
1 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Virtual Conference
September 28-29, 2021

A Event

High Performance NVMe
Virtualization with SPDK and vfio-
user
Ben Walker
Core Maintainer, SPDK
Intel Corporation

2 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Agenda

Standardization

Emulating NVMe Devices

NVMe Client Library

Performance

2

3 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

Standardization

4 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Brief Background

Need to emulate device outside VMM

Performance

Security

Stability/resilience

Device can even run in separate VM

Initially conceived for SPDK
NVMe device emulation

But much broader than this use case
now!

4

5 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

What is Virtual Function I/O (vfio)?

“The VFIO driver is an IOMMU/device agnostic framework for exposing
direct device access to userspace…”

In other words, an interface for writing user space device drivers

Originally to be used by virtual machines for PCI passthrough

This happens to be how SPDK’s NVMe, CBDMA, and DSA drivers are
built

6 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Introducing The VFIO-USER Protocol

6

Modelled after the VFIO ioctls
• VFIO commands/structs do exactly what we need

vhost-user is to vhost as vfio-user is to vfio

Commands/messages passed over UNIX domain socket

7 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

Emulating NVMe Devices

8 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Approach

8

NVMe-oF already requires nearly full emulation of an NVMe device

SPDK NVMe-oF already has a pluggable transport layer

9 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Let’s use the NVMe-oF Target!

9

Let’s make a new transport for NVMe-oF

A “shared memory” or “virtualization”
transport

But fabrics *is* slightly different than PCIe.
Some of the initialization flow is reversed.
• Can we generalize the transport plugin interface to

handle this?
• Yes!

SPDK NVMe-oF Target

vfio-user tcp rdma

10 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Emulating an NVMe device

SPDK NVMe-oF Target

Emulated NVMe Controller

TCP VFIOUSER

Namespaces

BDEV

NVMe-BDEV User defined
BDEV

QEMU

VM

nvme driver

vfio-pci

libvfio-user

PCIe Fabric

ioctl user

11 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Challenges

• Need to “listen” on a Unix domain socket
• Only a single “host” can connect to the subsystem, rather than many
• No need to have an accept poller

The “listener” concept is different for vfio-user

• Push accept poller down into the transports. The vfio-user transport just won’t
make one.

Need to generalize concept of listener to “endpoint” in
SPDK

12 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Challenges

12

Register reads and writes
are very different for PCIe

than fabrics

• MMIO rather than
commands with requests
and responses

• The set of allowed
registers is different

Libvfio-user provides a file
descriptor that is signaled
when an MMIO operation

has occurred

• Create a background
thread blocked on that fd

• Generate a fake fabrics
property get/set
command and send to
target. For MMIO read,
block until response.

Expand set of allowed
Fabrics Property Get/Set

commands

• Wider range of registers
allowed for PCIe

13 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Challenges

Admin queue creation happens in reversed
order compared to real fabrics devices

Real fabrics devices first create an admin queue, then read
registers

PCIe devices first read registers, then create an admin
queue

Need to create an admin queue as soon as
“endpoint” is created so registers can be
read

Generate fake admin queue creation command in transport,
send to target

13

14 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Success!

• Final patch that went into SPDK contained *only* a new transport.
• No other code changes!

• Generalization is useful for future additional transports we expect to
see
• Running the NVMe-oF target as firmware?
• QUIC?

• SPDK is a great NVMe emulator
• Can leverage this to prototype new NVMe features and test from QEMU

14

15 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

NVMe Client Library

16 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

We need a way to test the vfio-user transport

Vfio-user is just a protocol spoken over a UNIX domain socket between
two processes. The “client” does not need to be a VMM.
SPDK’s nvme library supports a pluggable transport system
 Let’s implement a transport on the client side!

17 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

NVMe client library with vfio-user transport

 SPDK NVMe library can connect with
SPDK NVMe-oF Target via vfio-user
transport.

 Same programming API as any NVMe
device via SPDK

17

SPDK NVMe-oF Target

vfio-user tcp

SPDK NVMe Driver

vfio-usertcp

vfio-user-pci libvfio-user

18 | ©2021 Storage Developer Conference ©. Intel Corporation. All Rights Reserved.

Performance

19 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

 Vhost-user forces the virtio-
scsi or virtio-blk protocols
 Virtio-scsi is heavily stateful.

Requires locking to support
multiple connections.

 SPDK does virtio-scsi using
just a single thread – it’s faster
than locking!

 Vfio-user lets us pick any
device interface, so we pick
NVMe!
 NVMe can handle parallel

submission and command
processing System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @

2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Bios: HT disabled, Turbo
disabled; OS: Fedora 30, kernel 5.6.13-100. VM configuration : 16
vcpus 16GB memory, 16 IO queues; VM OS: Fedora 33, kernel 5.10.8-200,
blk-mq enabled; Software: QEMU with vfio-user-pci patch, IO distribution:
SPDK, FIO 3.21, io depth=128, numjobs=16, direct=1, block
size=4k,randread,total tested data size=400GiB

Benchmark: Threading Model

20 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6
memory Channels; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100. VM
configuration : 4 vcpus 8GB memory, 4 IO queues; VM OS: Fedora 33, kernel 5.10.8-200, blk-mq
enabled; Software: QEMU with vfio-user-pci patch, IO distribution: SPDK, FIO 3.21, io depth=128,
numjobs=4, direct=1, block size=4k,randread,total tested data size=400GiB

Scaling from 1 to 4 cores on
target
 4K Random Read, 128

Queue Depth from 4 fio jobs

Benchmark: Core Scaling

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4

number of cores

IOPS(K)

Vfio-user Core Scaling

21 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

P5800X SSD
 4KiB Random Read at Queue

Depth 128 on 4 queues from
client
Single core in NVMe-oF

target

Benchmark: Single Thread

System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Intel P5800X 1.6TB, fw: L0310100; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100. VM configuration : 4 vcpus 8GB
memory, 4 IO queues; VM OS: Fedora 33, kernel 5.10.8-200, blk-mq enabled; Software: QEMU with vfio-user-pci patch, IO distribution: SPDK, FIO 3.21, io depth=128, numjobs=4, direct=1, block size=4k,randread,total tested data size=400GiB

0

100

200

300

400

500

600

700

800

900

IOPS(K)

vfio-user NVMe

vhost-user BLK

spdk perf in VM with vfio-user

spdk perf baremetal

22 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	High Performance NVMe Virtualization with SPDK and vfio-user
	Agenda
	Standardization
	Brief Background
	What is Virtual Function I/O (vfio)?
	Introducing The VFIO-USER Protocol
	Emulating NVMe Devices
	Approach
	Let’s use the NVMe-oF Target!
	Emulating an NVMe device�
	Challenges
	Challenges
	Challenges
	Success!
	NVMe Client Library
	We need a way to test the vfio-user transport
	NVMe client library with vfio-user transport
	Performance
	Benchmark: Threading Model
	Benchmark: Core Scaling
	Benchmark: Single Thread
	Please take a moment to rate this session.

