
1 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Virtual Conference
September 28-29, 2021

A Event

SPDK Schedulers
Realizing Power Savings in Polled Mode Applications

Tomek Zawadzki and Jim Harris
Intel Corporation

2 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Introductions

Jim HarrisTomek Zawadzki

3 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Notices and Disclaimers
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing on certain dates using certain configurations and may not reflect all publicly
available updates. Reach out to Intel for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others.

4 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

SPDK Overview

5 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

SPDK Overview

Storage Performance Development Kit
 Framework for building high-performance

storage applications
 Set of drivers and libraries
 Includes fully functional storage target

applications
 Userspace, polled-mode programming

model
 Open-source community
 BSD licensed
 https://spdk.io

Drivers

Block Storage Services

Block Storage Protocols

Partitioning: Logical Volumes, GPT

NVMe (PCIe, RDMA, TCP), virtio (scsi, blk), idxd, ioat

Host FTL: ZNS

Transforms: Crypto, Compression

Caching: OCF

Pooling: RAID-0

Block Storage Providers

NVMe, io_uring, Linux AIO, virtio, iSCSI, Ceph RBD

Networking: NVMe-oF (RDMA, TCP, FC), iSCSI

Virtualization: vhost-scsi, vhost-blk, NVMe vfio-user

6 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

SPDK Threading Model

7 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

SPDK Threading Model
 spdk_reactor
 One spdk_reactor per CPU core
 Pinned POSIX thread
 Created by SPDK application framework

 spdk_thread
 Lightweight “thread” abstraction
 By default, one spdk_thread per CPU core

 Created by top-level block storage protocol
library (nvmf, vhost, iscsi)

 spdk_thread_poll() used by application
framework to “run” an spdk_thread

CPU Core 0 CPU Core 1

CPU Core 2 CPU Core 3

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

SPDK Application

8 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

spdk_thread_poll()
 spdk_poller
 Libraries register spdk_pollers to poll on

something
 NVMe qpair
 epoll fd (group of TCP sockets or rbd eventfds)
 RDMA completion queue

 One call to spdk_thread_poll() runs every
spdk_poller once
 Except for timed pollers

 spdk_thread_send_msg()
 Used for inter-thread communication

CPU Core 0 CPU Core 1

CPU Core 2 CPU Core 3

spdk_reactor
spdk_thread

spdk_pollerspdk_pollerspdk_poller

spdk_reactor
spdk_thread

spdk_pollerspdk_pollerspdk_poller

spdk_reactor
spdk_thread

spdk_pollerspdk_pollerspdk_poller

spdk_reactor
spdk_thread

spdk_pollerspdk_pollerspdk_poller

SPDK Application

9 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

Saving Power When Idle

10 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

All of this polling!

Polled mode ideal for best performance and efficiency when CPU cores
are busy
But how can we save CPU cycles when we are not as busy?

11 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Interrupt Mode

SPDK does have some limited interrupt mode support
 Restricted to very small subset of SPDK libraries (not including nvme driver or

nvmf target)
 Supporting libraries register fds with spdk_thread
 spdk_reactor waits on epoll fd containing fds from all spdk_threads on that

reactor
Overly complex to implement efficiently
 Avoid nested epoll fd groups
 Every library must be modified to support interrupts

12 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

umonitor/umwait

Newer x86 instructions to allow unprivileged monitor/mwait
 umwait – enables CPU to enter low-power state
 Exits low-power state on observed write to memory range specified by umonitor

Works well for one thread polling one HW queue
 i.e. DPDK packet processing and userspace Ethernet PMDs

Not suitable when polling many HW queues from one thread
 Or when polling kernel TCP sockets!

13 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Move spdk_threads?

Would allow putting a CPU core to
sleep!
 While still ensuring the spdk_thread is

continually polled (just on a new core)
Supported by SPDK threading

model
 Since all resources allocated by an

spdk_poller are spdk_thread local

CPU Core 0 CPU Core 1

CPU Core 2 CPU Core 3

spdk_reactor
spdk_thread

spdk_pollerspdk_pollerspdk_poller

spdk_reactor

spdk_thread
spdk_pollerspdk_pollerspdk_poller

spdk_reactor
spdk_thread

spdk_pollerspdk_pollerspdk_poller

spdk_reactor

spdk_thread
spdk_pollerspdk_pollerspdk_poller

SPDK Application

spdk_thread
spdk_pollerspdk_pollerspdk_poller

spdk_thread
spdk_pollerspdk_pollerspdk_poller

14 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

SPDK Scheduler Framework

15 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Scheduling Phases
Reactors are never halted
 1) gather_metrics() collects info on

core and threads status

CPU Core 0 CPU Core 1

CPU Core 3 CPU Core 2

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

SPDK Application

gather_metrics() gather_metrics()

gather_metrics()gather_metrics()

balance()

struct spdk_scheduler_core_info {

/* stats over a lifetime of a core */

uint64_t total_idle_tsc;

uint64_t total_busy_tsc;

/* stats during the last scheduling period */

uint64_t current_idle_tsc;

uint64_t current_busy_tsc;

uint32_t lcore;

uint32_t threads_count;

bool interrupt_mode;

struct spdk_scheduler_thread_info *thread_infos;

};

struct spdk_scheduler_thread_info {
uint32_t lcore;
uint64_t thread_id;
/* stats over a lifetime of a thread */
struct spdk_thread_stats total_stats;
/* stats during the last scheduling period */
struct spdk_thread_stats current_stats;

};

16 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Balancing Threads
 2) balance()
 Change thread’s core assignment
 Put a core to sleep
 Modify core frequency via governor

Plug your own !

struct spdk_scheduler {
const char *name;

/**
* This function is called to initialize a scheduler.
*
* \return 0 on success or non-zero on failure.
*/
int (*init)(void);

/**
* This function is called to deinitialize a scheduler.
*/
void (*deinit)(void);

/**
* Function to balance threads across cores by modifying
* the value of their lcore field.
*
* \param core_info Structure describing cores and threads on them.
* \param count Size of the core_info array.
*/
void (*balance)(struct spdk_scheduler_core_info *core_info, uint32_t count);

TAILQ_ENTRY(spdk_scheduler) link;
};

SPDK_SCHEDULER_REGISTER(scheduler_dynamic);

17 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

SPDK Governors
Use of governors by scheduler is optional

Dynamic scheduler uses dpdk_governor
 rte_power library

Plug your own !
SPDK_GOVERNOR_REGISTER (dpdk_governor);

rc = spdk_governor_set("dpdk_governor");

struct spdk_governor {
const char *name;
uint32_t (*get_core_curr_freq)(uint32_t lcore_id);
int (*core_freq_up)(uint32_t lcore_id);
int (*core_freq_down)(uint32_t lcore_id);
int (*set_core_freq_max)(uint32_t lcore_id);
int (*set_core_freq_min)(uint32_t lcore_id);
int (*get_core_capabilities)(uint32_t lcore_id, struct spdk_governor_capabilities *capabilities);
int (*init)(void);
void (*deinit)(void);

TAILQ_ENTRY(spdk_governor) link;
};

18 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Scheduler Actions
 3a) update_core_mode()
 Puts a core into sleep

 3b) threads_reschedule()
 Marks spdk_thread for move

CPU Core 0 CPU Core 1

CPU Core 3 CPU Core 2

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

spdk_reactor
spdk_thread

SPDK Application

balance() update_core_mode()

update_core_mode()update_core_mode()

threads_reschedule()

19 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Dynamic Scheduler

 Implementation of a scheduler

Prioritizes performance over power saving
 Eager spdk_thread expansion

Consolidates spdk_threads on minimal set of cores
Puts unused cores to sleep
Reduces CPU frequency of the main core on low use

20 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

Performance Data

21 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Test Setup

SPDK NVMe-oF TCP Target
 30 CPU cores assigned for the whole application

Two SPDK NVMe-oF TCP Initiators, each:
 4 CPU cores
 8 NVMe-oF subystems

FIO 4k block size randread workload
 Increasing Queue Depth
 Increasing # of TCP connections with ‘numjobs’

Test by Intel as of 9/15/2021.
Target Node: 1-node, 2x Intel® Xeon® Gold 6230 Processor, 20 cores HT On Turbo ON Total Memory 384GB (12 slots/32GB/2933 MHz), BIOS: 3.4 (ucode:0x5003003), Fedora 33, Linux Kernel 5.8.15-300, gcc 9.3.1 compiler,
fio 3.19, SPDK 21.07 with 28ab38a, Storage: 16x Intel® SSD DC P4610 1.6TB, Network: 2x 100 GbE Mellanox ConnectX-5.
Host Nodes: 2-nodes, 2x Intel® Xeon® Gold 6252 Processor, 24 cores HT On Turbo ON Total Memory 192GB (6 slots/32GB/2933 MHz), BIOS: 3.4(ucode:0x5003003), Fedora 33, Linux Kernel 5.8.15-300, gcc 9.3.1 compiler,
fio 3.19, SPDK 21.07 with 28ab38a, Network: 1x 100 GbE Mellanox ConnectX-5

https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2104.pdf

22 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Dynamic vs Static Scheduler

8 32 64 128
CPU Dynamic 10.2 14.8 16.1 17.6
CPU Static 31.5 31.1 31.1 31.3
IOPS (k) Dynamic 562.6 1617.3 2646.1 3115.3
IOPS (k) Static 582.3 1671.2 2644.2 3058.1

10.2

14.8
16.1

17.6

31.5 31.1 31.1 31.3

563

1,617

2,646

3,115

582

1,671

2,644

3,058

0

500

1000

1500

2000

2500

3000

3500

0

5

10

15

20

25

30

35

IO
PS

 (k
)

CP

U
 u

til
ize

d

Queue depth

NVMe-oF TCP Target CPU usage scaling for 16 connections

 16 NVMe-oF subsystems
 1 connection each

See configuration details – slide 20

23 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

NVMe-oF Poll Group
 spdk_poller polls an epoll fd
 Group multiple TCP sockets
 Round robin assignment of NVMe-oF qpairs

No guarantees on balance across
spdk_threads
 Mix of active and idle qpairs
 Qpairs can disconnect

 Initiator spreads load across qpairs

CPU Core 0 CPU Core 1

CPU Core 3 CPU Core 2

spdk_reactor spdk_reactor

spdk_reactor spdk_reactor

SPDK Application

spdk_thread
spdk_poller (epoll fd)

conn conn

spdk_thread
spdk_poller (epoll fd)

conn conn conn conn

spdk_thread
spdk_poller (epoll fd)

conn conn conn conn

spdk_thread
spdk_poller (epoll fd)

conn conn conn

spdk_thread
spdk_poller (epoll fd)

conn

spdk_thread
spdk_poller (epoll fd)

conn

24 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Cost of NVMe-oF TCP Poll Groups

8 32 64 128
CPU Dynamic 21.9 32.2 34.5 34.3
CPU Static 34.0 34.1 35.1 33.8
IOPS (k) Dynamic 854.1 1997.3 3240.7 5029.1
IOPS (k) Static 880.7 2043.3 3276.5 5000.7

21.9

32.2
34.5 34.334.0 34.1 35.1

33.8

854

1,997

3,241

5,029

881

2,043

3,276

5,001

0

1000

2000

3000

4000

5000

6000

0

5

10

15

20

25

30

35

40

IO
PS

 (k
)

CP

U
 u

til
ize

d

Queue depth

NVMe-oF TCP Target CPU usage scaling for 64 connections

 16 NVMe-oF subsystems
 4 connections each

See configuration details – slide 20

25 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

Summary and Next Steps

26 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Summary

 Poll mode applications require special handling to save power and CPU
cycles when idle

 SPDK event framework allows moving idle spdk_threads to put cores to sleep
thus saving power

 Plugable scheduler framework is provided to define when spdk_threads
should be moved

 Dynamic scheduler consolidates spdk_threads on minimal set of cores and
puts remaining cores to sleep

27 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Next steps

Further improve the logic dynamic scheduler for spdk_thread placement
 Give tweakable values to the user

Address the cost of multiple poll groups on single core
Scale CPU frequency of all cores
Prioritize cores
 Based on NUMA, hyperthreading and high frequency cores

28 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	SPDK Schedulers
	Introductions
	Notices and Disclaimers
	SPDK Overview
	SPDK Overview
	SPDK Threading Model
	SPDK Threading Model
	spdk_thread_poll()
	Saving Power When Idle
	All of this polling!
	Interrupt Mode
	umonitor/umwait
	Move spdk_threads?
	SPDK Scheduler Framework
	Scheduling Phases
	Balancing Threads
	SPDK Governors
	Scheduler Actions
	Dynamic Scheduler
	Performance Data
	Test Setup
	Dynamic vs Static Scheduler
	NVMe-oF Poll Group
	Cost of NVMe-oF TCP Poll Groups
	Summary and Next Steps
	Summary
	Next steps
	Please take a moment to rate this session.

