Image

RegistryVM VM

/dev/sdY

block service Target

Container
Image rootfs
(Pod scope)

ocicrypt

(1) Communicate
with IPU to prep
container images

(2) Download the
image if needed

(5) Notify the agent

(3) Construct the
rootfs in a bdev

(4) Hotplug the bdev with the
root fs

To be developedAdded control path

(6) Mount and use
rootfs

Image-mgmt
client

IPU

(1) Download the
image if needed

(2) Unpack the
downloaded image

Existing approach Our proposed approach

21 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Summary

22 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Summary

 In this presentation, we proposed that FaaS/container images’ construction
operations (e.g., Image pulling and rootfs preparation) can be offloaded to IPU,
which saves host CPU/memory resources.
 IPU based FaaS image construction acceleration moves the overhead from host to

IPU. It opens the opportunities for optimizations and innovations.
 To illustrate details of our idea, we did a quick PoC with Intel’s IPU to prove our FaaS/container

image offloading idea.
 We plan to continue the development work:

 Development of the control path between the IPU side (e.g., RPC service) and the Container
Runtime software components in the host.

 Performance evaluation and optimizations.

23 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

24 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Appendix
Detailed steps and scripts for a running example

25 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Leverage BSC to offloading image operations
 Leverage BSC card (An FPGA based IPU) to export virtio_blk

PF/VF to host side
1. When the BSC receives the request, it creates vhost ctrlrs on BSC card.
2. We can still use the skopeo and umoci to download the image, and put unpacked

container image file into a formatted lvol_bdev which created from SPDK running
on BSC through NBD feature.

3. Create snapshot based on the previous lvol_bdev and then make clones from it
(For sharing purpose.)

4. Use the cloned bdevs to server as backend storages for vhost ctrlrs
 Then the host leverages the block devices initialized from virtio-blk

PF/VF as Container images, e.g.,
 Mount the bdevs created from virtio-blk PF/VF, and can find container

images under the mounted directories

26 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Key steps to construct rootfs of a container in BSC

Config and start the SPDK based block target in BSC
 Start the related block target
 Open management interface of blk related device
 Construct blk related vhost device

 Create lvol bdev and copy unpacked container image
 Create lvol bdev and export it through NBD mechanism
 Format the nbd block device and mount it to a folder in order to copy downloaded/cached

container image
 Create snapshot from the lvol bdev and then create clone from snapshot

Map lvol bdev as backend storage for a blk device exported by
the block target.
 For example, Map the clone bdev to specific port of blk device

27 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Scripts on BSC side
 Create blk related device (example code with rpc.py
script)
 Create lvol bdev and export it through NBD (network
block devices) mechanism
 dd if=/dev/zero of=image_test.file bs= 1M count = 512
 ./scripts/rpc.py scripts/rpc.py bdev_aio_create image_test.file aio0 4096
 ./scripts/rpc.py scripts/rpc.py bdev_lvol_create_lvstore aio0 lvol0
 ./scripts/rpc.py scripts/rpc.py bdev_lvol_create -l lvol0 bdev_lvol0 768
 ./scripts/rpc.py scripts/rpc.py nbd_start_disk lvol0/bdev_lvol0 /dev/nbd0

28 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Scripts on BSC side (Cont.)
 Format the nbd block device and copy unpacked container image

 mkfs -t ext4 /dev/nbd0
 mkdir /mnt/test_for_nbd
 mount /dev/nbd0 /mnt/test_for_nbd/
 cp -r busybox_bundle /mnt/test_for_nbd/
 ./scripts/rpc.py nbd_stop_disk /dev/nbd0

 Create snapshot and clone from lvol bdev
 ./scripts/rpc.py bdev_lvol_snapshot lvol0/bdev_lvol0 snap_bdev_lvol0
 ./scripts/rpc.py bdev_lvol_clone lvol0/snap_bdev_lvol0 clon0
 ./scripts/rpc.py bdev_lvol_clone lvol0/snap_bdev_lvol0 clon1
 ./scripts/rpc.py bdev_lvol_clone lvol0/snap_bdev_lvol0 clon2
 //The 3 bdevs can be used by 3 different containers. Map cloned bdevs to different port of blk

related devices

29 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Steps to use virtio-blk PF/VF on host side
When the container runtime software is notified that the

rootfs of the container is prepared, then
Modprobe virtio_blk driver in the kernel to initialize block device
Create VF from virtio_blk PF and initialize block device

from the VF if need to use in VM.
Mount the obtained block device and use the container

image in mounted directories

30 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Scripts on Host side
When the container runtime software on host are notified that the image

are prepared
 List virtio-blk PF provided by BSC

 lspci | grep -i virtio
 Probe virtio-blk driver and create VFs

 # modprobe virtio_blk
 # echo 2 > /sys/bus/pci/devices/0000\:18\:00.3/sriov_numvfs

 Select of the device, then mount block devices initialized from virtio-blk PF/VF
 # mount /dev/vdc /mnt/test_for_runc/

 Use runC to run container image
 # runc run test --bundle /mnt/test_for_runc/busy_bundle/
 We could mount block devices initialized from PF and VFs separately and use them

independently

	Accelerating FaaS/Container Image Construction via IPU
	Agenda
	Motivation and Background
	Motivation & Background
	Motivation & Background (cont.)
	Motivation & Background (cont.)
	IPU Introduction & Use of IPU in FaaS/Container Acceleration
	Mount Evans�
	Mount Evans NVMe over TCP Initiator
	Big Spring Cannon (BSC) Introduction (Hardware)
	BSC Introduction Bare Metal (Software)
	Ingredients for the Solution
	Detailed Design for Accelerating FaaS/Container Image Operations using an IPU
	Key software components and flows
	Steps to construct FaaS/container images
	Steps to destroy FaaS/container images by IPU
	A Simple runC Example to Illustrate the Design and Flows
	3 steps to run a simple container by RunC in a host
	4 steps in IPU to run a simple container by RunC
	Work in progress: Container image offloading with Kata Containers
	Summary
	Summary
	Please take a moment to rate this session.
	Appendix
	Leverage BSC to offloading image operations
	Key steps to construct rootfs of a container in BSC
	Scripts on BSC side
	Scripts on BSC side (Cont.)
	Steps to use virtio-blk PF/VF on host side
	Scripts on Host side

