SNIA DEVELOPER CONFERENCE

BY Developers FOR Developers

September 16-18, 2024 Santa Clara, CA

Optimized Resource Allocation for CXL Tiered-Memory Systems

> Heiner Litz & Andrew Quinn UC Santa Cruz

Center for Research in Systems and Storage (CRSS)

The Center:

- 5 Faculty
- •15 Ph.D. & MS
- 6 Sponsors

Research Topics:

-CXL

- AI Systems
- Sustainability
- Data centers
- Storage Devices
- Operating Systems
- Networking

Output:

Publications

(ASPLOS, MICRO, SoCC, OSDI, ISCA, PLDI, HotOS, FAST)

 Excellently-trained graduates

Today's Problem

ch torage

CXL: Opportunities & Challenges

Opportunities

- Addresses scaling issue by reducing memory cost
- Open standard enables "small players" to innovate
- Computational memory enables TCO & perf improvements

Challenges

- Performance overhead
- Heterogeneity increases complexity
- Requires cross-layer (SW/HW) optimizations

Part 1: How can we exploit CXL memory to improve TCO (TMC)?
Delivered by Dr. Heiner Litz

- Part 2: How can we exploit CXL memory to improve cluster job performance (Bede)?
 - Delivered by Dr. Andrew Quinn

Center for Research n Systems and Storage

Memory Tiering

Tiered memory seeks to maintain similar performance at a lower cost

Center for Research in Systems and Storage

Determining Optimal Memory Ratio is Hard

24

Determining Optimal Memory Ratio is Hard

Large search space, scales with memory tiers

Center for Research in Systems and Storage

User: Lowest \$ at certain performance level

Wrong configurations increases users' cost significantly

Center for Research in Systems and Storage

10 | ©2024 SNIA. All Rights Reserved.

D 24

12 | ©2024 SNIA. All Rights Reserved.

13 | ©2024 SNIA. All Rights Reserved.

Contributions Contributions

- Prior Work
 - Blackbox ML-based techniques Bayes[1], Collaborative Filtering [2]
 - Trained on N workloads and M configurations, predict a configuration
- Our Work (TMC)
 - White-box performance model
 - Data-layout hints (what data into CXL/DRAM?)
 - Why is a configuration best?
 - Predicts performance of a workload (instead of suggesting a configuration)
 - What-if analysis

[1] Alipourfard et al.: CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics (NSDI'17).

[2] Klimovic et al.: Selecta: Heterogeneous cloud storage configuration for data analytics (ATC'18).

TMC Overview

TMC devises a performance model based on the understanding of hardware performance characteristics

Center for Research in Systems and Storage

Model Generation

Center for Research in Systems and Storage

18 | ©2024 SNIA. All Rights Reserved.

Evaluation Performance Prediction

Evaluation Performance Prediction

Operator Resource efficiency

Resource efficiency

Search cost

Search cost

Center for Research in Systems and Storage

24

- TMC provides a performance model over prior work
 - Selects optimal performance/TCO for the client
 - Optimizes resource allocation for the data center operator
 - Enables what-if analysis
- TMC reduces the search cost by 3x over prior work
- TMC increases resource efficiency by 17%

- Job Scheduling is key across many computer systems
 - Cluster management (e.g., Kubernetes, Mesos, Borg)
 - Data Analytics (e.g., Spark, Hadoop)
 - Machine Learning (e.g., PyTorch, TensorFlow)
- Efficient scheduling is crucial for large data centers
 - Even small improvements can save millions at scale

enter for Research Systems and Storage

MESOS

APACHE

kubernetes

- Allocate data-center resources for compute jobs
- Jobs require resources, schedule assigns idle resources

Up to 50% of Jobs face scheduling delays^[1]!

Split memory across machines and a CXL memory Pool

UNIVERSITY OF CALIFORNIA

- Advantages:
 - Less scheduling delay
 - Lower cost

- Disadvantages:
 - Jobs execute more slowly

Bede Research Questions

- Bede Configuration?
 - Built cluster simulator!

Two new schedulers!

Up to 30x faster than State-of-the-art!

Bede Cluster Simulator

Bede Cluster Simulator–Workloads

- Azure Cluster Traces (2017, 2019)
 - Cortez et al. SOSP 2017

- Google Borg Traces (Clusters B, D)
 - Tirmazi et al. Eurosys 2020

Bede Cluster Simulator–Configuration Methodology

Server Shapes

- 100th percentile of requested CPU
- 192 cores (large cloud instance)
- Memory at 50th, 75th, 85th, 95th percentile
- #Servers-per-pool of 2,4,...,32
- Pools of 0,10,...,100% of memory
- SOTA scheduling policies

Bede Cluster Simulator–Slowdown Models

- Methodology:
 - Use Dual-socket NUMA
 - All compute on node 1
 - Vary memory [0–100%] across nodes

- Scale Factor (SF)
 - Account for uncertainty
 - Multiplies NUMA models by constant factor
 - SF 2 means CXL twice as slow as NUMA.

Bede Cluster Simulator

Bede Scheduling Policies

- Existing State-of-the-art
 - Generic: FIFO, SJF
 - Far-memory specific: CFM, Pond

- Novel alignment-based policies
 - EVPM-Far: FIFO with alignment
 - T(etris)-Far: SJF with alignment

$$\begin{array}{l} \mathsf{L} = \min(\mathsf{mem}_{\mathsf{Server}}, \, \mathsf{mem}_{\mathsf{Job}}) \\ \mathsf{A} = \langle \mathsf{core}_{\mathsf{Server}}, \, \mathsf{mem}_{\mathsf{Server}}, \, \mathsf{mem}_{\mathsf{pool}} \rangle \\ \mathsf{R} = \langle \mathsf{core}_{\mathsf{Job}}, \, \mathsf{L}, \, \mathsf{1} - \mathsf{L} \rangle \end{array}$$

Alignment = $A \cdot R$

- How many servers should be attached to each pool?
- How should memory be split between servers and pools?
- How does job performance vary by scheduling policy?

Servers Per Pool

D 24

Servers Per Pool

Pool server memory split

Pool server memory split

Scheduling Policies

Center for Research in Systems and Storage

Scheduling Policies

Center for Research in Systems and Storage

- Built simulator to explore configurations
 - Small pools work well
- Two novel scheduling algorithms
 - Up to 30x improvement over state of the art

Contributions

- CXL is a promising technique to address memory cost
- Not a plug-in replacement, many deployment challenges
- Our work enables modeling of CXL performance & TCO
- Automation can address the complexity challenges of CXL

Contributions

- CXL is a promising technique to address memory cost
- Not a plug-in replacement, many deployment challenges
- Our work enables modeling of CXL performance & TCO
- Automation can address the complexity challenges of CXL

Please reach out if you want to collaborate with us: www.crss.us

