DNA Data Storage and Near-Molecule Processing for the Yottabyte Era

Karin Strauss, Microsoft Research Luis Ceze, University of Washington

Storage capacity is growing too slowly

When Moore met Feynman

The number of transistors doubles every 18-24 months

The industry roadmaps are based on that continued rate of improvement Arrange the atoms the way we want

DNA molecules use approximately 50 atoms for one bit

Let's store data in DNA!

DNA data storage basics

Simple mapping:

Bits	Base
00	А
01	С
10	G
11	Т

Store data in synthetic DNA strands

Dense, really dense

Cold Storage: 1EB **Size**: Two Walmart Supercenters

VS.

It's here!

Information durability

DNA "synthetic fossils" last 2,000 – 2,000,000 years

Extreme density makes these conditions cheap and easy to keep

Comparison with other media

No obsolescence

Same medium as read technology improves:

No obsolescence issue, DNA will always be relevant

Same medium as read technology improves:

Medium changes as read and write technology improves:

Ability to make copies

Polymerase Chain Reactions (PCR) create copies exponentially

Sustainability

DNA promises to be significantly more sustainable than tape

DNA storage end-to-end system

Our results so far

1GB of data stored and fully recovered

Published

Most data in DNA in peer reviewed publication

Organick et al., Nature Biotechnology, 2018

DNA storage end-to-end system

DNA encoding

DNA synthesis

DNA preservation

(Credit: Grass et al./ETH Zurich)

Grass et al., Angewandte Chemie, 2015; Chen et al., Advanced Functional Materials, 2019; Kohll et al. Chemical Communications, 2020

DNA storage random access with PCR

Selecting one item out of two

Yazdi et al., Scientific Reports, 2015; Bornholt et al., ASPLOS, 2016; Organick et al., Nature Biotechnology, 2018; Organick et al., Nature Communications, 2020; Chen et al., Nature Communications, 2020

Reading DNA with sequencing by synthesis

Reading DNA with nanopores

Different error profile across platforms

<u>×</u>

Illumina NextSeq

ONT MinION

DNA decoding and error correction

Rashtchian et al., NeurIPS, 2017; Organick et al., Nature Biotechnology, 2018

DNA decoding and error correction

DNA decoding and error correction

DNA storage end-to-end system

Exponential improvements in DNA data storage

Performance of reading and writing DNA

Latency

Synthesis and sequencing are currently batch processes, matches archival storage SLAs (~hours).

Emerging technologies, like nanopore devices, provide closer to real time latency

Source: Robert Carlson

Write and read mechanisms

Opportunities for improvements in write and read throughput, latency and cost

Opportunities	Life sciences	Data storage
Error rate	Single base mutations affect function	Error correcting codes allow data recovery even in the presence of multiple errors C A G C A C T A G Error types: substitutions, deletions and insertions
Length ("block size")	Longer sequences have more function	Shorter sequences are faster and easier to make

DNA storage end-to-end system w/ integrated computing

DNA computing in the 80s

Hamiltonian path problem

Problem: shifts complexity from time to amount of material

Adleman, DNA1, 1994

DNA "computing" in the age of big data

Operate over data already stored in DNA Target polynomial time algorithms Extremely parallel and energy efficient

Content-based image/video search

Content-based image/video search in DNA

Exploiting matches for exact and approximate search

Double helix: complete match

Good partial match

Poor partial match

Searching with DNA

Match-dependent yield

Content based media search

"Semantic" Hashing

Learning-based encoding

Layer			Size
Sequence Output	ATG	ССТ	30 x 1
ReLU + Softmax Activations	A		30 x 4
Fully Connected Weights			10 x 128 x 30 x 4
ReLU Activations			10 x 128
Convolutional Weights 2			1 x 128 x 128
Sine Activations			10 x 128
Convolutional Weights 1			1 x 128
Input Features			10 x 1

Experiments show encouraging results

Yottabyte-scale near-molecule computing?

Capacity/bandwidth going up

Physically "diffusing" computation through data offers parallelism and virtually unlimited access bandwidth. Yes, at a higher latency.

DNA storage end-to-end system w/ integrated computing

End-to-end system in a datacenter

First fully automated DNA data storage system

First fully automated DNA data storage system

Digital microfluidics

Versatile platform to implement wet lab preparation protocols

Random access with spots+digital microfluidics

60s dwell time 33ng mass

00

W

No measurable contamination

[Stephenson, Takahashi, Nguyen, et al.., Nature Communications'19]

Affordable full-stack SW/HW digital microfluidics platform

High-level programming with <i>Puddle</i>	<pre>def thermocycle(droplet, temps_and_times): for temp, time in temps_and_times: <u>heat(droplet, temp, time) if droplet.volume < MIN_VOLUME: droplet += input("water", min_volume)</u></pre>
	<pre>def pcr(droplet, n_iter): thermocycle(droplet, n_iter * [(95, 3 * minutes), (62, 30 * seconds), (72, 20 * seconds),])</pre>
"Assembly code"	activate(3,0) activate(3,1) activate(3,2)
Hardware	

Willsey et al., ASPLOS, 2019; Stephenson et al., IEEE MICRO 2020.

Hardware, software, wetware

Molecular domain

Electronic domain

Future hybrid systems

Electronics: Ultra low latency, engineerable, perfect control

Quantum: Massive specialized parallel computing, little data

https://misl.cs.washington.edu

Questions?

https://www.microsoft.com/en-us/research/project/dna-storage/