

Regional SDC Denver April 30, 2025

Storage for Al 101 An overview of Al Workloads from a Storage Perspective

Curtis Ballard SNIA Technical Council, Co-Chair Al Task Force

SNIA Technical Council

Hewlett Packard Enterprise

Bio available at: SNIA 2024/2025 Technical Council

What this presentation IS

High level introduction to storage for Al

Foundation for other Al presentations Thinking Food for planning storage for Al

What Kind of Storage?

- File storage?
- Object storage?
- Block storage?

- Direct attached storage?
- External (SAN/NAS) storage?

It Depends

- This presentation will cover general characteristics of AI workloads, from the perspective of the "storage".
- The specific storage implementation for any given workload has lots of choice points that need deeper analysis.

Storage, A Key Part of a Solid AI Foundation

77% of companies with AI in production plan to upgrade their storage!*

81% of companies evaluating AI plan to upgrade their storage.*

^{*} IDC, Future Proofing Hardware for Artificial Intelligence, August 2022

5 | ©2025 SNIA. All Rights Reserved.

Why is storage for AI different?

Requires huge quantities of data	 With different quantities in different phases
Extensive Data Manipulation	 With different types of data manipulation in different phases
It is a multi-phase workload	 Most traditional workloads, like databases, have predictable access patterns AI has widely different workload patterns for different phases
Performance and capacity varies widely for different AI tasks	 Overview of these variations follows in this presentation
Highly Parallel Operations	 Usually multiple parallel operations with their own storage workloads

Food for AI

AI

 It runs on GPUs and CPUs

but

• Eats Data! and that data

• Eats Storage!

The Two Sides of AI: Training and Inferencing

Several phases behind these

Storage Phases of Al one perspective

Regional SDC Denver April 30, 2025

AI Affects All of Your Storage

Think about your needs for today and tomorrow How does using AI change your storage requirements?

10 | ©2025 SNIA. All Rights Reserved.

Example: Data Ingest

- Your business processes generate data today
- You already have storage for data ingest
 or do you?
- Business data is already being captured, But:
 - How does AI affect what you capture
 - How does AI affect how you store your business data
 - How does AI affect how you access your business data

One Example Company

What they had

Al unlocked value in data that they weren't saving!

- Logs of data like mfg sensors, customer interactions, etc.
- Valuable business insights were hiding in sea of data
- AI PoC's demonstrated that they needed to save more data
- Their existing storage capacity was far too small!

What they need

So what do the storage requirements look like for these Storage for AI phases?

Data Aggregation

- Raw source data has to be prepared for use in AI
 - Logs, pictures, video, documents, etc.
- Data needs organized before becoming training data
 - Clean out noise
 - De-duplicate
 - Normalize

Random

- Privacy and Ethical processing, (anonymizing PII, removing bias, etc)
- Data is read from the ingest storage
 - Cleaned data needs written to storage for data preparation
 - Process may be able to be partially automated applying Al

REGIONAL **SD**

Capacity

Sequential

- Data Scientists serve as translators
 - Raw data \rightarrow Food for AI (Numbers)

- Exploring the data identifying patterns, outliers, relationships, etc.
- Splitting data for training and testing
- Feature extraction converting key features into consumable nuggets
- Data transformation converting data types (Vectorizing)
- Often highly parallel

💻 Random

Sequential

Model Training - Storage Interactions

- Loading memory for training
- Checkpointing
 - A point-in-time backup of the model copied off for recovery
 - GPU paused while model state is copied out of GPU Memory
 - Checkpointing may be synchronous or asynchronous

 $\Pi\Pi\Pi$

Fast Object for Al

Object storage is convenient but often has higher latency than file

REGIONAL

- File has been more popular than object for AI workloads
- Fast object has been gaining in popularity
 - SSD based object in most cases
 - RDMA accelerated object in some cases

17 | ©2025 SNIA. All Rights Reserved.

Model Training

- Checkpointing saving model weights and other state
 - Model weights are expensive when training takes a long time

Capacity

- Checkpointing saves state to allow restart after an error
- Checkpoint files are written sequentially
 - May be multiple sequential writes in parallel
- Checkpoint restoration is reversed
 - high sequential read, parallel reads to restore to multiple GPUs
- Training is paused, part of checkpoint, and all of restore time
- Storage performance determined be save/restore time goals

Sequential Random 18 | ©2025 SNIA. All Rights Reserved.

Model Training - General Storage Planning

- GPUs drive the cost maximizing GPU utilization optimizes investment
- Design for a balanced architecture
 - Balance storage performance with GPU requirements
- Consider data sources
 - May require both file and object access
- If known training workloads match storage performance to workload *
 - AI GPU benchmarks can show peak performance for various models
 - MLCommons MLPerf Training benchmarks is a good source
 - Determine size of training examples
 - Multiply throughput and size to estimate required read bandwidth
- For general purpose training may need to support GPU max read speed
 - Can be up to 1GB/s per GPU for high end GPUs today, increasing regularly

REGIONA

19 | ©2025 SNIA. All Rights Reserved. * <u>https://www.snia.org/educational-library/storage-requirements-ai-2024</u>

- Evaluation measuring how well the results of the model match expectations
 - Accuracy how often is it correct?
 - Precision/Recall roughly a measure of how often wrong vs right
 - Measures such as F1 Score and AUC-ROC (area under the curve/receiver operating characteristics)
- Tuning Adjusting hyperparameters to improve evaluation
- Produces a dataset containing the Model Parameters
 - Internal representation of the neural network
- Model Parameters size is constant, based on # of weights

REGIONAL **SDC**

Capacity

💻 Random

Sequential

Inference

- Running production data through the finished model to generate business value
- Inference = Inferring information from the data
- Multiple types of Inference
 - Retrieval Augmented Generation from LLMs
 - Predictive analytics
 - Computer Vision

Read Perf

Capacity

Write Perf

R

S R

- Anomaly detection (e.g., malware, fraud)
- Access pattern can vary some depending on type of inference
 - RAG can produce a random workload similar to databases

21 | ©2025 SNIA. All Rights Reserved.

Sequential

Random

RAG: Retrieval Augmented Generation

Agentic Al

The next wave of AI digital transformation

An application of AI to perform tasks on behalf of users

Learn and act autonomously in complex environments

- Still in the early phases but generating a lot of excitement and activity
- May use RAG (Agentic RAG)
- May use LLMs or small domain specific models

And Don't Forget! - Archive

- Often overlooked, not core AI, but important AI storage
 - Mandated by regulations for some AI applications
 - Similar, but not traditional "archive"
 - Archived data may be brought back for training or new insights

Write Perf

- Performance needs vary but "just fast enough"
- No accepted terminology, maybe "Cold Storage"
- Continually growing data set
- Requires low cost and low carbon footprint storage
 - Opportunity for zero power storage such as DNA and Optical

Random

Sequential

