
Regional SDC Denver
April 30, 2025

Gary Grider
Los Alamos National Laboratory

GUFI (Grand Unified File Indexer)
What does it have to offer you?

LA-UR-25-22418

2 | ©2025 SNIA. All Rights Reserved.

Background: POSIX protects Exabytes of data in
LANL/everywhere
File permissions (access file contents – read, modify file contents – write, execute a file –
execute – that was easy (but there is more…)
• Directory permissions (dirs are different – the interpretation of rwx is different)

• List file names and inode numbers only in a directory – dir read, file permissions irrelevant
• CD into the directory – dir execute, file permissions irrelevant
• Get information from the inode (size,dates,etc.) – dir execute, file permissions irrelevant
• To search (traverse) in a tree you need dir execute and dir read (oh my but there is more
• Everything you do traverses, like cat /u/me/file – to access the file contents you need file

read permissions – but before you ever get there you need to traverse to that file (even if
you know the path the file system has to traverse to it to get the inode and then determine if
you have file read permissions. So you need file read and you need execute on all the
directories above, so you would need dir execute permission in /u, /u/me, /u/me/files.

• Well, isn’t that special!

3 | ©2025 SNIA. All Rights Reserved.

GUFI Goals

 Unified index over home, project, scratch, campaign, and archive
 Metadata only, metadata protected as the directory and as the files
 Shared index for users and admins
 Parallel search capabilities that are very fast (minutes for billions of

files/dirs)
 Full/Incremental update from sources with reasonable update

time/annoyance
 So fast people think its broken
 Leverage existing tech as much as possible both hdwr and software:

flash, threads, clusters, sql as part of the interface, commercial db
tech, …
 Simple so that an admin can easily understand/enhance
 It must make massive complex tree walk/joins/concatenations look

like a table to the user!

4 | ©2025 SNIA. All Rights Reserved.

Initial Design Thoughts

• Why not a flat namespace?
• Performance is great, but…
• Rename high in the tree is terribly costly
• Security becomes a nightmare if users/admins can access the namespace

• Leverage things that already work well, reduce required records to scan:
• POSIX permissions / tree walk (readdir+)
• Breadth first search for parallelization
• Our trees have inherent namespace divisions for parallelism
• Embedded DBs are fast if not many joins and individual DB size < TB
• Flash storage is cheap enough to hold everything with order ~10K IOPs each
• Entries in file system reduce to essentially <dir count> * 3
• Dense directories reduce footprint dramatically
• SQL is easily utilized for general queries of attributes

5 | ©2025 SNIA. All Rights Reserved.

GUFI – how does it work?

SystemA-namespaceA
/search/scratch2/Project
A

SystemA-namespaceB
/search/scratch2/ProjectB

SystemB-namespaceA
/search/campaign/ProjectB

DirA

db.db
-entries
-dir summary
-tree summary

/search

DirA DirADirB DirBDirCDirB

DirA DirB

DirA DirB

-Dir-Summary –
 DB with summary of this directory
-Tree-Summary –
 DB with summary of the tree below
 optional can be placed anywhere
-Entries –
 DB with name/stat/linkname/xattr info
 for each file or link

-Tree-Summary
 optional and can be
 placed anywhere in
 the tree

Process/Node Parallelism for different
parts of the tree, within each system-
namespace combination use thread based
parallelism

db.db
-entries
-dir summary
-tree summary

db.db
-entries
-dir summary
-tree summary

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

File permissions
permutations
Db1 (name,other)
Db2
(name,other)

Info protected
as directory
info

Info protected
file info

6 | ©2025 SNIA. All Rights Reserved.

Draft Schemas

 Parent-Inode mapping file “directories-parent-inode directories Inode”
 Parent inode is only kept for directories, not for files as that kills rename/move function

 "CREATE TABLE entries(
 name TEXT PRIMARY KEY, name of file (Not path due to renames)
 type TEXT, inode INT, f for file l for link inode
 mode INT, posix mode bits
 nlink INT, number of links
 uid INT, gid INT, uid and gid
 size INT, blksize INT, size and blocksize
 blocks INT, blocks
 atime INT, access time
 mtime INT, file contents modification time
 ctime INT, metadata change time
 linkname TEXT, if link this is path to link
 xattrs TEXT);"; single text string with key/value pairs with delimitors

7 | ©2025 SNIA. All Rights Reserved.

Draft Schemas (continued)

 "CREATE TABLE summary(summary info for this directory
 name TEXT PRIMARY KEY, name not path due to rename
 type TEXT, inode INT, d for directory inode
 mode INT, posix mode bits
 nlink INT, number of links
 uid INT, gid INT, uid gid
 size INT, blksize INT, blocks INT, size, blocksize, blocks
 atime INT, mtime INT, ctime INT, access time, dir contents mod time, md chg time
 linkname TEXT, xattrs TEXT, if link, path to link, xattrs key/value delimited string
 totfiles INT, totlinks INT, tot files in dir, tot links in dir
 minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid
 minsize INT, maxsize INT, minimum file size and max file size
 totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB,
 totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB
 totsize INT, total bytes in files in dir
 minctime INT, maxctime INT, min max ctime
 minmtime INT, maxmtime INT, min max mtime
 minatime INT, maxatime INT, min max mtime
 minblocks INT, maxblocks INT, min max blocks
 totxattr INT, number of files with xattrs
 depth INT);"; depth this directory is in the tree

8 | ©2025 SNIA. All Rights Reserved.

Draft Schemas (continued)

 "CREATE TABLE treesummary(summary info for this directory
 totsubdirs INT, tot subdirs in tree
 maxsubdirfiles INT, maxsubdirlinks INT, maxfiles in a subdir max links in a subdir
 maxsubdirsize INT, most bytes in any subdir
 totfiles INT, totlinks INT, tot files in tree, tot links in tree
 minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid
 minsize INT, maxsize INT, minimum file size and max file size
 totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB,
 totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB
 totsize INT, total bytes in files in tree
 minctime INT, maxctime INT, min max ctime
 minmtime INT, maxmtime INT, min max mtime
 minatime INT, maxatime INT, min max mtime
 minblocks INT, maxblocks INT, min max blocks
 totxattr INT, number of files with xattrs
 depth INT);"; depth this tree summary is in the tree

9 | ©2025 SNIA. All Rights Reserved.

But will it be fast you you have millions of directories which
means millions of databases

• Well it was pretty descent performance but not fast enough using lots of
threads and breadth first search

• So we need to shard – how do we shard when we need to keep the
• Permission Permutations Sharding – Rollups

• Make an GUFI index, then go to the bottom of the tree and walk up and
combine information until you reach a place where rollup rules no longer
work, or you have enough info aggregated for efficiency

• Rollups are fast to perform and turn gufi index search into a bandwidth play,
so fast its almost unbelievable

10 | ©2025 SNIA. All Rights Reserved.

Step one and rules for rollup

11 | ©2025 SNIA. All Rights Reserved.

Rollup process example

12 | ©2025 SNIA. All Rights Reserved.

Protecting directory level metadata
and File level metadta

SystemA-namespaceA
/search/scratch2/Project
A

DirA

db.db
-entries
-dir summary
-tree summary

DirB

Db.db file is protected the same permissions as the
directory, one file per directory (rolled up)

File permissions is how metadata about files (like
xattr values, other metadata pulled from files)
should be protected
 One DB file per permission permutation
 Roll-in processing concatenates all the db tables
 that the user can access

db.db
-entries
-dirsum

db.db
-entries
-dirsum

File permissions
permutations
Db1
(name,other)
Db2
(name,other)

Info
protected
as
directory
info

Info
protected
file info

13 | ©2025 SNIA. All Rights Reserved.

GUFI is State of the Art FAST

 1) List all file names accessible by the user
(top level for root).

 2) Print the size and name of every directory
accessible by the user (top level for root)..

 3) Print the space used by the user’s home
directory (top level for root).

 4) Print the space used by the user’s home
directory (top level for root).

List contents/attributes of Linux distro
GUFI compared to Linux utilities GUFI compared to state of the art (which is a variant of

GUFI tech which dwarfs the other industry solutions).

Dataset 2 Typical Query Result

14 | ©2025 SNIA. All Rights Reserved.

But how am I going to think about querying my hundreds of
thousands of databases (including external databases)
• Gufi makes all those databases appear as one database – really one table
• Gufi can be connected to workflows/data staging/movement tools

(conduit/pftool/etc.)
• Schema can be changed/added to, just like sql database
• You can use POSIX XATTRS on files and GUFI will index that securely
• But there is an extremely powerful feature called external databases

• You can have a single external database for information that is for sure common
need to know and that can be joined with

• A more powerful external database feature: databases in the source file system
directory that information is about (about the directory or file(s) in that directory)

• Gufi will index the existence of these external DB’s and then you can join user info
with GUFI file system info in a completely secure way and if you change permissions
in the source file system, GUFI reindexing will enable permissions to change and
GUFI will behave like the file system permissions

15 | ©2025 SNIA. All Rights Reserved.

How do users, admins, data scientists use it?

• Simple for users (make these commands available on front ends and
fta’s) (make the syntax for these commands as close to find/start/ls as
possible and the output as well). MAKE IT SO FAST USERS THINK ITS
BROKEN
• Gufi_find
• Gufi_stat
• Gufi_ls

• Sysadmins and data scientists
• Gufi_query (extremely powerful)
• Storage admins see all, data scientist see what they can see as a user
• Highly threaded, breadthfirst search, can create output, outputdb’s,

aggregations of the threads results, connect to external databases of all
kinds (user supplied, full text search, ai/ml embedded vector sim search,
etc.

16 | ©2025 SNIA. All Rights Reserved.

What does the gufi index tree look like?

• You can search it all by starting your search at /search
• If you want to start your search lower you can either by min

depth/maxdepth parameters or list subtrees you want to search

/search

/home /project /campaign /archive (HPSS) /Scratch1 /ScratchN

17 | ©2025 SNIA. All Rights Reserved.

There are several tables and many views
• entries, summary, and tree summary are the main tables in directory

permission database
• Important views
 Vrpentries – files/links
 Vrsummary – directory summary
 Vrxpentries – files/links with xattrs
 Vrxsummary – directory summary with xattrs
 Virt tables (gufi_vt, gufi_vt_vrpentries, gufi_vt_vrsummary)

 Makes gufi-query output look like a table to use (sqlalchemy/duckdb/sqlite itself)

• For file permission database(s)
 Recommend having a join field (name to join with file or dir name)
 Can have as many other fields or relations as you want
 Xattr tables are examples of this

18 | ©2025 SNIA. All Rights Reserved.

Other considerations

• Can use N threads – each
thread produces output,
you can aggregate the
output from all threads or
keep it separate

• Outputs can be textual or
sqlite db’s

• Pick your delimiter
• Control where to start and

how deep to go in the tree
• Turn on xattrs

19 | ©2025 SNIA. All Rights Reserved.

Lots of helper functions

• -T should be used to query the
treesummary table.

• -S should be used to query the
summary table and its variants.

• -E should be used to query the
entries table and its variants.

• -a and/or (combo for above –T –S –E
• -n number of threads

uidtouser(uid)
gidtogroup(gid)
modetotxt(mode)
strftime(format, timestamp)
blocksize(bytes, unit) k,m,g,t

Function Purpose
stdevs(numeric column) Sample standard deviation
stdevp(numeric column) Population standard deviation
median(numeric column) Median of values

Function Purpose
path() Current directory relative to path passed into executable
epath() Current directory basename
fpath() Full path of current directory
rpath (sname, sroll) Current directory relative to path passed into executable

taking into account the rolled up name in summary table
and rollup score. Should only be used with the sname
and sroll columns of the vrpentries, vrsummary, vrxpentries,
and vrxsummary views.

Usage:
SELECT rpath(sname, sroll) FROM
vrsummary/vrxsummary;

SELECT rpath(sname, sroll) || "/" || name FROM
vrpentries/vrxpentries;

level() Depth of the current directory from the starting directory
starting point() Path of the starting directory
subdirs(srollsubdirs, sroll) Number of subdirectories under a directory. Only

available for use with vrsummary. When the index is
not rolled up, the value is retrieved from C. When the
index is rolled up, the value is retrieved from
vrsummary.

20 | ©2025 SNIA. All Rights Reserved.

Example data/index.

• Testsrc is the source tree
• Testidx is gufi index tree
• Db.db is the directory

permissions database
file (same permissions as
directory)

• Fileinfodb.db is an
example of an external
database with
permissions set same as
the files it represents,
with filename as the join
field.

21 | ©2025 SNIA. All Rights Reserved.

examples

• Explain views
• Vrpentries
• Vrpentries has dir and file info
• Aggregation
• Controlling starting point, min

depth, and max depth
• Limiting
• SQL statement stacking
• Vrsummary
• Combining vrsummary and

vrpentries

• Tree summary and combining tree summary
with other

• Xattrs
• Group by
• Ext db full text search
• Ext db user supplied
• Ext db vector db

22 | ©2025 SNIA. All Rights Reserved.

Vrpentries

simple query

Powerful functions with a simple where

Powerful functions

Even supports regex

23 | ©2025 SNIA. All Rights Reserved.

Vrpentries has both file and directory info in the record

Find the files in directories that have more than 1 file

Find the files in directories that are in a directory with %1.1 in the directory name

Note the directory summary fields that are in the vrpentries records are prefaced with a d

24 | ©2025 SNIA. All Rights Reserved.

Aggregating
order by desc, but wait it didn’t
work

-E runs that query in every
directory, so this order by desc
ordered for every directory but
not over all the
directories/threads

-I makes a out db for each thread
-K makes a single aggregate db
-E inserts each thread output into
out db
-J inserts each threads out into
aggregate
-G selects from aggregate

So you can sort/group by over all
threads/directories with
aggregates

This allows all threads to run as fast as they can until the end and then
aggregates so you can do last sort/sum/group/etc. over all the data from all
dirs. visited for all threads

25 | ©2025 SNIA. All Rights Reserved.

Start/min/max depth

Start lower

Max depth

Min/Max Depth

26 | ©2025 SNIA. All Rights Reserved.

Limiting
This orders for each thread and limits to 1 record per directory that
thread encounters, the in memory out table will grow during the run

This orders for each thread and limits to 1 record per directory that thread
encounters, and limits the aggregated total to 3

27 | ©2025 SNIA. All Rights Reserved.

SQL Statement Stacking

This orders for each thread and limits to 3 record per directory that thread
encounters, the in memory out table will grow during the run

This stacks another sql statement onto the –E for each directory encountered to
trim the in memory out table per thread, very efficient way to find the top N
without big memory use

You can stack as many sql statements on all –T –S –E and other places in gufi do
do whatever you want

28 | ©2025 SNIA. All Rights Reserved.

vrsummary
Very powerful set of
aggregator fields in
vrsummary record,
tot files tot files with
xattrs, tot files older
than .. Tot files
bigger than …
…

29 | ©2025 SNIA. All Rights Reserved.

Combining Vrsummary and Vrpentries
If you query vrpentries and use directory info related where clauses, you are scanning all the files, if you want to first query the vrsummary
table and only if you need to scan the vrpentries table, you can use –S and –E, there is an implied AND (if –S then do –E)

Of course you can do that in a single sql statement as well

30 | ©2025 SNIA. All Rights Reserved.

Tree summary and combining tree summary with other
Powerful aggregate information in tree summary, summarizes everything below, at every
level, which trees have this in them
DU command is now free (milliseconds)

Very powerful way to limit what all directories in what subtrees you scan
based on treesummary info

31 | ©2025 SNIA. All Rights Reserved.

Xattrs
Yes you can list or search on xattrs
Notice using –x in the qufi_query cmd

Why is this special?
Remember xattr values are protected like the file and not like the directory so they are
kept in separate db files (potentially – with different permissions)

32 | ©2025 SNIA. All Rights Reserved.

Group by

Nice feature, group by, notice we use an aggregate to get all the files and sizes and we
group by size on the aggregated select. Of course you could do histograms on about
anything using this feature, especially since the summary record has histograms for
size and date as does the treesummary record as well

33 | ©2025 SNIA. All Rights Reserved.

Full text ext db example (history db)
From hpc history gufi db (has full text
search words table joined on inode with
entries (wordf MATCH ‘grider and cdc’
Notice twords is total word count for the
document

34 | ©2025 SNIA. All Rights Reserved.

The swiss army knives of data curation/science
Running commands in queries.

• Intop Run a command as a function
passing in anything you want and getting
an integer back

• Strop Run a command as a function
passing in anything you want and getting
a string back

• Yes run any command on any thing
driven by any query you want across
your holdings

A data scientist/curators dream tool for record oriented ops

35 | ©2025 SNIA. All Rights Reserved.

The swiss army knives of data curation/science
Running commands to populate virtual tables

• Create a custom virtual
table in gufi_query (this
one runs per directory
(notice %s (%s src path %n
name %i index path)
(notice –p (path to src)

• Create a custom virtual
table without gufi_query
(find all the csv’s, turn
them into a single table
and sort). Notice casting
to make it into an int64

A data scientist/curators dream tool for table oriented ops

36 | ©2025 SNIA. All Rights Reserved.

Nearest Neighbor Example (GUFI reminder)

SystemA-namespaceA
/search/scratch2/Project
A

SystemA-namespaceB
/search/scratch2/ProjectB

SystemB-namespaceA
/search/campaign/ProjectB

DirA

db.db
-entries
-dir summary
-tree summary

/search

DirA DirADirB DirBDirCDirB

DirA DirB

DirA DirB

db.db
-entries
-dir summary
-tree summary

db.db
-entries
-dir summary
-tree summary

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

Vecdbgrp-1
N=name,len,vec

Info
protected as
directory
info

Info
protected
file info

Vecdbgrp-2
N=name,len,vec

• You can have as many of these
databases/csv’s etc. as you want from 1-N
per file to 1-N per directory.

• To protect that information the same as
the files that infomration came from you
would want to have at least one of these
files per ”READ permission permutation
uid/gid/mode bits

• Remember Virtual Tables from
queries created from commands

• That capability can make all those
databases/csv’s etc. look like a single
table (per directory) of only the
information the user should see.

• You can/should join that virtual table
on a common unique (within that
directory) field like inode or name

• You can put these databases in the source file
system or the index file system (they can also be
the same file system of course)

37 | ©2025 SNIA. All Rights Reserved.

Nearest Neighbor example

Sprinkle these vec db’s in the tree
Notice in l1.2 directory there are two

representing two different
permission permutations

find testsrc -name 'vec*'
testsrc/l1.2/vecgroupa.db
testsrc/l1.2/vecgroupb.db
testsrc/l1.3/l2.2/vec.db
testsrc/l1.3/l2.3/vec.db
testsrc/l1.3/vec.db
testsrc/l1.3/l2.1/vec.db
testsrc/l1.1/vec.db

The index with db per dir
find testidx -name 'db.db'
testidx/l1.2/l2.2/db.db
testidx/l1.2/l2.3/db.db
testidx/l1.2/db.db
testidx/l1.2/l2.1/db.db
testidx/l1.3/l2.2/db.db
testidx/l1.3/l2.3/db.db
testidx/l1.3/db.db
testidx/l1.3/l2.1/db.db
testidx/l1.1/l2.2/db.db
testidx/l1.1/l2.3/db.db
testidx/l1.1/db.db
testidx/l1.1/l2.1/db.db
testidx/db.db

The vec.db vec table
CREATE TABLE vec (vname text,vlen
int64, vvec text);

38 | ©2025 SNIA. All Rights Reserved.

Nearest Neighbor example1
Naïve (collect all order/limit at the end)

Collect all records and order by and limit 3
./gufi_query -n1 -d'|' -a -p "testsrc"
** create an output table per thread
-I "create table vvecog(vogname text, volen int64,vodist int64);"
** create a single temp aggregate table for all threads
-K "create temp table vvecag(vagname text, vaglen int64,vagdist int64);"
** create temp virttable - find vec* -exec sqlite3 query (include vec* files once per dir)
-S "create virtual table temp.vvec using run_vt(cmd='find \"%s\" -maxdepth 1 -name \"vec*.db\" -exec sqlite3 -separator \",\" \"{}\" \"select

vname,vlen,abs(4-vlen) as vdist from vec;\" \\;',cols='myvname,myvlen,myvdist',d=',’);
 ** insert query of virtual table into output table per thread
 ** notice join of virtual table and vrpentries on name (this allows easy selection of which files you want to include (only files < 1000 bytes).
 insert into vvecog select '%s'||'/'||myvname,myvlen,myvdist from temp.vvec inner join vrpentries on name=myvname where size < 10000;
 ** drop virtual table (once per directory because you run find per directory)
 drop table temp.vvec;”
** after all threads complete serialize insert into aggregate table once per run
-J "insert into vvecag select * from vvecog;"
** finally select on the aggregate table once order by distance and limit 3
-G "select vagname,vaglen,vagdist from vvecag order by vagdist asc limit 3;" testidx
testsrc/l1.2/f2.1.doc|4|0
testsrc/l1.3/f3.1.doc|4|0
testsrc/l1.2/f1.1.doc|3|1

Nearest 3 vector length files of size < 1000 of all the files I can see

39 | ©2025 SNIA. All Rights Reserved.

Nearest Neighbor example2
Tiny better (reduce top 3 when creating aggr)

Collect all records and order by and limit 3

./gufi_query -n1 -d'|' -a -p "testsrc"
-I "create table vvecog(vogname text, volen int64,vodist int64);"
-K "create temp table vvecag(vagname text, vaglen int64,vagdist int64);"
-S "create virtual table temp.vvec using run_vt(cmd='find \"%s\" -maxdepth 1 -name \"vec*.db\" -exec sqlite3 -separator \",\" \"{}\" \"select

vname,vlen,abs(4-vlen) as vdist from vec;\" \\;',cols='myvname,myvlen,myvdist',d=',’);
 insert into vvecog select '%s'||'/'||myvname,myvlen,myvdist from temp.vvec inner join vrpentries on name=myvname where size < 10000;
 ** drop virtual table (once per directory because you run find per directory)
 drop table temp.vvec;”
** after all threads complete serialize insert into aggregate table once per run order/limit
-J "insert into vvecag select * from vvecog order by vodist asc limit 3;"
** finally select on the aggregate table once order by distance and limit 3
-G "select vagname,vaglen,vagdist from vvecag order by vagdist asc limit 3;" testidx
testsrc/l1.2/f2.1.doc|4|0
testsrc/l1.3/f3.1.doc|4|0
testsrc/l1.2/f1.1.doc|3|1

40 | ©2025 SNIA. All Rights Reserved.

Nearest Neighbor example3
Some better (reduce top 3 per thread per dir)

Collect all records and order by and limit 3

./gufi_query -n1 -d'|' -a -p "testsrc"
-I "create table vvecog(vogname text, volen int64,vodist int64);"
-K "create temp table vvecag(vagname text, vaglen int64,vagdist int64);"
-S "create virtual table temp.vvec using run_vt(cmd='find \"%s\" -maxdepth 1 -name \"vec*.db\" -exec sqlite3 -separator \",\" \"{}\" \"select

vname,vlen,abs(4-vlen) as vdist from vec;\" \\;',cols='myvname,myvlen,myvdist',d=',’);
 insert into vvecog select '%s'||'/'||myvname,myvlen,myvdist from temp.vvec inner join vrpentries on name=myvname where size < 10000 order

by myvdist asc limit 3;
 ** drop virtual table (once per directory because you run find per directory)
 drop table temp.vvec;”
** after all threads complete serialize insert into aggregate table once per run order/limit
-J "insert into vvecag select * from vvecog order by vodist asc limit 3;"
** finally select on the aggregate table once order by distance and limit 3
-G "select vagname,vaglen,vagdist from vvecag order by vagdist asc limit 3;" testidx
testsrc/l1.2/f2.1.doc|4|0
testsrc/l1.3/f3.1.doc|4|0
testsrc/l1.2/f1.1.doc|3|1

41 | ©2025 SNIA. All Rights Reserved.

Nearest Neighbor example3
much better (trim output per thread per dir)

Collect all records and order by and limit 3

./gufi_query -n1 -d'|' -a -p "testsrc"
-I "create table vvecog(vogname text, volen int64,vodist int64);"
-K "create temp table vvecag(vagname text, vaglen int64,vagdist int64);"
-S "create virtual table temp.vvec using run_vt(cmd='find \"%s\" -maxdepth 1 -name \"vec*.db\" -exec sqlite3 -separator \",\" \"{}\" \"select

vname,vlen,abs(4-vlen) as vdist from vec;\" \\;',cols='myvname,myvlen,myvdist',d=',’);
 insert into vvecog select '%s'||'/'||myvname,myvlen,myvdist from temp.vvec inner join vrpentries on name=myvname where size < 10000 order

by myvdist asc limit 3;
delete from vvecog where vogname not in (select vogname from vvecog order by vodist asc limit 3);

 ** drop virtual table (once per directory because you run find per directory)
 drop table temp.vvec;”
** after all threads complete serialize insert into aggregate table once per run order/limit
-J "insert into vvecag select * from vvecog order by vodist asc limit 3;"
** finally select on the aggregate table once order by distance and limit 3
-G "select vagname,vaglen,vagdist from vvecag order by vagdist asc limit 3;" testidx
testsrc/l1.2/f2.1.doc|4|0
testsrc/l1.3/f3.1.doc|4|0
testsrc/l1.2/f1.1.doc|3|1

42 | ©2025 SNIA. All Rights Reserved.

Nearest Neighbor example4
crazy better (adjust query as it runs)

Collect all records and order by and limit 3

./gufi_query -n1 -d'|' -a -p "testsrc"
-I "create table vvecog(vogname text, volen int64,vodist int64);"
-K "create temp table vvecag(vagname text, vaglen int64,vagdist int64);"
-S "create virtual table temp.vvec using run_vt(cmd='find \"%s\" -maxdepth 1 -name \"vec*.db\" -exec sqlite3 -separator \",\" \"{}\" \"select

vname,vlen,abs(4-vlen) as vdist from vec;\" \\;',cols='myvname,myvlen,myvdist',d=',’);
 insert into vvecog select '%s'||'/'||myvname,myvlen,myvdist from temp.vvec inner join vrpentries on name=myvname where size < 10000 order

by myvdist asc limit 3;
 delete from vvecog where vogname not in (select vogname from vvecog order by vodist asc limit 3);
 ** drop virtual table (once per directory because you run find per directory)
 drop table temp.vvec;”
** after all threads complete serialize insert into aggregate table once per run order/limit
-J "insert into vvecag select * from vvecog order by vodist asc limit 3;"
** finally select on the aggregate table once order by distance and limit 3
-G "select vagname,vaglen,vagdist from vvecag order by vagdist asc limit 3;" testidx
testsrc/l1.2/f2.1.doc|4|0
testsrc/l1.3/f3.1.doc|4|0
testsrc/l1.2/f1.1.doc|3|1

Working on it

43 | ©2025 SNIA. All Rights Reserved.

External DB Vector, gufi can be or gen dynamically a RAG from Exabyte
holdings/billions objects / use vector sim to answer a question you have!

The lowest distance
document

360000000 24dante
920103162403 0
9201031624dante
stext 112/18/85 3
01
Starting in
February 1991, the
ICN Change Bulletin
was incorporated
in the Computing
and Communications
Division News.
Issues from
February 1991 to
the present are
available on CFS in
/icndoc/news

44 | ©2025 SNIA. All Rights Reserved.

Gufi virtual tables of particular interest
• Gufi_vt makes gufi_query look like a table
• You can use gufi_sqlite3 (an interactive sqlite3 interface that has all the

gufi extensions - or use these from sqlalchemy, duckdb, other)

• Gufi_vt_vrpentries (automatically generated fixed all rows all cols+path)
• Gufi_vt_vrsummary (automatically generated fixed all rows all

cols+path)
• Gufi_vt_treesummary (automatically generated fixed all rows all

cols+path)
• Gufi_vt (must generate using create virt table temp.yourname ….

• Can do any query with any rows and cols you choose

• Because the results from the gufi_query in gufi_vt* tables returns back
to your query you can get aggregation (sort/group..) inside your query

45 | ©2025 SNIA. All Rights Reserved.

Gufi_vt examples
And if it wasn’t powerful enough, making gufi_query
look like a table so you can do internal and external
db’s all appear like a table, like a query that uses gufi
native, xattrs, user external db’s, full text, and vector
similarity lookups all from only the part of the
namespace you can see

Above is the fixed field all records table (notice
threads 2). Refering to the table forks qufi_query
with N threads

Below is non fixed, you provide literally everything
gufi_query can do and make it look like a table to
consume it with as many hidden threads as you
want.

This makes connecting it to other ecosystems easy
too, see below

46 | ©2025 SNIA. All Rights Reserved.

Are there ways to interface to GUFI (Sqlalchemy)

A few lines of python and you have a
gui. Gufi can fit into sqlalchemy which
makes it fit into that ecosystem

(this is python QTKmpackage)

47 | ©2025 SNIA. All Rights Reserved.

Are their ways to interface to GUFI (DuckDB)

Gufi can appear as a table
to DuckDB and fit into
that ecosystem
And duckdb can “finish”
query (final sort/group)

Notice DuckDB can use $$ for a quote

48 | ©2025 SNIA. All Rights Reserved.

Other existing or relatively easy to provide gufi query
related tools/interfaces/concepts

• Use gufi to make lists of filed/directories to act upon using pftool/condiuit
• Conduit can orchestrate action and use pftool to move files in parallel

• bffuse.c could be updated to work with current gufi indexes, it allows you to start a
fuse daemon mounted somewhere and provide it a query and you will only see the
files/directories that match the query.

• bfresultsfuse.c could be updated to work with current gufi indexes, it allows you to
run a gufi_query and create an output database with the results, then you can start a
fuse daemon pointed at that database that materializes the results as a mounted tree.
(an example would be to create a custom db for a user daily or something)

• Given gufi index is just a posix tree and given, once you drop tree summaries and
rollups, you can remove/move a subtree anywhere you want it to be, you can even
tar up the subtree index and move it to another machine and run gufi on that
machine or you can mount a gufi index tree over nfs/smb, or it could be placed in a

• Work is underway to use gufi to take a snapshot of statistics about file systems on
periodic basis to have longitudinal statistics about your file/storage system contents.

49 | ©2025 SNIA. All Rights Reserved.

Can gufi scale to more than one machine (beyond threads).
(query pushdown – work to be done)

• In both cases the master can complete the query (final sort/group by)

User query
Table to locations mapping
(subtrees or other)

Duckdb master
- External table

User query

Presto worker

Presto master

duckdb

Presto worker

duckdb duckdb

• Pushdown is simple text
query and return is csv
or something simple, as
simple as pdsh or mpi or
other

• Pushdown is
substrait return is
arrow

• Shard the tree, either full subtree
(easy) and/or follow gufi junctions (to
be explored)

50 | ©2025 SNIA. All Rights Reserved.

Hopefully you can see the power gufi brings to exabytes of
holdings, billions of objects, in any number of storage systems
maintaining full need to know security.
Asking questions of our holdings using file/storage, extended
attributes, user supplied metadata, extracts from the data itself
(text, other file metadata, features, etc.) with added value like
full text search and embedded vector similarity. Both thread
and cross machine parallelism with connectivity to all your
favorite analytics/data science tools including query engines,
data frames, inference engines and pick your language (English,
html, sql, R, python, C, C++, …).

51 | ©2025 SNIA. All Rights Reserved.

Administration

• Creating indexes
• Rollup
• Treesummary
• Incremental updates (in different states of completeness)

• Posix
• Gpfs/campaign
• Lustre
• HPSS
• Other
 Robinhood extraction (prototyped)
 Starfish extraction (requested but not started)

52 | ©2025 SNIA. All Rights Reserved.

Creating index 1

53 | ©2025 SNIA. All Rights Reserved.

Creating index 2

54 | ©2025 SNIA. All Rights Reserved.

Rollups

55 | ©2025 SNIA. All Rights Reserved.

Treesummary 1

56 | ©2025 SNIA. All Rights Reserved.

Treesummary 2

57 | ©2025 SNIA. All Rights Reserved.

Incremental and special loading (work in progress)

• Incremental approaches
• Posix
• GPFS/Campaign
• Lustre
• Hpss db2 query/HPSS log

• Others
• Dump from robinhood (prototypes)
• Other

	Slide Number 1
	Background: POSIX protects Exabytes of data in LANL/everywhere
	GUFI Goals
	Initial Design Thoughts
	GUFI – how does it work?
	Draft Schemas
	Draft Schemas (continued)
	Draft Schemas (continued)
	But will it be fast you you have millions of directories which means millions of databases
	Step one and rules for rollup
	Rollup process example
	Protecting directory level metadata�and File level metadta
	GUFI is State of the Art FAST
	But how am I going to think about querying my hundreds of thousands of databases (including external databases)
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Nearest Neighbor Example (GUFI reminder)
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Gufi virtual tables of particular interest
	Gufi_vt examples
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Hopefully you can see the power gufi brings to exabytes of holdings, billions of objects, in any number of storage systems maintaining full need to know security.�Asking questions of our holdings using file/storage, extended attributes, user supplied metadata, extracts from the data itself (text, other file metadata, features, etc.) with added value like full text search and embedded vector similarity. Both thread and cross machine parallelism with connectivity to all your favorite analytics/data science tools including query engines, data frames, inference engines and pick your language (English, html, sql, R, python, C, C++, …).
	Slide Number 51
	Creating index 1
	Creating index 2
	Rollups
	Treesummary 1
	Treesummary 2
	Slide Number 57
	Slide Number 58

