
From DRAM to SSDs

Sathya Gunasekar
Software engineer

Challenges with caching @ Facebook 1. Introduce & hybrid caching
2. Hybrid caching challenges
3. Call to action

Agenda:

Caching is important for social media

2

Reuse Recency Scale & Efficiency

Users share and consume
content through

overlapping social circles

Users interact with
recently shared

content

Efficiency is important
to scale products to

billions of users

Evolution of FB infrastructure

3

Infrastructure

2005 - 2010 2010 - 2015 2015 - today

likes, comments, profile

Memcached
MySQL

+ timeline, messaging,
videos, photos, location..

fb-Memcached, TAO
MySQL,

CDN, Haystack

hundreds of
services

Users 10s of millions 100s of million billions

Product

Diverse caching needs @ Facebook

4

Architecture Application Domain Data format HW

General purpose KV cache

Social graph cache

CDN caches

Ranking/ML systems

Developer infrastructure

Analytics systems

Look-aside

Read & write through

Write back

Blob

Structured

Semi-structured

DRAM

SSD

Should we generalize or specialize ?

CacheLib – Embedded C++ cache engine
Aggregation point for innovation

5

CacheLib solves:

1) What to cache ? - Heuristics

2) How to cache ? – Storage design

CacheBench – workload benchmarking tool

CacheLib @ Facebook

Online
Data

Social graph

Look aside
KV Cache

Traffic

CDN

Proxygen

Storage

HDD video
storage

AI/ML

Ranking

Training

Dev Infra

Data analytics

Source control

Stream
processing

70+ services, XXX K+ instances, XX PB DRAM, XXX PB NVM

6

HDD file
storage

Open sourced by Facebook
www.cachelib.org

CacheLib: Item

Unit of object managed in the cache

• Sequence of bytes (<4MB) identified by a key (<255 bytes)

• Exposed through an ItemHandle (shared_ptr<Item>)

7

CacheLib: API

ItemHandle allocate(key, size, ttl)

void* Item::getMemory()

ItemHandle insertOrReplace(handle)

ItemHandle find(key)

bool remove(key)

Features
• variety of cache policies
• memory pools & isolation
• resource adaptiveness
• zero-copy access
• high concurrency
• structured data cache
• hybrid cache

8

Hardware trade-offs

Explore cost and power tradeoffs within a cache
system

• marginal cost of an additional hit goes up
⁃ Hot objects in DRAM

⁃ Warm objects in NVM

Cache workload

9

Hybrid Cache goals

Fluid usage of storage mediums based on cost-sensitivity
⁃ DRAM, NVM technologies etc.

Portability of caching applications
⁃ Hide the complexity of hardware technologies behind the API

10

Hybrid caches @ Facebook

30GB DRAM,
1TB SSD

40GB DRAM, 1TB
SSD

Social graph

10GB DRAM, 400GB
SSD

Look-aside key-value cache HDD Storage

30–120 GB DRAM, 2–
8 TB SSD

CDN

11

Hybrid Cache efficiency in practice

256GB DRAM -> 60GB DRAM + 2TB SSD

• 10x more cache capacity

• 50% reduction in misses

• 25% reduction power and cost of ownership

12

Hybrid cache: Challenges

small working set large working set

NVM

mutable bytes mutable blocks

infinite R/W BW limited R/W BW
low & steady latency latency is complicated

infinite endurance limited endurance

13

DRAM

Hybrid cache: Design

• Portability: Applications always see a DRAM
cache

• Items are allocated in DRAM and then evicted
to NVM
⁃ Evicted items can be rejected by NVM

admission policy

14

Latency: accessing Items through find()

15

• Portability: getMemory() blocks until Item is
in DRAM

• Async interface ItemHandle
⁃ isReady() - is Item in DRAM ?

⁃ wait() - wait until Item is in DRAM

⁃ SemiFuture compatibility

Navy

Goal: CPU & IO efficient point & negative lookups with low DRAM overhead

NVM storage engine

Asynchronous IO

Optimized for
caching large

objects (>4KB)

Optimized for
caching tiny

objects (100s of
bytes)

File system/Block
interfaces

Small Item engine design

Accessing billions of objects per TB
⁃ With single IO

⁃ Low DRAM overhead

Design

• Set-associative index (no DRAM)

• Optional DRAM bloom filters

• FIFO eviction (no DRAM)

• No space amp, but large write-amp

17

Reading an object

Writing an object

Due to endurance constraints, caches can’t write all the
objects to SSD -> poor miss ratios

Improving small object caching

18

Log structured storage ?

Set-Associative
Cache Log-Structured Cache

DRAM overhead Low High

Write amplification High Low

Kangaroo: Realizing the best of both worlds

To be compute and IO efficient for lookups, log structured
cache needs a full DRAM index.

Collaboration with Carnegie Mellon University, SOSP’21

Kangaroo: SOSP’21

19

Design

(1)

(2)
(3)

Reducing the write amplification improves miss ratios

1) Insert to Klog after buffering in DRAM

3)Move all objects in KLog that map to the same bucket in KSet

2)Periodically flush objects from KLog to KSet

Summary: call to action

Caching small objects on block devices
⁃ With lower DRAM overheads

⁃ With lower endurance overheads

⁃ With more IO efficiency

New hardware technologies on the horizon

20

Hybrid caching is gaining popularity, lots of new challenges

offers an OSS
platform to collaborate
and explore solutions

www.cachelib.org

need innovative
solutions

collaborate among industry &
academia

	From DRAM to SSDs
	Caching is important for social media
	Evolution of FB infrastructure
	Diverse caching needs @ Facebook
	CacheLib – Embedded C++ cache engine
	CacheLib @ Facebook
	CacheLib: Item
	CacheLib: API
	Hardware trade-offs
	Hybrid Cache goals
	Hybrid caches @ Facebook
	Hybrid Cache efficiency in practice
	Hybrid cache: Challenges
	Hybrid cache: Design
	Latency: accessing Items through find()
	Navy
	 Small Item engine design
	Improving small object caching
	Kangaroo: SOSP’21
	Summary: call to action
	Slide Number 21

