|
STORAGE DEVELOPER CONFERENCE A SNIA. Event

=SDE¢C

BY Developers FOR Developers

Fremont, CA
September 12-15, 2022

TCP Networking for Storage
Software Developers

A survey of tricks to make your network stack fly

Ben Walker

Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing on certain dates using certain configurations and may not reflect all publicly
available updates. Reach out to Intel for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others.

STORAGE DEVELOPER CONFERENCE

; - 22
2| ©2022 Intel Corp. All Rights Reserved. e

Outline

—o0-
-0—
—O-

Level Setting

What is unique about “storage”
network software

The Basics
Blocking vs. Non-blocking Operations

Grouping Connections

3] ©2022 Intel Corp. All Rights Reserved.

v/

The Good Stuff

Better Connection Grouping
System Calls vs. Data Copies

Zero Copy Transmit

o'

4

The Future

io_uring

EEEEEEEEEEEEEEEEEEEEEEEEEE

What Makes Networking
“Storage Networking™?

STORAGE DEVELOPER CONFERENCE
i — 22
4| ©2022 Storage Developer Conference ©. All Rights Reserved. g

— 7\ ——Z 7 A 7/ S |

NVMe-oF and iISCSI Similarities

STORAGE DEVELOPER CONF|

Ol CONFERENCE
il
5| ©2022 Intel Corp. All Rights Reserved. g_ 22

The Basics

STORAGE DEVELOPER CONFERENCE

6 | ©2022 Storage Developer Conference ©. All Rights Reserved. v. S D ‘22

Berkeley Sockets

Every OS we’ll discuss
today represents a Data is sent using send()
connection as a socket

Data is received using
recv()

» Berkeley socket APl is * The send() call copies e The recv() call attempts
from 1983 data into an OS buffer to receive up to the
e There are OS-specific and returns number of bytes
extensions and immediately. It does not requested
behavioral differences wait for the data to e Whether it waits for all
actually arrive at the of the data, waits for
destination. some amount of data, or
e |f the OS buffer is full, never waits can be
send() can either block controlled with flags
or perform a partial
send, depending on the
flags passed.

7 | ©2022 Storage Networking Industry Association. All Rights Reserved.

—_

A Simple Server

Spawn 1 thread per socket

Perform blocking send() and recv() operations on that socket

The “Apache HTTPD model”

Does not scale well
Ok for simple clients

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
8 | ©2022 Intel Corp. All Rights Reserved. P

Processing Many Sockets From One Thread

Eliminate thread swapping overhead

e The “NGINX” model

To do this we’ll need:

e Some way to make our send() and recv() operations not block, but instead just
tell us to try again later

e Some way to efficiently group together the
connections so we don’t have to iterate the
entire list repeatedly

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
9| ©2022 Intel Corp. All Rights Reserved. P

Blocking vs. Non-blocking

STORAGE DEVELOPER CONFERENCE

10 | ©2022 Storage Developer Conference ©. All Rights Reserved. v. S D ‘22

Many ways to control behavior

The socket can be globally switched into non-blocking mode

* Linux/FreeBSD: fcntl to set O_NONBLOCK

The socket can be created in non-blocking mode

e Linux/FreeBSD: SOCK_NONBLOCK parameter to socket()

Individual recv() and send() calls have flags

e Linux/FreeBSD: MSG_WAITALL, MSG_DONTWAIT

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
11| ©2022 Intel Corp. All Rights Reserved. P

A Simple Non-Blocking Server

Spawn 1 thread per core

On each thread, loop over sockets, performing non-blocking send() and recv() calls

No context switches! But now we’re going to get hammered by

system call overhead.

Observe: Most sockets on each loop are idle

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
12 | ©2022 Intel Corp. All Rights Reserved. P

Grouping Connections

STORAGE DEVELOPER CONFERENCE

13 | ©2022 Storage Developer Conference ©. All Rights Reserved. v. S D ‘22

Operating on Sets of Connections

Berkeley sockets defines Pass in an array of pollfd

poll() to check or wait for objects, which have the
one or more sockets in a set socket and a flag that’s

to become ready to read, updated when poll() returns
ready to write, or to have an to indicate there was an

error. event.

Poll returns if/when one of Less system call overhead,
those sockets is ready to be but still iterating every
processed. socket in the set

14 | ©2022 Intel Corp. All Rights Reserved.

Loop over the pollfd array,
find the ones flagged as
ready, and process them

STORAGE DEVELOPER CONFERENCE
: 22

— —_ .

Better Grouping

= epoll (Linux) and kqueue (FreeBSD)
= The set of sockets is created in the kernel and persists.
* The set of sockets can be modified at any time via system calls

* \When a network event happens, the kernel checks if the socket is in any
groupings and notes that it is ready for processing. This is O(1).

* \When the user checks the grouping, it can quickly return the list of sockets that
are ready without any iteration.

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
15| ©2022 Intel Corp. All Rights Reserved. P

_‘::

A Simple Non-Blocking Server, v2

Spawn 1 thread per core
On each thread, create an epoll/kqueue object.
Loop, checking the epoll/queue object on each iteration.

Much better! No full iterations over the set.

This is considered “state of the art” by most

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
16 | ©2022 Intel Corp. All Rights Reserved. P

Better Connection Grouping

We made it through the level-setting portion!

STORAGE DEVELOPER CONFERENCE
17 | ©2022 Storage Developer Conference ©. All Rights Reserved. v. S D ‘22

How Should Connections Be Assigned To Threads?

Simple: Round-robin as they arrive

e This is fine

Better: Distribute based on activity

e This is sometimes an improvement, but activity levels of sockets can quickly
change so you end up rebalancing constantly

18 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Packets Arrive on Hardware Rx Queues From the NIC

NICs have different

ways to select which [kEbtE oL

e Round-robin based on the 4-tuple

rxqueue to pUt d e Consistent hashing based on the 4-tuple
packet into

Packet arrives on Core o .
e This is a major performance problem!
O; recv called on Core e Can we align our groupings of sockets

1 get |ocking/message to match the Rx queues the NIC will
! . choose for those connections? YES
passing!

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
19| ©2022 Intel Corp. All Rights Reserved. P

Some NICs Give Hints About The Rx Topology

Ask the NIC, via getsockopt Tell the NIC, via setsockopt

e SO INCOMING_CPU reports the most e SO_MARK on some NICs allows an
recently associated CPU core for the Rx application to mark the desired
queue the last packet on this socket groupings. All sockets with the same
arrived on. If the NIC always routes number will go to the same Rx queue.
packets for a connection to the same Rx e Must be done before connect(), so only
queue, the RX queues can be deduced useful on the initiator

e SO_INCOMING_NAPI_ID more directly
reports a unique identifier per Rx
queue.

EEEEEEEEEEEEEEEEEEEEEEEEEE

; - 22
20 | ©2022 Intel Corp. All Rights Reserved. e

System Calls vs. Data Copies

STORAGE DEVELOPER CONFERENCE
i — 22
21 | ©2022 Storage Developer Conference ©. All Rights Reserved. g

—

— |

Parsing Storage Protocols

= recv() first command (64 bytes), look at what it says
= |f data, recv() data size into DMA buffer
= If SGL, recv() sgl size

S

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
22 | ©2022 Intel Corp. All Rights Reserved. P

System Calls Are Expensive

l’ Calling recv() for each segment of data will destroy performance

System calls have mostly “fixed” overhead Clearing registers and state

I

Grab multiple commands/data in one go, then parse out of our own buffer

We can avoid making system calls by
. But if we find data, we now need to copy it out of our temporary buffer and
attempting to recv() larger chunks into our DMA buffers

e

There’s some cut-over point where extra

. That cut-over point is about 8KiB
data copies are cheaper than system calls

K<

STORAGE DEVELOPER CONFERENCE

; - 22
23 | ©2022 Intel Corp. All Rights Reserved. S

Zero Copy Transmit

STORAGE DEVELOPER CONFERENCE

24 | ©2022 Storage Developer Conference ©. All Rights Reserved. v. S D ‘22

TCP Segmentation Offload

= Send() copies the application data to the OS buffer, returns

= Kernel splits into MTU-sized packets, generates headers and
checksums, and sends it on the wire

» The NIC can hardware offload this “packetization” step using TSO. Hardware
iInserts packet headers and checksums.

= Data must be held until TCP ack is received to support re-transmits

= Note: With TSO, the kernel just posts the OS buffer directly to the NIC!

EEEEEEEEEEEEEEEEEEEEEEEEEE

; - 22
25| ©2022 Intel Corp. All Rights Reserved. P

—

Zero Copy Transmit

= |f the OS could tell the app to hold onto the data buffer until it got the
TCP ack, it could avoid the copy into the OS buffer.

* Linux: Added MSG_ZERCOPY flag to send() and infrastructure to report when
the transmission has really finished.

= The OS must pin the data buffers to make them DMA safe. This has overhead

= Zero copy is an improvement when sending at least 4KiB at a time — perfect for
storage use cases!

EEEEEEEEEEEEEEEEEEEEEEEEEE

; > 22
26 | ©2022 Intel Corp. All Rights Reserved. P

Why No Zero Copy Recv?

= The OS drivers must keep data buffers posted to the NIC or the NIC will
be forced to drop incoming packets.

* The packets are often small and scattered as they arrive
= The packets can arrive out of order

= The packets have protected headers that must be parsed and stripped
before the application can see the stream

= So far, this has been a mostly intractable problem.

= Disclaimer: Linux has some limited support if you can control the MTU
size on your network.

STORAGE DEVELOPER CONFERENCE

; - 22
27 | ©2022 Intel Corp. All Rights Reserved. S

io_uring

STORAGE DEVELOPER CONFERENCE

28 | ©2022 Storage Developer Conference ©. All Rights Reserved. v. S D ‘22

Key Features

Asynchronous send and recv

Batching of system calls

Reduced overhead of fd operations (FIXED files)

More natural zero copy support

Pre-posting of recv buffers

STORAGE DEVELOPER CONFERENCE

_ -
29 | ©2022 Intel Corp. All Rights Reserved.

System Call Batching

@ Drop multiple descriptors into ring, then do one system call

3 No need for epoll. Just post send() and recv() as needed.

Lo Pre-post buffers to pool to be used in recv().

30 | ©2022 Intel Corp. All Rights Reserved.

STORAGE DEVELOPER CONFERENCE

Challenges

= Corner case behaviors are still maturing
* When does MSG_WAITALL still result in a partial send()?

= Software needs to be adapted to asynchronous socket operations
» This can be a big change

= The data copy between kernel and user is still as much of a problem as
ever

EEEEEEEEEEEEEEEEEEEEEEEEEE

; - 22
31| ©2022 Intel Corp. All Rights Reserved. e

Please take a moment to rate this session.

Your feedback is important to us.

STORAGE DEVELOPER CONFERENCE
=SD¢C
- 22

