
1 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Virtual Conference
September 28-29, 2021

A Event

Kanchan Joshi
Samsung Semiconductor
India Research
(SSIR)

SelvaKumar S
Samsung Semiconductor
India Research
(SSIR)

Towards Copy-Offload in
Linux NVMe
Presented by

2 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Foreword & Acknowledgement

This has elements that are under discussion in LKML
 Mechanism, Opcode, API etc. may change in future

The work captured here is a community effort
 Feedback on the current plumbing have come from many

developers – Damien, Bart, Derrick, Martin to name a few

3 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Agenda

Copy – and issues around it
Remedial measures (OS + Storage)
Copy-offload Interface: SCSI
Copy-offload Interface: NVMe
Where we are: Linux Kernel support update
Next steps

4 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Copying data, and costs that’re out there

 Copy has traditionally been a composite
operation
 Pull from source + Push to destination
 Perhaps the most infallible way, across

heterogeneous storage backend
 Costs

 Expensive on resources
 Host CPU is involved, and CPU caches too
 Host RAM is utilized; may evict other data
 DMA resources

 When source is same as destination, round-trip is
particularly inefficient

 Gets worse, when over fabrics/network
 Saturates network
 Breaks data locality; movements between storage-node and

compute-node
 The farther the storage is from application, the longer it

takes for round-trip to be over

User

1

Kernel

Device Loc. 1 Loc. 2

Buffer

Buffer

Read 2 Write

Buffer

CPU
Copy

DMA
Copy

Local
Storage

CPU
Copy

Fabric
latency

Remote
Storage

Copy

5 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Optimizing Copy

 Async Read + Async Write ……still composite though
 Queue multiple operations using io_uring

 https://github.com/axboe/liburing/blob/master/examples/io_uring-cp.c
 Pushing copy to kernel

 Application does not have to pass buffers for copying
 Linux has a bunch of APIs for ‘in-kernel’ copy instead
 Sendfile

 Perhaps the oldest of the bunch
 Originally introduced to copy between regular-file to socket

 Splice
 Two step operation
 Copy from file A to pipe (splice-read) and then pipe to file B (splice-write)
 The kernel-infra is used for implementing sendfile too

 Copy_file_range
 The newest of the bunch
 Few file systems use this interface to implement custom copy-acceleration
 Example: server-side-copy in NFS & CIFS

https://github.com/axboe/liburing/blob/master/examples/io_uring-cp.c

6 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Optimizing Copy ….

 Switch to logical-copy
 Possible when there is a higher-level

construct sitting above raw data-blocks
 Few filesystems implement logical copy by

sharing data-blocks
 Create meta but share data
 Copy data on subsequent change
 Essentially lazy copy!

 BTRFS, OCFS and XFS
 How user-space can trigger logical-copy

 Invoke FICLONE or FICLONERANGE ioctl
 ‘cp’ provides a knob

 cp –reflink=always source_file dest_file

Inode A

D1 D2

File A

Inode B

File B

Inode A

D1 D2

File A

Inode B

File B

D1’

On Copy

On Write

Copy-on-Write

7 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Pushing copy further down
….to storage

8 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Copy-offload capability of Storage

 A dedicated ‘copy’ interface from the device itself
 Round-trip involving app/kernel/fabric elements is cut short

 Host does control-plane activity
 Device does data-plane activity

User

Kernel

DeviceLoc. 1 Loc. 2

Submit Command
Collect Completion

In-device Copy

User

1

Kernel

Device Loc. 1 Loc. 2

Buffer

Buffer

Read 2 Write

Buffer

CPU
Copy

DMA
Copy

Local
Storage

CPU
Copy

Fabric
latency

Remote
Storage

Copy Offloaded Copy

9 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

SCSI: Copy-Offload

 At least a decade old; copy across multiple devices
 Two main variants

 Extended Copy (XCOPY)
 Block-ranges describing copy-operation are sent either to source or

destination

 Token Based Copy/ODX
 Obtain cookie from source device using POPULATE TOKEN
 Send cookie to destination device using WRITE USING TOKEN

Populate
Token

Write using
Token

Storage Array

T

Send Token
Server 1

Disk 1 Disk 2 Disk 3

Server 2

T

T

Source Destination

1

2

3

4
6

5

10 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

SCSI: Copy-Offload

 Kernel support
 Remained elusive, despite multiple attempts
 Plumbing efforts in past

 Martin Petersen, 2014, https://www.mail-archive.com/linux-scsi@vger.kernel.org/msg28998.html
 Mikulas Patocka, 2014, https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg686111.html

 Summary
 An IOCTL exposing copy between single source-range and single destination-range
 Block layer to SCSI: Two bios, one with COPY_READ another with COPY_WRITE
 XCOPY issued when both COPY_READ and COPY_WRITE reach to driver without getting split

 Why this’s not upstream yet
 Answer of Martin Petersen (SCSI maintainer): http://mkp.net/pubs/xcopy.pdf
 Copy operations fails if a copy request ever needs to be split as it traverse the stack preventing working in

almost every common deployment configuration
 Storage stack need to switch away from the iterative stacking approach……this has not happened, not yet!

https://www.mail-archive.com/linux-scsi@vger.kernel.org/msg28998.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg686111.html
http://mkp.net/pubs/xcopy.pdf

11 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

NVMe Interface for Offload
…copy command

12 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here XCopy turned out to be “complex” command

 Multitude of options for copy; within LUN, across LUNs (intra
array and inter array too)

 NVMe chose “Simple” Copy Command. Simple
because scope is within the single namespace

 Single command to copy multiple source LBA
ranges to a single destination LBA
 Each source range is a combination of source LBA

offset and length
 Source ranges are copied in same order

 On command failure
 Return lowest numbered Source Range entry that was not

successfully copied.

NVMe Copy Command

Namespace A
Namespace B

Copy

NVMe Device

100 + 8

Source Ranges

200 + 16

400 + 8

[800, 3]

Destination LBA

100 + 8

200 + 16

400 + 8

[800, 3]

On failure, returned value = 1

0

1

2

13 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

NVMe Copy Command

Namespace A
Namespace B

Copy

NVMe Device

100 + 8

Source Ranges

200 + 16

400 + 8

[800, 3]

Destination LBA

 Number of source ranges in a single
copy command is limited by MSRC

 Maximum length of a single source
range is limited by MSSRL

 Overall copy size of single SCC
command is limited by MCL

14 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Why now?
 Existing landscape

 Use cases for in-device-copy have become more relevant
 Very large SSDs (even without QLC)
 Emergence of ZNS, requiring host-side garbage-collection

 NVMe & NVMeOF is widely adopted as storage & networking protocol
 Disaggregates setups (compute node separate from storage nodes)

 High-performance HW; while CPUs are not getting faster (https://riscv.org/wp-content/uploads/2018/12/A-New-Golden-Age-for-
Computer-Architecture-History-Challenges-and-Opportunities-David-Patterson-.pdf)
 Single thread performance: stagnant due to Denard Scaling
 Multi-thread performance: slowing down of Moore’s law

 Usecases
 Host-Side Garbage-Collection

 ZNS command set proposes zone-abstraction
 Once full, zone need to be explicitly ‘reset’ before it can be reused
 Before reset, host may need to gather valid data of zone(s) and copy that out to free zone

 Can be useful for log-structured FS/DBs sitting over CNS too
 Defragmentation

 FS may develop aging/fragmentation over time
 With in-device copy, defragmentation process can be kept confined to device

https://riscv.org/wp-content/uploads/2018/12/A-New-Golden-Age-for-Computer-Architecture-History-Challenges-and-Opportunities-David-Patterson-.pdf

15 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Plumbing scheme in Linux Kernel
…..work-in-progress

16 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Generic copy-offload components

Syscall

VFS/FS

Block Layer

Driver

Device

ioctl copy_file_range
Sync

Io_uring aio

Async

BTRFS F2FS XFS

REQ_OP_COPY

Copy Offload
REQ_OP_READ +
REQ_OP_WRITE

Copy Emulation

NVMe Driver

Copy command Read/Write

w Copy w/o Copy

Kcopyd

linear

stripe

mirror

Device Mapper

Common
Infra

Async binding

Sync Binding Async Binding

FS leveraging copy-offload
(user-driven/internal)

• Protocol agnostic COPY
cmd (for upper layers)

• Abstract SCC limits

Generic copy-offload user-
interface

Work with Block-layer for
SCC abstraction

• Virtual block-devices
over physical devices

• Stackable

Source-code and discussions: https://lore.kernel.org/linux-nvme/20210817101423.12367-1-selvakuma.s1@samsung.com/

https://lore.kernel.org/linux-nvme/20210817101423.12367-1-selvakuma.s1@samsung.com/

17 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

User-interface

 Current Scheme
 Existing copy syscalls do not

accept a cluster of source
locations

 New BLKCOPY ioctl carrying a
payload over raw block device

 In future
 Expose async interface via

io_uring and/or linux aio
 copy_file_range for FS and raw-

block dev

ioctl(fd, BLKCOPY, ©_range)
User
Kernel

18 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

BLKCOPY ioctl

 Example: copy three source ranges to single destination within a namespace

Namespace A
Namespace B

Copy

NVMe Device

0 + 8

Source Ranges

16 + 8

32 + 8

[64, 3]

Destination

19 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Copy: Block-layer & NVMe driver

 Generic Copy interface
 Block-Layer/Driver work together to abstract device details
 Expose protocol-agonistic REQ_OP_COPY to upper layers (FS, user etc.)

 Provide sync or async completion, depending on the caller

 Hide device limits, may impose kernel-defined limits

 Copy emulation
 When underlying device not support copy-offload interface
 Implemented by using regular read and write

20 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Copy: Block/Driver operation sequence

Bio 1

REQ_OP_COPY
dest_bdev
dest_offset

User Payload

ioctl(BLKCOPY)

Payload 1

Bio 2

REQ_OP_COPY
dest_bdev
dest_offset + p1

Payload 2

Request 1
(bio 1)

Request 2
(bio 2)

Split (if > device-limits)

REQ_OP_COPY
Handler

COPY Cmd COPY Cmd

Namespace A

Block Layer

NVMe Driver

NVMe Device

• Process user-payload: validity checks, remapping in case
of partitioned device, split if larger than limits

• Form another payload (one-to-many)
• Encapsulate each payload into bio with opcode

REQ_OP_COPY and REQ_NOMERGE flag
• Bio, packed into request, travels down
• Post all submissions, caller is notified (either sync or async

fashion)

• Converts block-layer payload to NVMe format (sector-to-
lba conversion)

• Forms Copy command and dispatches to Device

User-space

21 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

In-Kernel user: dm-kcopyd

 What is dm-kcopyd
 Kernel daemon to copy (read+write) from one block-device to

one/more block devices
 Part of the device-mapper infra; used by other device-mappers

 Enabling copy-offload
 dm_kcopyd_copy() plumbing

 Switch to offload if both source and destination dev are on single underlying
namespace supporting COPY command

 Example: dm-clone
 one-to-one copy of source-device into destination-device
 Hydration: trigger copying of ranges

Meta

Partition 1 Partition 2 Device

Source Destination

NVMe Copy

DM-Clone

22 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Device-Mapper: challenges

 What is device-mapper
 Subsystem to create virtual block-device on top of real ones
 Implement the functionality not present in the underlying

device: concatenation, striping, encryption, snapshot etc.
 Stackable – virtual device over virtual
 Remap the IO on virtual device to underlying ones

 Read/write bio is split/remapped as it travels down

 Challenges with copy-offload
 Defining semantics of copy-operation across various DMs
 Virtual source/dest device may contain N other underlying

device
 Copy operation needs to be made composite (Read + Write)

for propagation
 Scatter copy into multiple “read + write” at block layer
 Gather at NVMe driver to form SCC commands

Real Dev 1 Real Dev 2 Real Dev 3

Virtual device (DM-linear)

Map table Map table Map table

23 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Next steps

 There are many, but top few are -
 Device-mapper offload support (either have it wired up, or get the consensus on moving without it)
 Async interface for copy-offload via io_uring
 Copy offload support in file systems

24 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Please take a moment to rate this session.
Your feedback is important to us.

	Towards Copy-Offload in Linux NVMe
	Foreword & Acknowledgement
	Agenda
	Copying data, and costs that’re out there
	Optimizing Copy
	Optimizing Copy ….
	Pushing copy further down
	Copy-offload capability of Storage
	SCSI: Copy-Offload
	SCSI: Copy-Offload
	NVMe Interface for Offload
	NVMe Copy Command
	NVMe Copy Command
	Why now?
	Plumbing scheme in Linux Kernel
	Generic copy-offload components
	User-interface
	BLKCOPY ioctl
	Copy: Block-layer & NVMe driver
	Copy: Block/Driver operation sequence
	In-Kernel user: dm-kcopyd
	Device-Mapper: challenges
	Next steps
	Please take a moment to rate this session.

