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Agenda
 Introduction
 to Lustre architecture

Background
 on HPC storage

Challenging Issues
 in existing Lustre design

Design Proposal
 to solve these issues, and modernize Lustre

Potential Benefits and Future Impact
 improved I/O performance from full potential of hardware
 future Lustre innovations and re-invigorating developer community
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Lustre Architecture
A closer look
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The Lustre File System
 Open-source distributed parallel file system

 designed for extreme scalability and high performance
 used to support most demanding data-intensive HPC workloads, e.g. weather, molecule 

 provides massively parallel data access for 10s of K clients, the dense computing node 
 also being used in emerging Big Data analytics and Deep Learning applications

 Most trusted open source storage solution for supercomputers: stable
 widely adopted by supercomputers such as those ranked in TOP500 list, e.g.

 #1 ranked Fugaku (June 2020) in Japan by Fujitsu
 #1 ranked Frontier (June 2022) at Oak Ridge NL, the first/only known exascale supercomputer

 Lustre server components + targets
 MGS(MGT), global configuration and registration of all servers
 MDS(MDT), Metadata Server, central brain for the whole system

 inode map for client to look up where user files are stored
 OSS(ODT), Object Store Sever

 target is where the user data are stored
 Infrastructure layer

 LNet, Portal RPC, used to communicate between clients and servers



5 | ©2022 Samsung Electronics. All Rights Reserved. 

Lustre System Architecture
 Lustre client
 the heart to carry out parallel file system logic 
 combines metadata and object storage

to present coherent POSIX file system tree
 the active driver to achieve parallel I/O

by communicating with servers thru RPC calls
 basic I/O flow

 retrieves metadata from MDS => LMV
 including file Layout information

 builds LOV to map file
 data chunks to objects on OSS

 issues Rd/Wr requests directly to OSS 
 coordinate to acquire proper locks

to maintain consistency
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Lustre File vs Object Store Servers/Targets
 Lustre POSIX File with 128b FID

 64b Sequence #., unique across all OSTs/MDTs
 32b Object Index #: reference to objects within OST 

 global inode file metadata descriptor on MDT
 POSIX Attributes: uid, gid, perm, timestamp, size
 Extended Attributes: e.g. Layout EA
 LOV: Logic Object View

 data blocks are in striped across up to 2000 OSTs

OSS/OST, building blocks of I/O’s & storage
 the bulk of Lustre server nodes, a few MDS

 attached with multiple large storage array enclosures
 key enabling factor for massively parallel I/O 

 This talk will focus on OSS/OST
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Storage in Supercomputing
The landscape
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Lustre with All-Flash
 Imminent challenges to Lustre after having served us for 20+ years
 a lot has advancements in Hardware and Software
 SSDs have taken over, dominating mass storage even in the supercomputer data centers

 straight-forward HW upgrade to SSDs?
 #5 ranked TOP500 Perlmutter supercomputer at Lawrence Berkeley NL 
 the largest all-flash storage system as of June 2021
 balancing act to keep $Storage < 15% $Total due to higher SSD $cost 

 3-4X more powerful computing than previous Cori
 with only 35PB SSD vs 30PB of HDD on older Cori

 trade-off: performance over capacity
 Return on Investment, per Lockwood blog
 high-bandwidth jobs: “outstanding”
 high IOPS & metadata heavy: only “good enough”

 “still quite a bit of work to do to get the most out of big flash investment … 
Software continue to be the challenge…tradeoffs to make in Lustre…a lot of work in Software” 

 Results promising, but not simple straightforward HW upgrade
 Bold, right choice in 2018 to move on from HDDs, SSD certainly IS the future!
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Challenges in Distributed File Systems 
 ORNL Frontier Orion the largest Lustre namespace 

 built on multi-tiered systems with SSDs/HDDs
 480x NVMe SSD metadata tier
 5.4K NVMe SSD performance tier,11.5PB based on SSU-F
 47.7K HDD capacity tier, 700PB based on SSU-D

 20x times the storage of Perlmutter 35PB SSD-only

 CAP: Consistency, Availability, Partition Tolerance
 i.e. correct Rd after Wr; Robust; afford to lose msg
 dictates distributed systems cannot maintain all three

 Lustre: POSIX strict Consistency 
 via centralized MDS default only 1
 Availability: Active/Passive failover, MDS no SPOF

 no improvement to performance, still potential bottleneck
 Scale-out: DNE with multi-MDS, dedicated MDS for cascading sub-directory nodes,

 strictly, metadata is sharded, not Partition Tolerant
 primarily Parallel file system for concurrent I/O, not distributed

 active research area to improve metadata performance & scalability
 Alternative?

 POSIX is performance constrained, can we move away from POSIX?
 that is exactly the direction Intel’s DAOS project has taken

40x MDS

450x OSS 1350x OST
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Intel DAOS: Distributed Asynchronous Object Storage
 Aurora at Argonne NL, due to complete in late 2022 after delays
 2x exaFLOPS compared to 1.1 in Frontier
 major leap of technology advancements

 Sapphire Rapids CPU, PCIe Gen 5, and CXL
 10PB memory and 230PB SSD storage 

 vs 11.5PB SSDs & 700PB HDDs in Frontier
 DAOS as storage platform, first discussed at SDC’15
 native Key-Value Object Store to overcome POSIX limitations

 vs POSIX based Parallel File System e.g. Lustre
 designed from ground up to support Storage Class Memory

 Persistent Memory (3D-XPoint Optane) and NVMe SSDs
 both Client & Server running in User-Space 

 Polling mode vs kernel Interrupt to bypass Linux kernel at both SQ & CQ time
 combined with RDMA, to boost bandwidth and lower latency

 DAOS delivers High-IOPS, High-Bandwidth and Low-Latency
 a step closer to all-in-memory High Performance Computing
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 DAOS takes top 11 spots out of 22 in IO500 ISC22 (vs 2 out of 22 for Lustre)
 Historically HPC legacy apps depend on POSIX  
 many lessons on backward compatibility

 HP/Intel’s VLIW Itanium IA-64 vs x86
 Windows 8 on Surface RT ARM:  Marketplace App vs Win32

 thousands of important apps can’t be ignored or re-written
 DAOS’s solutions to POSIX vs Object Store interface 

 per Lockwood ISC19 Blog on discussion with Architect Lombardi
 A: FUSE library approach, but with performance hit
 B: POSIX intercept/shim using preload library, but with consistency risk

 performance-sensitive app to bypass FUSE and map POSIX API calls to DAOS native APIs call

 Non-technical concerns in DAOS
 exclusive dependency on Intel Optane

 no alternative or 2nd supplier to Intel’s, also tied to Intel Xeon CPU
 persistent memory expensive, chicken-egg issue, need more killer use cases

The Case of Forward Looking vs Backward Compatibility
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The Case of Legacy Support: DAOS vs Lustre
We agree with the long term direction of Intel DAOS project
 we applaud Intel achievements in DAOS to showcase what latest technologies capable of
 we also recognize Intel significant contributions HW/SW to Solid State Storage & PMEM

 NVMe, DPDK/SPDK/PMDK, 3D-XPoint/Optane, CXL
We believe Lustre continue to play important role in foreseeable future

 1 in 4 (28%) are running Lustre from IO500 top 83
 we like to continue improve & modernize Lustre
 Our approach is to apply the same set of modern

technologies to Lustre project
 Key-Value Store + Erasure Coding
 User-mode SPDK/PMDK/RDMA

 maintain full compatibility
 existing legacy applications can benefit directly

without costly modification or re-development
 This talk to share what and how we try to achieve this goal

IO500 ISC22 
(total 83)

DAOS Lustre

Top 22 11 (50%) 2 (15%)

Top 45 13 (29%) 12 (26%)

All 83 13 (16%) 23 (28%)
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Challenges in Lustre
Issues and proposals



15 | ©2022 Samsung Electronics. All Rights Reserved. 

RAID The Storage Workhorse
Guard against Hard Drive Failure since 1988
 will continue in the future, even with SSD
 Block interface: LBA with fixed-length units

OST Backend options: either LDDISKFS/Ext4 or ZFS
 both heavily rely on RAID, usually through hardware RAID controller
 ZFS: unique design with special RAID-Z, per-file basis 

RAID usage in Lustre field deployments
 Frontier Orion, ClusterStor E1000, All-Flash-Array SSU-F

 Cray GridRAID declustered-P, 2x OST:12-SSD/each

Samsung Supercomputer for 30y, from Cray in 1992
 latest SSC-21 HPE with 30 PetaFLOPS, Ranked 15th on TOP500 
 DDN Lustre, using 8+2 RAID-6 in all-flash-array
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RAID The Storage Workhorse, but…
 RAID, challenged in the era of Solid State Drives
 hinders SSD innovations, hard to leverage native features as Zoned Namespaces ZNS
 not friendly to SSD performance, HBA adds significant overhead to latency
 only protects drive failure within array, (usually) not across servers

 the worst enemy: lengthy recovery window, longest wait for rebuild to finish
 the system barely functions during degraded mode

 pray no other drive fails, or it will get even slower, or lose the whole array
 the bad new: SSD drive capacity increasingly getting bigger

 concerns over RAID recovery counter to SSD maker interests, which is to roll out bigger drives 

 Issue #1: need better protection than RAID
 Proposal #1: Erasure Coding
 critical change: to un-shackle from the simple matrix mapping restriction in RAID
 when combined together the two can overcome RAID shortcomings

+  Object Store



17 | ©2022 Samsung Electronics. All Rights Reserved. 

Erasure Coding vs RAID
 Erasure Coding 101
 inter-planetary communication for Voyager probe

 built-in encoding to solve long distance transmission loss
 round-trip response to/from Earth: 5 hours

 like RAID, data + encoded chunks, with redundancy
 rebuild missing chunks, if under threshold

 certain Erasure Coding equivalent to RAID
 if using same Reed Solomon algorithm 
 EC provides a lot more protection options and flexibilities

 Erasure Coding: pros and cons
 ideal for large I/O block size, fitting Lustre for HPC workload w/ multiple MBs 1-4MB 

typical 
 small I/O, such as metadata changes, better to use simple replication

 expensive computational overhead, similar to RAID
 EC acceleration using Computational Storage Device is active research area
 Samsung Smart-SSD based effort is ongoing with collaborator at Iowa State University
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Compute Overhead: RAID vs Erasure Coding
 Setup: RAID vs EC + Object Store

 software RAID (kernel md) vs EC + Object Store using Ceph RBD with Jerasure EC library
 BW non-comparable: local PCIe Gen3 vs 100GbE Object Store; cpu% Relatively
 fio: QD:32; Sequential Write BW in 2MB or 4MB; CPU utilization all = (usr% + kernel sys%)
 quick experiment: no configuration optimizing or tuning

 Results: similar for RAID and Erasure Coding, compute overhead significant, both need HW acceleration
 Total cpu% equivalent around 28% for 2MB; around 32% for 4MB
 Total kernel sys% for Software RAID MD: 82%, while 28% for Jerasure EC 
 SSD Write bandwidth utilization: Software RAID significantly low: 12% (RAID6 4+2) compared to 33% (EC)
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Lustre Object Store: Legacy Backend Storage Target
 Two Object Store Target Reference Designs
 both OST design s are based on local file system

 LDISKFS based on EXT4, with patches to kernel driver
 ZFS is file system combined with LVM + RAID all-in-one 

 Storage 101: File System vs Object Storage
 File System: hierarchical w/ strict relationship to each other, human friendly
 Object Store: unstructured, independent, scalable, best example: AWS S3
 use File System as Object Store, not as scalable or performant 

 Issue #2: both OSTs are based on legacy LFS
 both designed for HDD era, no optimized for SSDs

 metadata and user data mixed in on-disk LFS format
 metadata are treated equally, same as regular user data
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Modern Object Store Design with Metadata in PMEM
Emerging SCM Persistent Memory was unimagined two decades ago
 Optane memory offers persistency over DRAM with10x higher capacity
 Optane memory is 10x slower than DRAM, but
 Optane memory is 100x faster than SSDs 

Proposal #2: native Object Store + metadata in PMEM
 OST should be based on truly native Object Store design

 OSS objects independent, not to suffer from unnecessary File System inherent constraints

OST Metadata should be treated as first class citizen, differentiated
 New OSS can enjoy the following benefits from modern SCM

 Metadata operates at memory speed, instead of that of slower SSDs
 SSDs be dedicated to large Sequential I/Os, in MBs for most HPC workload

 SSD sustains at peak performance, without disturbance of small random I/O’s

 Bonus: separate metadata can be replicated to remote backup



22 | ©2022 Samsung Electronics. All Rights Reserved. 

Lustre Components: All as Linux Kernel Module
Major 20+ components implemented in kernel modules
 fitting choice at the time when Lustre first designed

 to avoid context switch: I/Os performed all in kernel on OSS/MDS
 kernel mode disadvantages at modern era

 kernel I/O SW stack overhead too high for modern SSDs vs SPDK
 time consuming: inefficient, less productive process than user mode
 $$$: much more expensive dev resource, much smaller talent pool
 Hardest: LDISKFS is patch to various Ext4 release, a Moving target

 Issue #3: the worst limiting factor today to Lustre project
 definitely not agile, likely the reason Lustre is losing its appeal

 Proposal #3: Object Store Server implementation in User-Space
 User-mode, prevailing model of programming in era of Solid State & PMEM

 SPDK, PMDK, along with RDMA 
 Benefits: Low latency, agile process and higher productivity, larger developer talent pool

Module Module_Description
lite Lustre Client File System
lmv Lustre Logical Metadata Volume
lod Lustre Logical Object Device (LUSTRE_LOD_NAME"
lov Lustre Logical Object Volume

mdc Lustre Metadata Client
mdd Lustre Meta-data Device Driver (LUSTRE_MDD_NA
mdt Lustre Metadata Target (LUSTRE_MDT_NAME")"
mgc Lustre Management Client
mgs Lustre Management Server (MGS)

obdclass "Lustre Class Driver"
ofd Lustre Object Filtering Device
osc Lustre Object Storage Client (OSC)

osd-ldiskfs Lustre Object Storage Device LDISKFS
osd-zfs Lustre Object Storage Device ZFS

osp "Lustre OSD Storage Proxy ("LUSTRE_OSP_NAME")
ost Lustre Object Storage Target (OST)
gss Lustre GSS security policy

ptlrpc Lustre Request Processor and Lock Management
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Object Store Server Modern Design
The proposal detail



24 | ©2022 Samsung Electronics. All Rights Reserved. 

Object Store Service + Target Backend Storage Subsystem

KVCS server

Object Store Service

Target Backend Storage Subsystem

Lustre Portal RPC

LNet: TCP/RDMA

DaTa API

Object Index
Engine:
Metadata
in P-Memory

Object Data
Storage Engine:
Erasure Coding  
across K/V Stores

K/V stores K/V stores

Buffer Mgr

Transaction MgrLock Mgr

Recovery Mgr

OSD API Dispatch

I/O Mgr

Start/Shutdown

Thread Mgr

K/V stores

Cache Mgr
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Engineering Strategy for POC
 Strategy for development work is to reuse

 existing resources as much as possible
 Porting Infrastructure layer from existing Lustre codebase 

 Obviously, to keep compatible we have to follow the exact protocol on the wire
 00 Network Transport: LNet module, starting from TCP and RDMA, using libfabric
 01 Lustre Protocol interface: Portal RPC to make procedure calls between servers and clients
 02 maintain representation identical for common base objects/structures: e.g. obd class 

 Implementing Core Functions of new Object Store Service & Target in user-mode
 2012 Lustre OSD API spec by Intel Lustre team (now DAOS) when working on ZFS OST

 grateful for the extremely helpful API document!
 The purpose was to “create many possibilities, 

including using Object Store Devices or other
new persistent storage technologies”

 made easy for future OSS project like ours!

No Module Functional

00 Networking LNet: TCP, RDMA

01 Infrastructure: portal RPC Lustre protocol interface

02 Internal Lustre base: Lustre device base object Ops: OBD APIs

03 Functional API: OSS/OST Lustre DaTa APIs: …
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Object Store Service Core Functions: DaTa APIs
 Implementing Core Functions for new Object Store Service & Target
 Lustre Object Store Service + Target in user mode process
 Third OSS/OST option, after LDISKFS and ZFS

 Leveraging: many existing Open Source projects
 Metadata: Object Indexing K/V Store: B+Tree or Hash
 KV-Store as OST internal object store

 Samsung KVCS x86 host based, high performance (FMS’22)
 Samsung K/V SSDs as candidate, if capacity oriented

 Data Redundancy: Jerasure or other EC libraries
 PMDK and SPDK: directly/indirectly
 RDMA: OFED release
 Development languages

 mix & match with more productive modern choices

N
o

Module Functional

03 Functional API:
OSS/OST

DaTa APIs: 

00/10: Reply/Punch
01/02: GetAttr/SetAttr
03/04: Read/Write
05/06: Create/Destroy
07/17: GetInfo/SetInfo
08/09: Connect/Disconnect
11/12: Open/Close
13/16: StatFS/Sync
18/19/20: Quota
21/22: LAdvise/Fallocate
23:       Seek
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Object Store Backend Storage Subsystem Requirements
 DaTa Object Types (inode per FID) 

 regular objects: unstructured data (file/objects)
 index objects: key/values pairs (directories, quota, FLDB)

 DaTa Object Operations
 Core: create/destroy/manipulate object attributes
 Data: to access object body: read/write/truncate/punch
 Index ops: to access index objects as key-value pairs

 Key requirements for storage backend
 transaction commit 

 atomic, consistent, durable, callback
 object attributes

 POSIX attributes
 user id, group id, access mode, time, size

 Extended Attributes
 efficient indexing for index objects

 efficient retrieval
 efficient random lookup
 iteration with ordering, restart from cursor

 quota

No Module Functional

04 OST Object Indexing (inode)
(persistent memory)

OST metadata mgmt via K/V Store (B+tree)
FID -> object lookup/manipulate

05 Index Object Access
(persistent memory)

Index Access: internal key/value mgmt

06 Data Object I/O Access Data Access: Read/write/truncate/punch

07 Data Redundancy Data distribution: 
object mapping: data to Objects sent to K/V stores 

08 Algorithm Libraries CRUSH, Erasure Coding 
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Benefits and Impact
The Potential
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Potential Benefits: Performance and Project Impact
 POC status & goals
 after high-level designing, entering early phase development
 100% compatible with MDS/client, OSS/OST drop-in replacement
 push HW limit and to fully leverage SSD bandwidth potential 

 Expected benefits: improved I/O performance
 lower latency from metadata in PMEM
 lower latency from service running in user mode
 higher bandwidth: without RAID HBA

 Erasure Coding + Object Store
 back of envelope estimate on HW potential per cpu

 Future Impact
 pave the road to improve critical Lustre metadata

 similarly, MDT in PMEM and MDS service in user-mode
 open door to further innovations

 e.g. further improve Lustre Metadata scalability
 lower engineering barrier to attract more talented developers, innovative contributions 
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Summary
The take-away
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Summary
 Introduced the Lustre architecture
 Presented more background of HPC storage
 Discussed the design of existing OSS/OST and 

Identified the challenges & limitations in Lustre and proposed solutions
 RAID based vs  Erasure Coding + Object Stores based
 HDD era local file system based OST vs native Object Store + metadata all-in-PMEM
 kernel mode modules vs server service all-in-user-mode

 Previewed the design of the proposed modern OSS/OST
 Discussed potential benefits and future impact
 to improve I/O performance in both BW and latency to fully utilize SSD potential
 to lower engineering barrier to attract more innovative contribution
 to invigorate Lustre developer community
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Collaboration, Partnership and More
Existing collaborators from academia and national labs
 Iowa State University/DSL, Los Alamos NL, Lawrence Berkeley NL

 Looking for more partners from open-source communities
 contributing or early adoption, test pilot

QR-Code (top R) to connect/follow-up on LinkedIn
 https://www.linkedin.com/in/yong-chen-783317

QR-Code (below L) We Samsung are hiring! for Storage and HPC
 https://boards.greenhouse.io/samsungsemiconductor/jobs/5298364003 [NPL/SAL]

 Locations: Silicon Valley, CA preferred;  Seattle, WA;
Asia or Europe possible
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Q & A
The discussion
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Please take a moment to rate this session. 
Your feedback is important to us. 
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Backup
More discussion
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Object Store vs Key-Value Store
 Take-away: K/V Store is the building blocks (devices) of Object Store
 Conceptually similarity: Val:= GET(key); PUT(key,val),

 K/V Store: for developer, internal device level with formal specification
 Object Store: end products that human end users can use and interact with, 

 Object: modifiable, appendable
 K/V Value: complete, limited-size, not immutable

 sample K/V Stores: memcached/redis, LevelDB/RockDB, SNIA K/V Spec
 device or system: compliant to SNIA K/V Store API: Samsung KVCS or Samsung K/V SSDs

 SNIA References
 Object Storage: Trends, Use Cases, Nov 16, 2021
 The Key to Value, Understanding the NVMe Key-Value  Standard, Sept 1, 2020
 Key Value Standardization, SDC Sept 22-23, 2020
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