KALRAY

SPDK Implementation on a Manycore / Many node System

Jean-François Marie Chief Solution Architect Rémy Gauguey Senior Software Architect

www.kalrayinc.com

KALRAY

ABSTRACT

ABSTRACT

DPU on Manycore and SPDK are a Great Combination

As you know, the Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing high performance, scalable, user-mode storage applications.

Kalray's MPPA[®] manycore architecture proposes a unique 80-cores system. A manycore processor is characterized by an apparent grouping from a software point of view of cores and their portion of the memory hierarchy into computing units. This grouping can delimit the scope of cache consistency and inter-core synchronization operations, include explicitly addressed local working memories (as opposed to caches), or even specific data movement engines and other accelerators. Computing units interact and access external memories and processor I/O through a communication device that can take the form of a network-on-chip (NoC).

The advantage of the manycore architecture is that a processor can scale to massive parallelism by replicating the computing units and extending the network on chip, whereas for a multi-core processor the replication applies to the core level. For storage purposes, the internal processor clusters are configured with one dedicated cluster as a control and management plane, and the remaining four clusters as four independent data planes.

We have implemented SPDK so that it provides a unique scalable platform that can deliver high performances on an 80-core system.

This presentation will explain how we have ported SPDK on our processor core, and what unique pieces of technologies have been developed in order to coordinate with the processor internals.

We will also explain how the platform can scale.

KALRAY

THE PRESENTERS

Jean-François Marie Chief Solution Architect

Jean-François has more than 30 years of experience in the high-tech industry. He started his career dealing with real time systems, before joining Sun Microsystems as a data center architect, then EMC² and finally NetApp in 2006, where he had various roles in a 13 -year career. He held various roles, from Chief Technologist and Product Marketing Director for EMEA, to French Expert team manager to handle new technology introduction. He also managed global and regional accounts, alliances and partners.

Jean-François was also an active SNIA member for 10 years and French SNIA President for 2 years. He has a Masters degree in Electronics, specialized in micro-processor design and embedded systems.

On a personal note, he has been a Basket Ball player, a coach and head coach for 25 years.

Rémy Gauguey Senior Software Architect

Rémy Gauguey is a Senior Software Architect at Kalray, for the Data Center Business Unit. He has more than 25 years of experience in the high-tech industry, with strong expertise in SoCs, RTOS and high-performance packet processing.

He develops advanced architectures for composable infrastructure, leveraging the MPPA[®] manycore technology from Kalray.

Rémy has been previously developing his expertise at Conexant, Mindspeed Technologies and the CEA labs. He holds several patents in the fields of software architecture and packet processing.

Agenda

1.Why Manycore architecture/processor?

- The need for change
- The need for an open platform

2. Overview on an SPDK technical implementation

- Why SPDK?
- SPDK optimization for a manycore
- Use Cases

A GROWING NEED TO ANALYSE DATA ON THE FLY

Twitter 500m of Tweets every day 6000 every second

Facebook 100m of video hours seen every days

> Youtube 5b of videos every day

Autonomous Vehicle

4 terabytes of data/day 1 Autonomous vehicle

In the last 2 years versus Entire History of the humanity!

Data are

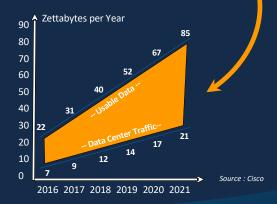
Exploding

AI, 5G, IoT

9x Data created

^y 6Bu loT devices connections by 2026

> Telecom 5Bu Mobile Phone Users by 2020

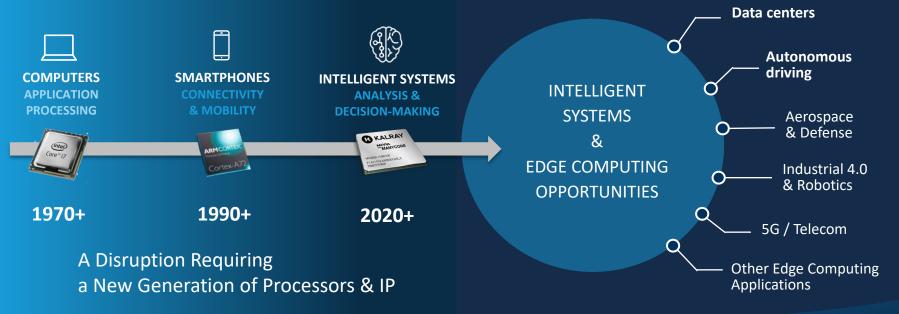

Smart Factory

5 petabytes of video data/day 1 Smart Factory

Smart City

200 petabytes of data/day 1 million-people smart city ONLY 25% of "usable" data will reach a data center

75% are Ephemeral And need to be analyzed locally in real time



A NEW GENERATION OF COMPUTING PROCESSOR IS REQUIRED

Intelligent Systems Need to Analyze a Huge Flow of Data in Real-Time

Multiple emerging end-markets

IS KALRAY

MULTICORE & MANYCORE PROCESSORS The Key Architectural Differences

Homogeneous Multicore Processor

APP 1 APP 2 APP 3	APP 5 APP 6 APP 7 APP 8	APP 10 APP 11 APP 11	ET day T	re		
	Infrastruc Layer					
	1					
Core	Core		ore			
i-Cache d-Cache	i-Cache d-Cache		d-Cache			
L2 Cache	L2 Cache	L2 Cache L2 C	Cache			
	Physica					
	Hardwa					
	Layer					
Multicore Processor Memory Controller 1/O Controller						
N	Main Memory	I/O Device				

Multiple CPU cores sharing a cachecoherent memory hierarchy

- Scalability by replicating CPU cores
- Standard programming models

Energy efficiency issues

• Global cache coherence scaling

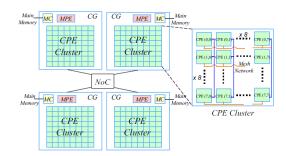
Time-predictability issues

No scratch-pad or local memories

GPGPU Manycore Processor

Multiple Streaming Multiprocessors

Restricted programming models


Performance issues of 'thread divergence'

- Branch divergence slow down the execution
- Memory divergence: non-coalesced accesses

Time-predictability issues

- Dynamic allocation of thread blocks
- Dynamic scheduling of warps

CPU-Based Manycore Processor

Multiple "Compute Units" connected by a network-on-chip (NoC)

- Scalability by replicating Compute Units
- Standard multicore programming inside a Compute Unit

Compute Unit

- Group of cores + DMA
- Scratch-pad memory (SPM)
- Local cache coherency

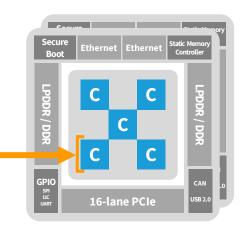


MANYCORE ARCHITECTURE EXAMPLE The I/O Processor for Next Gen Intelligent Systems

I-Cache 16кв-4w			М	MMU		D-Cache 16кв-4w		
PF	ID	RR	E1	E2	E3	E4	E5	
	BCU	Branch Co						
PFB Prefetch Buffer	ID Instr Decode	RF Register File	ALU 0 ALU 1 MAC ALU FPU ALU LOAD/S	_	iply-Accumu LSU	MAU late Unit		
		VRF Vector Register File			r g Point	Co-Proo	TCA cessor	

MANYCORE CORE

- VLIW 64-bit core
- 6-issue VLIW architecture
- MMU + I&D cache (16KB+16KB)
- 16-bit/32-bit/64-bit IEEE 754-2008 FPU
- Vision/CNN Co-processor (TCA)


CLUSTER / COHERENT GROUP OF CORES

Architecture

- 16 cores
- 1 safety/security dedicated core
- 600 to 1200 MHz

Memory

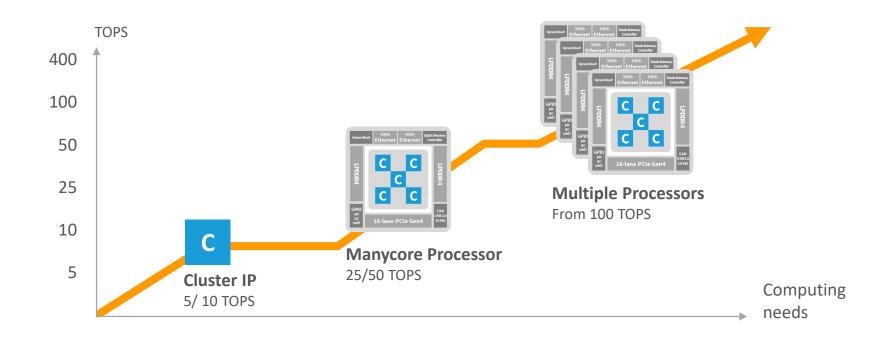
- L1 cache coherency (configurable)
- 4MB configurable memory (L2 cache)
- 256 bits / bandwitdh up to 614GB/s)

MULTI CLUSTER ARCHITECTURE

5 Clusters: 80 cores + 80 co-processors

- Load Balancer / Packet Parser
- 2x100Gbps Ethernet
- PCIGen4
- DDR4 3200

AXI Bus + NoC Bus


• L2 refill in DDR and direct access to DDR from clusters

KALRAY

 DMA-based highly efficient data connection

MANYCORES ARE SCALABLE BY ESSENCE From IP to Multi-die, Ensure Software Scalability

DPU POSITIONING Overcome Weaknesses of Traditional Solutions

High Computing Efficiency (Performance of a high-end DSP/GPU)

Power Efficiency (Sub 30W chip typ.)

Easily Programmable (C/C++/Open CL; Linux; POSIX; RTOS)

Concurrent Execution of Dozens of Heterogeneous Critical Tasks

Low Latency / Deterministic / Real-Time (High speed I/O – RDMA type of architecture)

AN OPEN AND STANDARDS BASED FRAMEWORK The Core of a Storage OS

Highly Efficient

Use multi-OS capability of MPPA®, for maximum efficiency

- Linux: Control and Management plane (typical : 1 Cluster 16 cores)
- Cluster OS (light OS): Data plane (typical: 1 to 4 Clusters 16 to 64 cores)

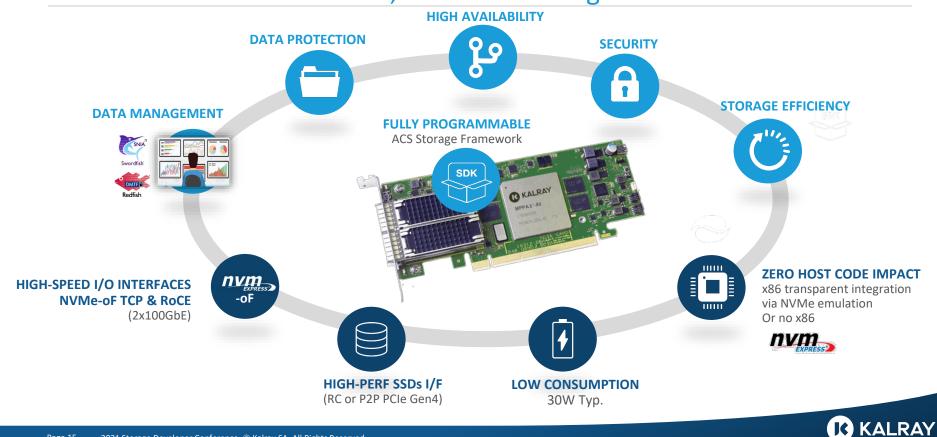
Easy Software Development and Migration

Standard APIs & Tool Chain

- Linux: SPDK, nvmet, virtio, ibverbs ...
- Cluster OS: verbs API, sockets, SPDK nvme, SPDK BDEV, ...
- Yocto Build, GCC, GDB, LLVM

Modular & Scalable

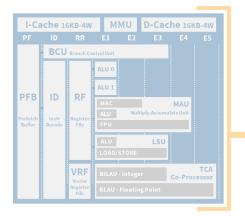
Provided with optimized baseline software modules


- Network functions: OpenDataPlane / Network stack
- Storage functions: SPDK BDEV layer; NVMe-oF + NVMe

SMART STORAGE CONTROLER Builds Next Generation High Perf, Secure, Scale Out, NVMe-oF Storage

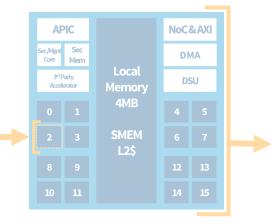
Agenda

1.Why Manycore architecture/processor?


- The need for change
- The need for an open platform

2. Overview on an SPDK technical implementation

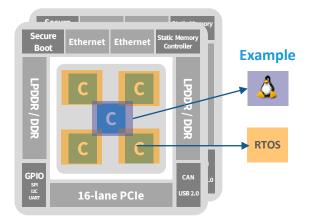
- Why SPDK?
- SPDK optimization for a manycore
- Use Cases



COOLIDGE[™] ARCHITECTURE A Multi-OS / Multi-System Architecture

3RD GENERATION KALRAY CORE

- VLIW 64-bit core
- 6-issue VLIW architecture
- MMU + I&D cache (16KB+16KB)
- 16-bit/32-bit/64-bit IEEE 754-2008 FPU
- Vision/CNN Co-processor (TCA)


CLUSTER

Architecture

- 16 cores
- 1 safety/security dedicated core
- 600 to 1200 MHz

Memory

- L1 cache coherency (configurable)
- 4MB configurable memory (L2 cache)
- 256 bits / bandwitdh up to 614GB/s)

MULTI CLUSTER ARCHITECTURE

5 Clusters: 80 cores + 80 co-processors

- Load Balancer / Packet Parser
- 2x100Gbps Ethernet
- PCIGen4
- DDR4 3200

AXI Bus + NoC Bus

- L2 refill in DDR and direct access to DDR from clusters
- DMA-based highly efficient data connection

ACCESSCORE[®] FOR STORAGE & NETWORKING SPDK Layer Details

SPDK Software Architecture Overview

Performance via Concurrency

- Instead of context switching, dedicate core(s) to specific tasks
- Avoid interrupt handler overhead and latency by polling
- Instead of locks, pass messages

Threading model

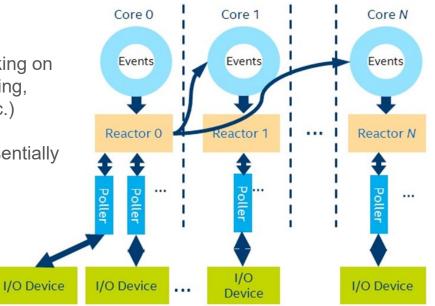
- Model: Many connections per thread with polled asynchronous I/O
- Low memory overhead, No interrupts, No context switching

Open Source Software

</>

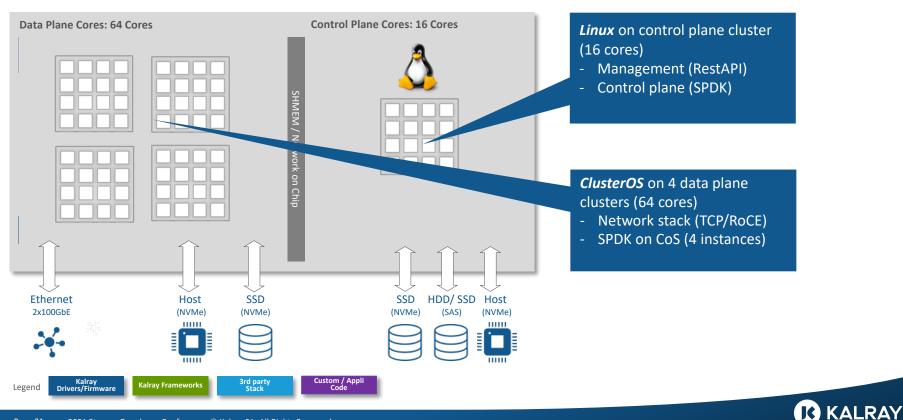
- New features continuoulsy added (ex ZNS)
- Can develop features on x86 then port to MPPA®
- Integration with Openstack
 Cinder

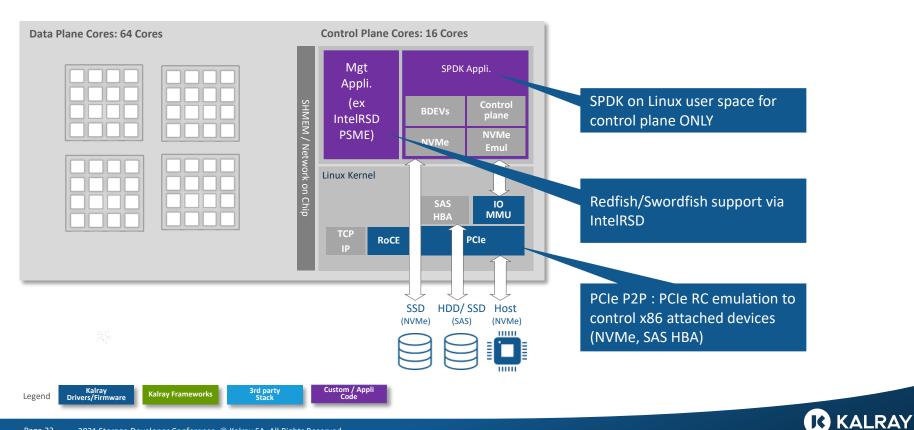
Scalable & efficient

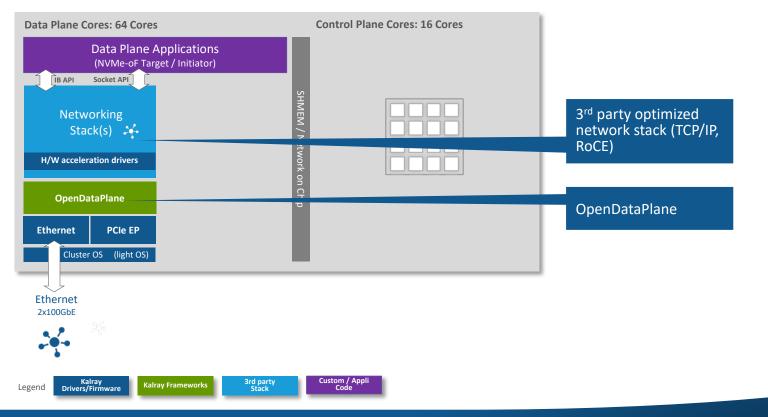


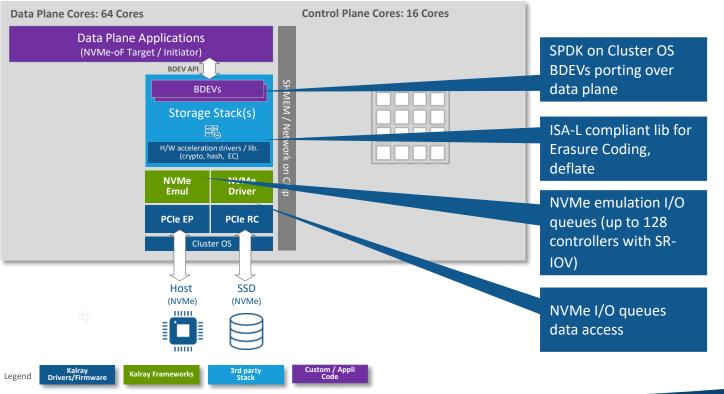
- User space, lockless, polled mode components
- Customizable via BDEV layer (provide 'storage services' like compression, dedup, RAID)

SPDK Software Architecture Overview

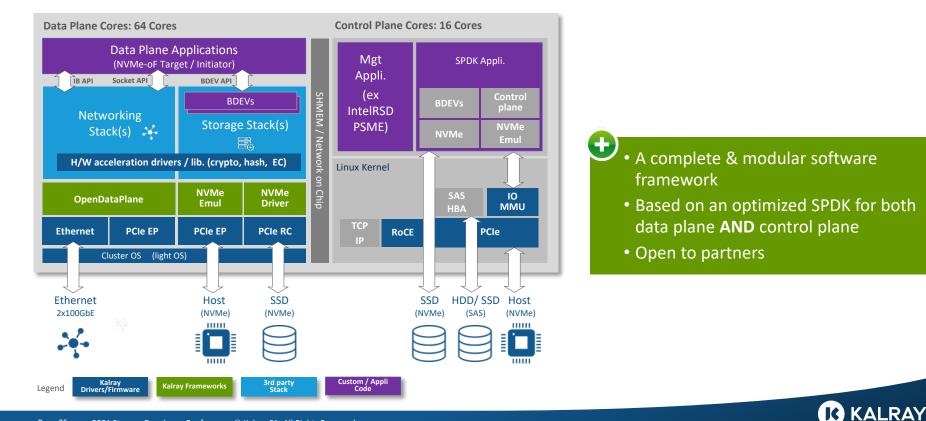

- Reactor: Scheduler pinned to cores
- **Poller**: "Task" running on a reactor checking on asynchronous events (ex RDMA CQ polling, NVMe CQ polling, TCP socket polling etc.)
- Event: Cross thread communication, essentially used for control plane
- I/O channel: Abstract h/w I/O queues


Storage Performance Development Kit (SPDK) Application Event Framework (Reactor, Event, Poller)





KALRAY



KALRAY

SPDK ON MPPA® An Optimized Manycore Implementation

A scalable and multi-instances SPDK implementation

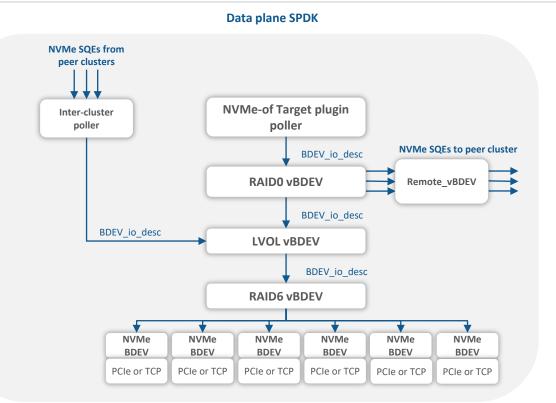
- 5 SPDK instances on 5 MPPA[®] 'clusters'
 - 1x on Linux mainly for control plane, but also for non accelerated protocols (ex iSCSI)
 - 4x on light for data plane (I/O queues only)
- A single SPDK seen from external management

A modular Block Device Abstraction Layer

• BDEVs can be fed from network (TCP/RoCE), PCIe (NVMe emulation), or even inter-cluster communication path SPDK on a proprietary lightweight OS

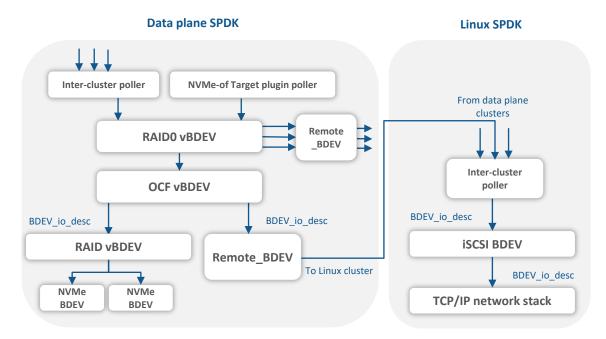
- New 'Event Abstraction Layer': DPDK EAL replaced by ODP EAL
- Cache optimized implementation
 - Pipelined implementation with some core dedicated to networking (TCP / RoCE) and others to BDEVs

An efficient inter-cluster I/O communication

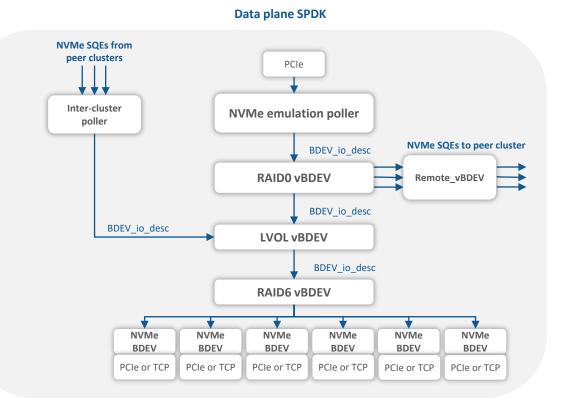

• A "Share Nothing" approach between SPDK instances

- Create parallelism by stripping I/Os

- Zero-copy I/O exchange between SPDK instances
- Zero-copy I/O exchange with Linux SPDK for non NVMe storage (ex iSCSI)


SPDK ON MPPA® Use Case: Distributed Logical Volume

- NVMe I/Os stripped to several dataplane clusters for a 'share nothing' approach between SPDK instances
- Work seamlessly with PCIe or network (TCP/RoCE) target interface
- Zero copy on data blocks located in shared memory area
- Scalability with multi-MPPA® architecture
- Multi SPDK management hidden by Linux SPDK instance
- Up to 1MIOPS @4K


SPDK ON MPPA® Use Case: iSCSI HDD Caching

- NVMe-oF exposed iSCSI volumes cached by NVMe SSDs
- Open CAS Framework (OCF) on data plane SPDK
- NVMe I/Os stripped to several dataplane clusters to ensure independent OCF layers (no metadata sharing)
- Zero copy on data blocks located in shared memory area between data plane and Linux
- iSCSI initiator on Linux

SPDK ON MPPA® Use Case: NVMe to NVMe-oF Initiator

- NVMe-oF connectivity for Bare Metal Cloud environment or OS without NVMeoF support (ex: Windows)
- Expose several NVMe logical volumes via PCIe SR-IOV (NVMe emulation)
- Local PCIe backend devices (PCIe Peer to Peer)
- Remote (NVMe-oF TCP/RoCE) backend devices
- Up to 2MIOPS @4K (local backend devices) or 1MIOPS @4K (remote NVMe-TCP devices)

KALRAY

THANK YOU

www.kalrayinc.com

Kalray makes no guarantee about the accuracy of the information contained in this document. It is intended for information purposes only, and shall not be incorporated into any contract. It is not a commitment to deliver any material, code or functionality, and should not be relied upon in making purchasing decisions. The development, release and timing of any features or functionality described for Kalray products remains at the sole discretion of Kalray.

Trademarks and logos used in this document are the properties of their respective owners.

