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Agenda

Standardization

Emulating NVMe Devices

NVMe Client Library

Performance
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Standardization
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Brief Background

Need to emulate device outside VMM

Performance 

Security

Stability/resilience

Device can even run in separate VM

Initially conceived for SPDK
NVMe device emulation

But much broader than this use case 
now!

4



5 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. 

What is Virtual Function I/O (vfio)?

“The VFIO driver is an IOMMU/device agnostic framework for exposing 
direct device access to userspace…”

In other words, an interface for writing user space device drivers

Originally to be used by virtual machines for PCI passthrough

This happens to be how SPDK’s NVMe, CBDMA, and DSA drivers are 
built
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Introducing The VFIO-USER Protocol
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Modelled after the VFIO ioctls
• VFIO commands/structs do exactly what we need

vhost-user is to vhost as vfio-user is to vfio

Commands/messages passed over UNIX domain socket
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Emulating NVMe Devices
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Approach
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NVMe-oF already requires nearly full emulation of an NVMe device

SPDK NVMe-oF already has a pluggable transport layer
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Let’s use the NVMe-oF Target!
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Let’s make a new transport for NVMe-oF

A “shared memory” or “virtualization” 
transport

But fabrics *is* slightly different than PCIe. 
Some of the initialization flow is reversed.
• Can we generalize the transport plugin interface to 

handle this?
• Yes!

SPDK NVMe-oF Target

vfio-user tcp rdma
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Emulating an NVMe device

SPDK NVMe-oF Target

Emulated NVMe Controller

TCP VFIOUSER

Namespaces

BDEV

NVMe-BDEV User defined 
BDEV

QEMU

VM

nvme driver

vfio-pci

libvfio-user

PCIe Fabric

ioctl user
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Challenges

• Need to “listen” on a Unix domain socket
• Only a single “host” can connect to the subsystem, rather than many
• No need to have an accept poller

The “listener” concept is different for vfio-user

• Push accept poller down into the transports. The vfio-user transport just won’t 
make one.

Need to generalize concept of listener to “endpoint” in 
SPDK



12 | ©2021 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. 

Challenges
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Register reads and writes 
are very different for PCIe 

than fabrics

• MMIO rather than 
commands with requests 
and responses

• The set of allowed 
registers is different

Libvfio-user provides a file 
descriptor that is signaled 
when an MMIO operation 

has occurred

• Create a background 
thread blocked on that fd

• Generate a fake fabrics 
property get/set 
command and send to 
target. For MMIO read, 
block until response.

Expand set of allowed 
Fabrics Property Get/Set 

commands

• Wider range of registers 
allowed for PCIe
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Challenges

Admin queue creation happens in reversed 
order compared to real fabrics devices

Real fabrics devices first create an admin queue, then read 
registers

PCIe devices first read registers, then create an admin 
queue

Need to create an admin queue as soon as 
“endpoint” is created so registers can be 
read

Generate fake admin queue creation command in transport, 
send to target
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Success!

• Final patch that went into SPDK contained *only* a new transport. 
• No other code changes!

• Generalization is useful for future additional transports we expect to 
see
• Running the NVMe-oF target as firmware?
• QUIC?

• SPDK is a great NVMe emulator
• Can leverage this to prototype new NVMe features and test from QEMU
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NVMe Client Library
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We need a way to test the vfio-user transport

Vfio-user is just a protocol spoken over a UNIX domain socket between 
two processes. The “client” does not need to be a VMM.
SPDK’s nvme library supports a pluggable transport system
 Let’s implement a transport on the client side!
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NVMe client library with vfio-user transport

 SPDK NVMe library can connect with 
SPDK NVMe-oF Target via vfio-user 
transport.

 Same programming API as any NVMe
device via SPDK

17

SPDK NVMe-oF Target

vfio-user tcp

SPDK NVMe Driver

vfio-usertcp

vfio-user-pci libvfio-user
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Performance
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 Vhost-user forces the virtio-
scsi or virtio-blk protocols
 Virtio-scsi is heavily stateful. 

Requires locking to support 
multiple connections.

 SPDK does virtio-scsi using 
just a single thread – it’s faster 
than locking!

 Vfio-user lets us pick any 
device interface, so we pick 
NVMe!
 NVMe can handle parallel 

submission and command 
processing  System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 

2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Bios: HT disabled, Turbo 
disabled; OS: Fedora 30, kernel 5.6.13-100. VM configuration : 16 
vcpus 16GB memory, 16 IO queues; VM OS: Fedora 33, kernel 5.10.8-200, 
blk-mq enabled; Software: QEMU with vfio-user-pci patch, IO distribution: 
SPDK, FIO 3.21, io depth=128, numjobs=16, direct=1, block 
size=4k,randread,total tested data size=400GiB

Benchmark: Threading Model
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System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6 
memory Channels; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100.  VM 
configuration : 4 vcpus 8GB memory, 4 IO queues; VM OS: Fedora 33, kernel 5.10.8-200, blk-mq
enabled; Software: QEMU with vfio-user-pci patch, IO distribution: SPDK, FIO 3.21, io depth=128, 
numjobs=4, direct=1, block size=4k,randread,total tested data size=400GiB

Scaling from 1 to 4 cores on 
target
 4K Random Read, 128 

Queue Depth from 4 fio jobs

Benchmark: Core Scaling
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P5800X SSD
 4KiB Random Read at Queue 

Depth 128 on 4 queues from 
client
Single core in NVMe-oF

target

Benchmark: Single Thread

System Configuration: 2 * Intel(R) Xeon(R) Platinum 8180M CPU @ 2.50GHz; 128GB, 2666 DDR4, 6 memory Channels; Intel P5800X 1.6TB, fw: L0310100; Bios: HT disabled, Turbo disabled; OS: Fedora 30, kernel 5.6.13-100.  VM configuration : 4 vcpus 8GB 
memory, 4 IO queues; VM OS: Fedora 33, kernel 5.10.8-200, blk-mq enabled; Software: QEMU with vfio-user-pci patch, IO distribution: SPDK, FIO 3.21, io depth=128, numjobs=4, direct=1, block size=4k,randread,total tested data size=400GiB
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Please take a moment to rate this session. 
Your feedback is important to us. 
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