
1 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Virtual Conference
September 28-29, 2021

A Event

Compacting small
objects in cloud for high
yield
Tejas Chopra, Senior Software Engineer, Netflix, Inc.

2 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Agenda

▪ About me
▪ Problem statement & overview
▪ Compaction basics
▪ Data structures: blobs, blob tables
▪ File system operations
▪ Results
▪ Conclusion

3 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

About me

▪ Senior Software Engineer, Netflix
▪ Keynote speaker: Distributed

systems, Cloud, Blockchain
▪ Senior Software Engineer, Box
▪ Datrium, Samsung, Cadence,

Tensilica

4 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Overview

▪ Cloud FS: Provide FS interface to objects
▪ Simple approach: Each file → object
▪ Cloud workloads: Many small files, bursty

▪ Small sized files, not beneficial for Cloud Storage
▪ Request Level costs

▪ To upload 1GiB file with 4KiB PUTs is 57x the cost of
storing the file

▪ Throttling
▪ S3 Best Practice Guideline: If > 300

PUT/DELETE/LIST/s or > 800 GET/s, S3 may rate
limit

▪ 1 4MiB PUT is 1000x faster than 1000 4KiB PUTs

5 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Cloud File system options

▪ EFS: Generic File system: Charges only for storage: $0.3/GB/month
▪ DynamoDB: NoSQL, $0.25/GB/month for 1 write/s/month. $0.09/GB/month

for 1 read/s/month
▪ S3: $0.023/GB/month, 0.0005c/PUT
▪ To store 1 TiB worth of 4KiB files, 100 writes/s:

▪ S3 (as is): $1366; operation cost: 98%; 5 yrs of storage to match operation cost
▪ EFS: $307, operation cost: 0%
▪ DynamoDB: $303, operation cost: 16%; 5 days of storage to match operation cost
▪ S3 (with compaction): $24, operation cost: 0.001%; 27 seconds of storage to match

operation cost.

6 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Compaction

▪ Pluggable module on the client side
▪ Module packs data into GiB sized blobs and an index of where the file

is within the blob
▪ Redundant client side global index of all files in all blobs
▪ Embedded index in every blob is for fault-tolerance

7 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Data Structures: Blob

▪ Single, immutable object on cloud
▪ Data from multiple files is packed into a blob. Footer contains

information about the byte ranges of a file within the blob
▪ By reading all footers of all compacted blobs, we can recreate the

world
▪ Could have used SSTables, but it requires sorting before persistence

8 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Data Structures: Blob Table

▪ Optimization over reading all blob footers
▪ Global table that contains information of all files in all blobs
▪ Redundant - can be recreated
▪ Consistency is a challenge because Blob creation is distributed.

9 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Compaction

▪ Data is buffered on client nodes, and is not durable until pushed to cloud
▪ Compaction policy is specified at mount time
▪ Once data is compacted, embedded indices within the blob get updated
▪ Blob name, objectId: <clientIP>:<FooterOffset>:<Date>
▪ After blob is pushed to cloud, blob table is updated with new extents for a file
▪ Global blob table always maintains the updated loc for each file

10 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Reading Data

▪ Depends on whether data is buffered or pushed to cloud
▪ Blob Table contains the location of data

▪ If on a client node, client-client transfer for read

▪ Range reads for cloud blobs
▪ May want to fetch more than just what’s needed - essence of prefetching

11 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Deletes and Renames

▪ Deletes
▪ When client issues a delete, remove entry from Blob table
▪ Periodically check the liveness of a blob
▪ If live files are less than a threshold, repack the blob

▪ Renames
▪ Atomic update of file’s name in Blob table
▪ Piggyback on future blobs’ embedded indices
▪ For recovery from embedded indices, blobs are read in order of creation, so

latest blobs will contain the rename information

12 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Fault Tolerance

▪ Master
▪ Periodically backup global Blob table to cloud
▪ On a crash, read last checkpointed Blob table and all the blobs written after

that time
▪ Clients

▪ Files buffered for compaction are lost
▪ Can be still recovered if persisted on the local disk
▪ If compacted and pushed to cloud, Blob table contains all information for

recovery
▪ If compacted and pushed to cloud, but the Blob table not updated, the

embedded indices contain information for recovery

13 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Results

14 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Conclusion

▪ Cloud file systems should aggressively compact small objects
▪ Significant costs for operations and rate limiting
▪ Throughput increased by 60x, costs reduced by 25000x
▪ Backups of smaller files can be archived using this strategy to improve backup

times and costs
▪ Compacting policies can compact objects by create-time, per-application, etc. We

could apply learning to choose objects to compact, objects with similar read
profiles can benefit from prefetching the entire blob

15 | ©2021 Storage Networking Industry Association ©. Netflix, Inc. All Rights Reserved.

Thank you!

https://www.linkedin.com/in/chopratejas
chopratejas@gmail.com
chopra_tejas

https://www.linkedin.com/in/chopratejas
mailto:chopratejas@gmail.com
https://www.twitter.com/chopra_tejas

	Compacting small objects in cloud for high yield
	Agenda
	About me
	Overview
	Cloud File system options
	Compaction
	Data Structures: Blob
	Data Structures: Blob Table
	Compaction
	Reading Data
	Deletes and Renames
	Fault Tolerance
	Results
	Conclusion
	Thank you!

