
 
 
 

 
 
 

Linear Tape File System (LTFS) Format 
Specification 

 
Version 2.5 

 
ABSTRACT: This document defines a Linear Tape File System (LTFS) Format separate from 
any implementation on data storage media. Using this format, data is stored in LTFS Volumes. 
An LTFS Volume holds data files and corresponding metadata to completely describe the 
directory and file structures stored on the volume. 
 
This document has been released and approved by the SNIA. The SNIA believes that the ideas, 
methodologies and technologies described in this document accurately represent the SNIA 
goals and are appropriate for widespread distribution. Suggestions for revisions should be 
directed to http://www.snia.org/feedback/. 
 
 

 

SNIA Technical Position 
 

May 19, 2019 

 



2 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

 
USAGE  
Copyright © 2019 SNIA. All rights reserved. All other trademarks or registered trademarks are the 
property of their respective owners. 
 
The SNIA hereby grants permission for individuals to use this document for personal use only, and for 
corporations and other business entities to use this document for internal use only (including internal 
copying, distribution, and display) provided that: 
 

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no 
alteration, and,  

 
2. Any document, printed or electronic, in which material from this document (or any portion hereof) 

is reproduced, shall acknowledge the SNIA copyright on that material, and shall credit the SNIA 
for granting permission for its reuse. 

 
Other than as explicitly provided above, you may not make any commercial use of this document or any 
portion thereof, or distribute this document to third parties. All rights not explicitly granted are expressly 
reserved to SNIA. 
 
Permission to use this document for purposes other than those enumerated above may be requested by 
e-mailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a 
brief description of the purpose, nature, and scope of the requested use. 
 
All code fragments, scripts, data tables, and sample code in this SNIA document are made available 
under the following license: 
 

BSD 3-Clause Software License 
 
Copyright (c) 2019, The Storage Networking Industry Association. 
 
Redistribution and use in source and binary forms, with or without modification, are permitted 
provided that the following conditions are met: 
 
* Redistributions of source code must retain the above copyright notice, this list of conditions 
and the following disclaimer. 
 
* Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials provided 
with the distribution. 
 
* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of 
its contributors may be used to endorse or promote products derived from this software 
without specific prior written permission. 
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 



 
 

LTFS Format Specification SNIA Technical Position 3 
Version 2.5 

DISCLAIMER 
The information contained in this publication is subject to change without notice. The SNIA makes no 
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of 
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained 
herein or for incidental or consequential damages in connection with the furnishing, performance, or use 
of this specification. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  



 

4 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Acknowledgements 
The SNIA LTFS Technical Working Group, which developed and reviewed this specification, would like to 
recognize the significant contributions made by the following members: 
 

EMC Corporation........................ .............. Don Deel 
Hewlett Packard Enterprise  ..................... Chris Martin 
IBM.............................................. ............. David Pease 
.................................................. ................ Ed Childers 
.................................................. ................ Takeshi Ishimoto 
.................................................. ................ Atsushi Abe 
NetApp...................................... ................ David Slik 
Oracle Corporation..................... .............. Matthew Gaffney 
................................................. ................. Carl Madison 
Quantum Corporation........... .................... Paul Stone 
………………………………………………. Jim Wong 
SNIA............................................ ............. Arnold Jones 

 
 



 

LTFS Format Specification SNIA Technical Position 5 
Version 2.5 

Contents 

1 Introduction ........................................................................................................................................ 10 

2 Scope .................................................................................................................................................. 11 

2.1 Versions ...................................................................................................................................... 11 
2.2 Conformance ............................................................................................................................... 12 

3 Normative references ........................................................................................................................ 13 

3.1 Approved references ................................................................................................................... 13 

3.2 References under development .................................................................................................. 13 

3.3 Other references ......................................................................................................................... 13 

4 Definitions and Acronyms ................................................................................................................ 14 

4.1 Definitions .................................................................................................................................... 14 

4.2 Acronyms .................................................................................................................................... 16 

5 Volume Layout ................................................................................................................................... 18 

5.1 LTFS Partitions ............................................................................................................................ 18 

5.2 LTFS Constructs ......................................................................................................................... 18 

5.3 Partition Layout ........................................................................................................................... 19 
5.4 Index Layout ................................................................................................................................ 20 

6 Data Extents ....................................................................................................................................... 23 

6.1 Extent Lists .................................................................................................................................. 23 

6.2 Extents Illustrated ........................................................................................................................ 23 

6.3 Files Illustrated ............................................................................................................................ 25 

7 Data Formats ...................................................................................................................................... 29 

7.1 Boolean format ............................................................................................................................ 29 

7.2 Creator format ............................................................................................................................. 29 

7.3 Extended attribute value format .................................................................................................. 29 

7.4 Name format ................................................................................................................................ 30 
7.5 Name pattern format ................................................................................................................... 31 

7.6 String format ................................................................................................................................ 31 

7.7 Time stamp format ...................................................................................................................... 31 

7.8 UUID format ................................................................................................................................ 32 



 

6 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

8 Label Format ...................................................................................................................................... 33 

8.1 Label Construct ........................................................................................................................... 33 

9 Index Format ...................................................................................................................................... 36 

9.1 Index Construct ........................................................................................................................... 36 

9.2 Index ............................................................................................................................................ 36 

10 Medium Auxiliary Memory ................................................................................................................ 51 

10.1 Volume Change Reference ......................................................................................................... 51 

10.2 Volume Coherency Information ................................................................................................... 52 

10.3 Use of Volume Coherency Information for LTFS ........................................................................ 52 

10.4 Use of Host-type Attributes for LTFS .......................................................................................... 54 
10.5 Volume Advisory Locking ............................................................................................................ 56 

Annex A (normative) LTFS Label XML Schema ................................................................................... 58 

Annex B (normative) LTFS Index XML Schemas ................................................................................. 60 

B.1 LTFS Full Index XML Schema .................................................................................................... 60 

B.2 LTFS Incremental Index XML Schema ....................................................................................... 62 

Annex C (normative) Reserved Extended Attribute definitions ......................................................... 66 

C.1 Software Metadata ...................................................................................................................... 66 

C.2 Drive Metadata ............................................................................................................................ 66 

C.3 Object Metadata .......................................................................................................................... 67 

C.4 Volume Metadata ........................................................................................................................ 67 

C.5 Media Metadata........................................................................................................................... 69 

Annex D (informative) Example of Valid Simple Complete LTFS Volume ........................................ 72 

Annex E (informative) Complete Example LTFS Full Index ............................................................... 73 

Annex F (normative) Interoperability Recommendations ................................................................... 78 

F.1 Spanning Files across Multiple Tape Volumes in LTFS ............................................................. 78 

F.2 File Permissions in LTFS ............................................................................................................ 83 

F.3 Storing File Hash Values in LTFS ............................................................................................... 86 
F.4 LTFS Media Pools ....................................................................................................................... 87 

Annex G (informative) Character representations .............................................................................. 89 

Annex H (informative) Incremental Indexes ......................................................................................... 92 



 

LTFS Format Specification SNIA Technical Position 7 
Version 2.5 

H.1 Background ................................................................................................................................. 92 

H.2 Backwards Compatibility ............................................................................................................. 92 

H.3 Traversing the Index Back Pointer Chain ................................................................................... 93 
H.4 Incremental Index Format ........................................................................................................... 93 

H.5 Processing Incremental Indexes ................................................................................................. 95 

H.6 Miscellaneous .............................................................................................................................. 96 
 



 

8 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

List of Figures 
Figure 1 — LTFS Partition ..................................................................................................18 

Figure 2 — Label Construct ...............................................................................................18 

Figure 3 — Index Construct ...............................................................................................19 

Figure 4 — Partition Layout ................................................................................................19 

Figure 5 — Complete partition containing data ...................................................................20 

Figure 6 — Back Pointer example ......................................................................................21 

Figure 7 — Back Pointer example for Incremental Indexes ................................................22 

Figure 8 — Extent starting and ending with full block .........................................................24 

Figure 9 — Extent starting with full block and ending with fractional block .........................24 

Figure 10 — Extent starting and ending in mid-block .........................................................24 

Figure 11 — File contained in a single Data Extent ............................................................25 

Figure 12 — File contained in two Data Extents .................................................................25 

Figure 13 — Shared Blocks example .................................................................................26 

Figure 14 — Sparse files example .....................................................................................27 

Figure 15 — Shared data example .....................................................................................27 

Figure 16 — Label construct ..............................................................................................33 

Figure 17 — Index Construct .............................................................................................36 

Figure D.1 — Content of a simple LTFS volume ................................................................72 

Figure H.1 — Processing an Incremental Index (flowchart) ................................................97 



 

LTFS Format Specification SNIA Technical Position 9 
Version 2.5 

List of Tables 
Table 1 — Version elements ..............................................................................................11 

Table 2 — Version comparisons ........................................................................................12 

Table 3 — Extent list entry starting and ending with full block ............................................24 

Table 4 — Extent list entry starting with full block and ending with fractional block ............24 

Table 5 — Extent list entry starting and ending in mid-block ..............................................25 

Table 6 — Extent list entry for file contained in a single Data Extent ..................................25 

Table 7 — Extent list entry for a file contained in two Data Extents ....................................25 

Table 8 — Extent lists for Shared Blocks example .............................................................26 

Table 9 — Extent list for sparse files example ....................................................................27 

Table 10 — Extent lists for shared data example ...............................................................28 

Table 11 — Creator format definitions ................................................................................29 

Table 12 — Reserved characters for name format .............................................................30 

Table 13 — Characters which should be avoided for name format .....................................30 

Table 14 — Name percent-encoding ..................................................................................31 

Table 15 — Time stamp format ..........................................................................................32 

Table 16  — VOL1 Label Construct ....................................................................................33 

Table 17 — Volume Coherency Information .......................................................................52 

Table 18 — ACSI format for LTFS .....................................................................................53 

Table 19 — Relevant Host-type Attributes for LTFS ...........................................................54 

Table 20 — Example of Host-type Attributes ......................................................................56 

Table 21 — Volume Locked MAM Attribute ........................................................................56 

Table 22 — Volume Locked MAM Attribute Values ............................................................56 

Table F.1 — Hash Types ...................................................................................................86 

Table G.1 — Character representations : version 2.3 or later .............................................89 

Table G.2 — Character representations : version 2.2 or earlier ..........................................90 

  

 
 



 

10 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

1 Introduction 
This document defines a Linear Tape File System (LTFS) Format separate from any 
implementation on data storage media. Using this format, data is stored in LTFS Volumes. An LTFS 
Volume holds data files and corresponding metadata to completely describe the directory and file 
structures stored on the volume. 

The LTFS Format has these features: 

• An LTFS Volume can be mounted and volume content accessed with full use of the data 
without the need to access other information sources. 

• Data can be passed between sites and applications using only the information written to an 
LTFS Volume. 

• Files can be written to, and read from, an LTFS Volume using standard POSIX file 
operations. 

The LTFS Format is particularly suited to these usages: 

• Data export and import. 

• Data interchange and exchange. 

• Direct file and partial file recall from sequential access media. 

• Archival storage of files using a simplified, self-contained or “self-describing” format on 
sequential access media. 



 

LTFS Format Specification SNIA Technical Position 11 
Version 2.5 

2  Scope 
This document defines the LTFS Format requirements for interchanged media that claims LTFS 
compliance. Those requirements are specified as the size and sequence of data blocks and file marks on 
the media, the content and form of special data constructs (the LTFS Label and LTFS Index), and the 
content of the partition labels and use of MAM parameters. 

The data content (not the physical media) of the LTFS format shall be interchangeable among all data 
storage systems claiming conformance to this format. Physical media interchange is dependent on 
compatibility of physical media and the media access devices in use. 

NOTE: This document does not contain instructions or tape command sequences to build the LTFS structure. 

2.1 Versions 
This document describes version 2.5.0 of the Linear Tape File System (LTFS) Format Specification. 

The version number for the LTFS Format Specification consists of three integer elements separated by 
period characters of the form M.N.R, where M, N and R are positive integers or zero. Differences in the 
version number between different revisions of this specification indicate the nature of the changes made 
between the two revisions. Each of the integers in the format specification are incremented according to 
Table 1. 

Table 1 — Version elements 

Element Description 
M Incremented when a major update has been made to the LTFS Format 

Specification. Major updates are defined as any change to the on-media format or 
specification semantics that are expected to break compatibility with older 
versions of the specification. 

N Incremented when a minor update has been made to the LTFS Format 
Specification. Minor updates are defined as any change to the on-media format or 
specification semantics that is not expected to break compatibility with older 
versions of the specification that have the same value for M in the version 
number. 

R Incremented when textual revisions are made to the LTFS Format Specification. 
Textual revisions are defined as revisions that improve the clarity of the 
specification document without changing the intent of the document. By definition, 
minor changes do not alter the on-media format or specification semantics. 

 

NOTE 1: When any element of the specification version number is incremented, all sub-ordinate elements to the right are reset to 
zero. For example, if the version is 1.0.12 and N is incremented to 1, then R is set to zero resulting in version 1.1.0. 

NOTE 2: The first public version of this document used version number 1.0. This value should be interpreted as equivalent to 1.0.0 
in the version numbering defined in this document. 

The result of comparison between two LTFS version numbers MA.NA.RA and MB .NB .RB is defined in 



 

12 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Table 2. 

Table 2 — Version comparisons 

Conditional Description 
MA < MB MA.NA.RA is an earlier version than MB .NB .RB . 
MA  = MB and 
MA < NB 

 

MA.NA.RA is an earlier version than MB .NB .RB . 

MA = MB and 
NA = NB and 
RA < RB 

 
 

MA.NA.RA  is an earlier version than MB .NB .RB . However, as defined 
above, changes that result only in a different R value are descriptive 
changes in the specification rather than on media changes. 

2.2 Conformance 
Recorded media claiming conformance to this format shall be in a consistent state when interchanged or 
stored. See Section 4.1.4. 

Any implementation conforming to this specification should be able to correctly read Label and Index 
structures from all prior versions of this specification and write Label and Index structures conforming to 
the descriptions in this document. The current Label and Index structures are defined in Section 8 Label 
Format and in Section 9 Index Format. 

NOTE: Where practical, any implementation supporting a given version value for M should endeavor to support LTFS volumes with 
version numbers containing higher values for N and R than those defined at the time of implementation. 



 

LTFS Format Specification SNIA Technical Position 13 
Version 2.5 

3 Normative references 
The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

3.1 Approved references 
ISO/IEC 14776-453, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.408-2005] 

SSC-4 SCSI Stream Commands – 4 [SSC-4] [ANSI INCITS 516-2013] 

IETF RFC 4648, The Base16, Base32, and Base64 Data Encodings, http://www.ietf.org/rfc/rfc4648.txt 

ISO 8601:2004 Data elements and interchange formats – Information interchange – Representation of 
dates and times – (UTC) 

ISO/IEC 10646:2012: Information technology - Universal Coded Character Set (UCS) (UTF-8) 

IETF RFC 4122, Universally Unique Identifier (UUID) URN Namespace http://www.ietf.org/rfc/rfc4122.txt 

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt 

ANSI X3.27-1978 American National Standard Magnetic Tape Labels and File Structure for Information 

3.2 References under development 
SCSI Primary Commands - 4 (SPC-4) [ANSI INCITS 513:2014] 

3.3 Other references 
W3C - Extensible Markup Language (XML) http://www.w3.org/XML 

NFC – Unicode Normalization Forms - Unicode Standard Annex - UAX#15 
http://www.unicode.org/reports/tr15 

Unicode Text Segmentation - Unicode Standard Annex - UAX#29 http://www.unicode.org/reports/tr29 

OSF CDE 1.1, Remote Procedure Call – Universal Unique Identifier (UUID) 
http://pubs.opengroup.org/onlinepubs/9629399/toc.pdf 

 

http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/XML
http://www.unicode.org/reports/tr15
http://www.unicode.org/reports/tr29
http://pubs.opengroup.org/onlinepubs/9629399/toc.pdf


 

14 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

4 Definitions and Acronyms 
For the purposes of this document the following definitions and acronyms shall apply. 

4.1 Definitions 

4.1.1  
Block Position 
The position or location of a recorded block as specified by its LTFS Partition ID and logical block number 
within that partition. 

The block position of an Index is the position of the first logical block for the Index. 

4.1.2  
Complete Partition 
An LTFS partition that consists of an LTFS Label Construct and a Content Area, where the last construct 
in the Content Area is an Index Construct. 

4.1.3  
Content Area 
A contiguous area in a partition, used to record Index Constructs and Data Extents. 

4.1.4  
Consistent State 
A volume is consistent when both partitions are complete and the last Index Construct in the Index Partition 
has a back pointer to the last Full Index Construct in the Data Partition. 

4.1.5  
Data Extent 
A contiguous sequence of recorded blocks. 

4.1.6  
Data Partition 
An LTFS partition primarily used for data files. 

4.1.7  
File 
A group of logically related extents together with associated file metadata. 

4.1.8  
Filesystem sync 
An operation during which all cached file data and metadata is flushed to the media.  

4.1.9  
Full Index 
A data structure that describes all valid data files in an LTFS volume. The Full Index is an XML document 
conforming to the XML schema shown in Annex B (normative) LTFS Index XML Schema. 

4.1.10  
Generation number 
A positive decimal integer which shall indicate the specific generation of an Index within an LTFS volume.  



 

LTFS Format Specification SNIA Technical Position 15 
Version 2.5 

4.1.11  
Incremental Index 
A data structure that describes changes made to the LTFS volume since the last index was written. The 
Incremental Index is an XML document conforming to the XML schema shown in Annex B (normative) 
LTFS Index XML Schema. 

4.1.12  
Index 
Either a Full Index or an Incremental Index. 

4.1.13  
Index Construct 
A data construct comprised of an Index and file marks. 

4.1.14  
Index Partition 
An LTFS partition primarily used to store Index Constructs and optionally data files. 

4.1.15  
Label Construct 
A data construct comprised of an ANSI VOL1 tape label, LTFS Label, and tape file marks. 

4.1.16  
Linear Tape File System (LTFS) 
This document describes the Linear Tape File System Format. 

4.1.17  
LTFS Construct 
Any of three defined constructs that are used in an LTFS partition. The LTFS constructs are: Label 
Construct, Index Construct, and Data Extent. 

4.1.18  
LTFS Label 
A data structure that contains information about the LTFS partition on which the structure is stored. The 
LTFS Label is an XML document conforming to the XML schema shown in Annex A (normative) LTFS Label 
XML Schema. 

4.1.19  
LTFS Partition 
A tape partition that is part of an LTFS volume. The partition contains an LTFS Label Construct and a 
Content Area. 

4.1.20  
LTFS Volume 
A pair of LTFS partitions, one Data Partition and one Index Partition, that contain a logical set of files and 
directories. The pair of partitions in an LTFS Volume shall have the same UUID. All LTFS partitions in an 
LTFS volume are related partitions. 



 

16 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

4.1.21  
Medium Auxiliary Memory 
An area of non-volatile storage that is part of an individual storage medium. The method of access to this 
non-volatile storage is standardized as described in the T10/SPC-4 standard. 

4.1.22  
Partition Identifier (Partition ID) 
The logical partition letter to which LTFS data files and Indexes are assigned. 

The linkage between LTFS partition letter and physical SCSI partition number is determined by the SCSI 
partition in which the LTFS Label is recorded. The LTFS partition letter is recorded in the LTFS Label 
construct, and the SCSI partition number is known by the SCSI positional context where they were 
read/written. 

4.1.23  
Sparse file 
A file that has some number of empty (unwritten) data regions. These regions are not stored on the storage 
media and are implicitly filled with bytes containing the value zero (0x00). 

4.1.24  
UUID 
Universally unique identifier; an identifier use to bind a set of LTFS partitions into an LTFS volume. 

4.1.25  
Volume Change Reference (VCR) 
A value that represents the state of all partitions on a medium. 

4.1.26  
Volume Advisory Locking 
An indication that the LTFS volume has been locked against future modifications. This is a form of write 
protection under the control of host software rather than physical hardware. 

4.2 Acronyms 
ASCII American Standard Code for Information Interchange 
CM Cartridge Memory 
DCE Distributed Computing Environment 
ISO International Organization for Standardization 
LTFS Linear Tape File System 
MAM Media Auxiliary Memory 
NFC Normalization Form Canonical Composition 
OSF Open Software Foundation 
POSIX Portable Operating System Interface for Unix 
T10/SSC-4 ISO/IEC 14776-334, SCSI Stream Commands - 4 (SSC-4) [T10/2123-D] 
UTC Coordinated Universal Time 
UTF-8 8-bit UCS/Unicode Transformation Format 
UUID Universally Unique Identifier 
W3C World Wide Web Consortium 



 

LTFS Format Specification SNIA Technical Position 17 
Version 2.5 

XML Extensible Markup Language 



 

18 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

5 Volume Layout 
An LTFS volume is comprised of a pair of LTFS partitions. LTFS defines two partition types: data partition 
and index partition. An LTFS volume shall contain exactly one Data Partition and exactly one Index 
Partition. 

5.1 LTFS Partitions 
Each partition in an LTFS volume shall consist of a Label Construct followed by a Content Area. This 
logical structure is shown in Figure 1. 

 

The Label Construct is described in Section 5.2 LTFS Constructs and in Section 8 Label Format. The 
Content Area contains some number of interleaved Index Constructs and Data Extents. These constructs 
are described in Section 5.2 LTFS Constructs and in Section 9 Index Format. The precise layout of the 
partitions is defined in Section 5.3 Partition Layout. 

5.2 LTFS Constructs 
LTFS constructs are comprised of file marks and records. These are also known as ‘logical objects’ as 
found in T10 SSC specifications and are not described here. An LTFS volume contains three kinds of 
constructs. 

• A Label Construct contains identifying information for the LTFS volume. 

• A Data Extent contains file data written as sequential logical blocks. A file consists of zero 
or more Data Extents plus associated metadata stored in the Index Construct. 

• An Index Construct contains an Index, which is an XML data structure which describes the 
mapping between files and Data Extents. 

5.2.1 Label Construct 

Each partition in an LTFS volume shall contain a Label Construct with the following structure. As shown in 
Figure 2, the construct shall consist of an ANSI VOL1 label, followed by a single file mark, followed by 
one record in LTFS Label format, followed by a single file mark. Each Label construct for an LTFS volume 
shall contain identical information except for the “location” field of the LTFS Label. 

The content of the ANSI VOL1 label and the LTFS Label is specified in Section 8 Label Format. 
 

Figure 1 — LTFS Partition 

Figure 2 — Label Construct 



 

LTFS Format Specification SNIA Technical Position 19 
Version 2.5 

5.2.2 Data Extent 

A Data Extent is a set of one or more sequential logical blocks used to store file data. The “blocksize” field 
of the LTFS Label defines the block size used in Data Extents. All blocks within a Data Extent shall have 
this fixed block size except the last block, which may be smaller. 

The use of Data Extents to store file data is specified in Section 6 Data Extents. 

5.2.3 Index Construct 

 Figure 3 shows the structure of an Index Construct. An Index Construct consists of a file mark, followed 
by an Index, followed by a file mark. An Index consists of a record that follows the same rules as a Data 
Extent, but it does not contain file data. That is, the Index is written as a sequence of one or more logical 
blocks of size “blocksize” using the value stored in the LTFS Label. Each block in this sequence shall 
have this fixed block size except the last block, which may be smaller. This sequence of blocks records 
the Index XML data that holds the file metadata and the mapping from files to Data Extents. The Index 
XML data recorded in an Index Construct shall be written from the start of each logical block used. That 
is, Index XML data may not be recorded offset from the start of the logical block. 
 

Indexes also include references to other Indexes in the volume. References to other Indexes are used to 
maintain consistency between partitions in a volume. These references (back pointers and self pointers) 
are described in Section 5.4 Index Layout. 

The content of the Index is described in Section 9 Index Format. 

5.3 Partition Layout 
This section describes the layout of an LTFS Partition in detail. An LTFS Partition contains a Label 
Construct followed by a Content Area. The Content Area contains zero or more Data Extents and Index 
Constructs in any order. The last construct in the Content Area of a complete partition shall be an Index 
Construct. 

Figure 4 illustrates an empty complete partition. It contains a Label Construct followed by an Index 
Construct. This is the simplest possible complete partition. 
 

 

Figure 4 — Partition Layout 

Figure 3 — Index Construct 



 

20 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Figure 5 illustrates a complete partition containing data. The Content Area on the illustrated partition 
contains two Data Extents (the first extent comprising the block ‘A’, the second extent comprising blocks 
‘B’ and ‘C’) and three Index Constructs. 

 

NOTE: There must not be any additional data trailing the end of the VOL1 Label, the LTFS Label, nor any Index on an LTFS 
Volume. The Label Construct must be recorded starting at the first logical block in each partition. 

5.4 Index Layout 
Each Index data structure contains information used to verify the consistency of an LTFS volume. 

• A generation number, which records the age of this Index relative to other Indexes in the 
volume. 

• A self pointer, which records the volume to which the Index belongs and the block position 
of the Index within that volume. 

• A back pointer, which records the block position of the last Full Index present on the Data 
Partition immediately before this Index was written. 

• An optional second back pointer, which will only be present if an Incremental Index has 
been written since the last Full Index on the Data Partition.  If present this pointer records 
the block position of the most recent Incremental Index. 

5.4.1 Generation Number 

Each Index in a volume has a generation number, a non-negative integer that increases as changes are 
made to the volume. In any consistent LTFS volume, the Index with the highest generation number on the 
volume represents the current state of the entire volume and must be a Full Index. Generation numbers 
are assigned in the following way: 

• Given two Indexes on a partition, the one with a higher block position shall have a generation number 
greater than or equal to that of the one with a lower block position. 

• Two Indexes in an LTFS volume may have the same generation number if and only if their contents 
are identical except for these elements: 
• access time values for files and directories (described in Section 9.2 Index ), 
• the self pointer (described in Section 5.4.2 Self Pointer), and 
• the back pointer (described in Section 5.4.3 Back Pointer). 

NOTE: The value of the generation number between any two successive Indexes may increase by any positive integer value. That 
is, the magnitude of increase between any two successive Indexes is not assumed to be equal to 1. 

The first Index on an LTFS Volume shall be generation number ‘1’. 

5.4.2 Self Pointer 

The self pointer for an Index is comprised of the following information: 

• The UUID of the volume to which the Index belongs 

• The block position of the Index 

Figure 5 — Complete partition containing data 



 

LTFS Format Specification SNIA Technical Position 21 
Version 2.5 

The self pointer is used to distinguish between Indexes and Data Extents. An otherwise valid Index with 
an invalid self pointer shall be considered a Data Extent for the purpose of verifying that a volume is valid 
and consistent. This minimizes the likelihood of accidental confusion between a valid Index and a Data 
Extent containing Index-like data. 

5.4.3 Back Pointer 

Each Index contains at most two back pointers, defined as follows. 

• If the Index resides in the Data Partition, the full index back pointer shall contain the block 
position of the preceding Full Index in the Data Partition. If no preceding Index exists, no 
back pointer shall be stored in this Index. Back pointers are stored in the Index as described 
in Section 9.2 Index. 

• If the Index resides in the Index Partition and has generation number N then the full index 
back pointer for the Index shall contain either the block position of a Full Index having 
generation number N in the Data Partition, or the block position of the last Full Index having 
at most generation number N−1 in the Data Partition. If no Index of generation number N-1 or 
less exists in the Data Partition, then the Index in the Index Partition is not required to store a 
back pointer. 

• On a consistent volume, the final Index in the Index Partition shall contain a back pointer to 
the final Full Index in the Data Partition. 

• On a volume containing Incremental Indexes, an index residing in the Data Partition may 
contain a second back pointer with the block position of the most recent Incremental Index on 
the Data Partition written since the last Full Index 

• As a consequence of the rules above, no Index may contain a back pointer to itself or to an 
Index with a higher generation number. 

On a consistent volume, the rules above require that the Indexes on the Data Partition and the final Index 
on the Index Partition shall form an unbroken chain of back pointers. Figure 6 illustrates this state for a 
volume not containing any Incremental Indexes, and Figure 7 illustrates the corresponding state for a 
volume which does contain Incremental Indexes.  See Section 9 for more detail on full and incremental 
indexes. 
 

 
Figure 6 — Back Pointer example 



 

22 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

 
Figure 7 — Back Pointer example for Incremental Indexes 

In Figure 7 the red arrows represent back pointers to a Full Index, and the blue arrows represent back 
pointers to an Incremental Index. 

 

 



 

LTFS Format Specification SNIA Technical Position 23 
Version 2.5 

6 Data Extents 
A Data Extent is a set of one or more sequential records subject to the conditions listed in Section 5.2.2 
Data Extent. This section describes how files are arranged into Data Extents for storage on an LTFS 
volume. Logically, a file contains a sequence of bytes; the mapping from file byte offsets to block 
positions is maintained in an Index. This mapping is called the extent list. 

6.1 Extent Lists 
A file with zero size has no extent list. 

Each entry in the extent list for a file encodes a range of bytes in the file as a range of contiguous bytes in 
a Data Extent. An entry in the extent list is known as an extent. Each entry shall contain the following 
information: 

• partition ID – partition that contains the Data Extent comprising this extent. 

• start block (start block number) – block number within the Data Extent where the content for this 
extent begins. 

• byte offset (offset to first valid byte) – number of bytes from the beginning of the start block to the 
beginning of file data for this extent. This value shall be strictly less than the size of the start block. 
The use of byte offset is described in Section 6.2.3 Starting and ending Data Extent in mid-block. 

• byte count – number of bytes of file content in this Data Extent. 

• file offset – number of bytes from the beginning of the file to the beginning of the file data recorded in 
this extent. 

NOTE: Version 1.0 of this specification did not explicitly include file offsets in the extent list. When interpreting LTFS Volumes written 
based on the Version 1.0 specification, the file offsets shall be determined as follows. 

• The first extent list entry begins at file offset 0. 
• If an extent list entry begins at file offset N and contains K bytes, the following extent list entry begins at file offset N + K. 

These file extent rules for version 1.0 of the specification necessarily imply that the order of extents recorded in the Index shall be 
preserved during any subsequent update of the Index to another version 1.0 Index. 

The inclusion of the File Offset value for each extent starting from version 2.0.0 of this specification removes the significance of the 
order in which extents are recorded in the Index. 

Implementers are encouraged to record extents in the same logical order as they exist in the represented 
file. 

In the extent list for any file, no extent may contain bytes that extend beyond the logical end of file. The 
logical end of file is defined by the file length recorded in the Index. Also, in any extent list for any file, 
there shall not exist any pair of extents that contain overlapping logical file offsets. That is, no extent is 
allowed to logically overwrite any data stored in another extent. 

An extent list entry shall be a byte range within a single Data Extent; that is, it shall not cross a boundary 
between two Data Extents. This requirement allows a deterministic mapping from any file offset to the 
block position where the data can be found. On the other hand, two extent list entries (in the same file or 
in different files) may refer to the same Data Extent. 

6.2 Extents Illustrated 
This section illustrates various forms of extent list entries and the mapping from files to these extents. The 
illustrations are not exhaustive. Other combinations of starting and ending blocks are possible. 

The LTFS Partition ID is an essential element of an extent definition. For simplicity, the LTFS Partition ID 
and File Offset are not shown explicitly in the extents lists illustrated in Table 3 — Extent list entry starting 
and ending with full block, Table 4, and Table 5 — Extent list entry starting and ending in mid-block. Note 
that not all extents in an extent list shall be on the same partition. 



 

24 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

6.2.1 Starting and ending Data Extent with full block 

Figure 8 illustrates an extent of 3 full size blocks contained within a Data Extent of 3 blocks, N through 

 N + 2. 

The extent list entry for this extent is shown in  Table 3. 

 

Table 3 — Extent list entry starting and ending with full block 

Start Block Offset Length 
N 0 3 × Blk 

NOTE: Blk is the length of a full-sized block. 
 

6.2.2 Starting Data Extent with full block and ending with fractional block 

Figure 9 illustrates an extent of 2 full-size blocks and one fractional block of K bytes, contained within a 
Data Extent of 2 full size blocks N and N + 1 and one fractional block N + 2. 
 

The extent list entry for this extent is shown in Table 4. 
 

Table 4 — Extent list entry starting with full block and ending with fractional block 

Start Block Offset Length 
N 0 (2 × Blk) + K 

NOTE: K is the length of the fractional block, where K < Blk 

6.2.3 Starting and ending Data Extent in mid-block 

Figure 10 illustrates an extent smaller than 3 blocks, contained within a Data Extent of 3 full size blocks. 
Valid data begins in block N at byte number J and continues to byte number K of block N + 2. The last 
block of the extent, block N + 2, may be a fractional block. 

 

Figure 8 — Extent starting and ending with full block 

Figure 9 — Extent starting with full block and ending with fractional block 

Figure 10 — Extent starting and ending in mid-block 



 

LTFS Format Specification SNIA Technical Position 25 
Version 2.5 

The extent list entry for this extent is shown in Table 5. 
 

Table 5 — Extent list entry starting and ending in mid-block 

Start Block Byte Offset Byte Count 
N J (Blk − J ) + Blk + K 

 

6.3 Files Illustrated 
This section illustrates various possible extent lists for files. These illustrations are not exhaustive; other 
combinations of extent geometry and ordering are possible. The extents shown in this section are always 
displayed in file offset order, but they may appear in any order on a partition, or even in different 
partitions. As in the previous section, Partition IDs are omitted for simplicity. Unless otherwise noted these 
examples illustrate non-sparse files that have all file data written to the media. 

6.3.1 Simple Files 

Figure 11 illustrates a file contained in a single Data Extent of three blocks. The data fills the first two 
blocks and K bytes in the last block. The last block of the extent, block N + 2, may be a fractional block. 
This file is recorded as a regular (non-sparse) file. See Table 6. 
 

 

Table 6 — Extent list entry for file contained in a single Data Extent 

Start Block Byte Offset Byte Count File Offset 
N 0 (2 × Blk) + K 0 

 

Figure 12 illustrates a file contained in two Data Extents of three blocks each. The data fills the first two 
blocks of extent N and K bytes of block N + 2, and the first two blocks of extent M and L bytes of block M 
+ 2. The last block of each extent, block N + 2 and M + 2, may be fractional blocks. This file is recorded 
as a regular (non-sparse) file. Table 7 shows file details. 

 
Figure 12 — File contained in two Data Extents  

 

Table 7 — Extent list entry for a file contained in two Data Extents 

Start Block Byte Offset Byte Count File Offset 
N 
M 

0 
0 

(2 × Blk) + K 
(2 × Blk) + L 

0 
(2 × Blk) + K 

Figure 11 — File contained in a single Data Extent 



 

26 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

6.3.2 Shared Blocks 

Figure 13 illustrates two full-sized blocks which are referenced by three files. Blocks may be shared 
among multiple files to improve storage efficiency. File 1 uses the first K bytes of block N . File 2 uses Q 
bytes in the mid part of block N , and (Blk − R) bytes at the end of block N + 1. File 3 uses the last (Blk − 
P − Q) bytes at the end of block N and the first T bytes of block N + 1. 

 
Figure 13 — Shared Blocks example 

 

The extent lists for files 1, 2, and 3 are shown in Table 8. 
 

Table 8 — Extent lists for Shared Blocks example 

 Start Block Byte Offset Byte Count File Offset 
File 1 N 0 K 0 
File 2 N 

N+1 

P 
R 

Q 
Blk − R 

0 
Q 

File 3 N P + Q Blk − P − Q + T 0 

NOTE: If N were a fractional block, File 3 would map to two entries in the extent list. As illustrated, 
block N is a full block, and File 3 may be mapped to the single extent list entry shown above. 
Alternatively, because blocks may always be treated as independent Data Extents, File 3 could be 
mapped to two entries in the extent list, one entry per block (N and N + 1). 

6.3.3 Sparse Files 

The length of a file, as recorded in the Index, may be greater than the total size of data encoded in that 
file’s extent list. A file may also have non-zero size but no extent list. In both of these cases, all bytes not 
encoded in the extent list shall be treated as zero (0x00) bytes. 

Figure 14 illustrates a sparse file that is contained in two Data Extents. In this figure, all white areas of the 
file are filled with bytes that are set to zero (0x00). The file starts with T bytes with value zero(0x00). The 
first extent stores K bytes of data which fills the file from byte T to T + K. The file contains R bytes with 
value zero (0x00) from file offset T + K to T + K + R. The second extent contains Q file bytes representing 
the file content from file offset T + K + R to T + K + R + Q. The end of the file from file offset T + K + R + Q 
is filled with bytes set to value zero (0x00) to the defined file size P. 



 

LTFS Format Specification SNIA Technical Position 27 
Version 2.5 

 
Figure 14 — Sparse files example 

 

The extent list for this file is shown in Table 9. 

Table 9 — Extent list for sparse files example 

Start Block Byte Offset Byte Count File Offset 
N 

N + 1 
S 
0 

K 
Q 

T 
T + K + R 

NOTE 1: Version 1.0 of this specification, implied zeros could only appear at the end of a file; other types of sparse files were not 
supported. When appending to the end of a file that is to be stored on a volume in compliance with version 1.0 of this specification, 
any implied trailing zero bytes in the file must be explicitly written to the media to avoid leaving holes in the extent list for the file. 

NOTE 2: Version 1.0 of this specification did not support sparse files. 

6.3.4 Shared Data 

Figure 15 illustrates four Data Extents which are partly shared by two files. Overlapping extent lists may 
be used to improve storage efficiency. 

NOTE: Methods to implement data deduplication are beyond the scope of this document. Implementations must read files with 
overlapping extent lists correctly, but they are not required to generate such extent lists. 

In Figure 15, File 1 uses all blocks in Data Extents N , M , and R. File 2 uses some of the blocks in Data 
Extents N , R and V . The extent lists for the two files are shown in Table 10. The two files share some of 
the data in blocks N , N + 1, N + 2, R + 1 and R + 2. 

 
Figure 15 — Shared data example 

The extent lists for files 1 and 2 are shown in Table 10. 



 

28 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Table 10 — Extent lists for shared data example 

 Start Block Byte Offset Byte Count File Offset 
File 1 N 

M 
R 

0 
0 
0 

3 × Blk 
2 × Blk 
3 × Blk 

0 
3 × Blk 

(3 × Blk) + (2 × Blk) 
File 2 N 

R+1 
V 

K 
Q 
0 

(Blk − K) + Blk + P 
(Blk − Q) + Blk  Blk + 

S 

0 
(Blk − K) + Blk + P 

(Blk − K) + Blk + P + (Blk − Q) + Blk 
 
 



 

LTFS Format Specification SNIA Technical Position 29 
Version 2.5 

7 Data Formats 
The LTFS Format uses the data formats defined in this section to store XML field values in the Index 
Construct and Label Construct. 

7.1 Boolean format 
Boolean values in LTFS structures shall be recorded using the values: “true”, “1”, “false”, and “0”. When 
set to the values “true” or “1”, the boolean value is considered to be set and considered to evaluate to 
true. When set to the values “false” or “0”, the boolean value is considered to be unset, and considered to 
evaluate to false. 

7.2 Creator format 
LTFS creator values shall be recorded in conformance with the string format defined in Section 7.6 String 
format with the additional constraints defined in this section. 

LTFS creator values shall be recorded as a Unicode string containing a maximum of 1024 Unicode code 
points. The creator value shall include product identification information, the operating platform, and the 
name of the executable that wrote the LTFS volume. 

An example of the recommended content for creator values is: 

IBM LTFS 1.2.0 - Linux - mkltfs 

The recommended format for a creator value is a sequence of values separated by a three character 
separator. The separator consists of a space character, followed by a hyphen character, followed by 
another space character. The recommended content for the creator value is Company Product Version - 
Platform - binary name where definitions are as defined in Table 11. 
 

Table 11 — Creator format definitions 

Symbol Description 
Company Product 

Version 
Identifies the product that created the volume. 

Platform Identifies the operating system platform for the product. 
binary name Identifies the executable that created the volume. 

 

Any subsequent data in the creator format should be separated from this content by a hyphen character. 

7.3 Extended attribute value format 
An extended attribute value shall be recorded as one of two possible types: 

1. The “text” type shall be used when the value of the extended attribute conforms to the format 
described in Section 7.6 String format. The encoded string shall be stored as the value of the 
extended attribute and the type of the extended attribute shall be recorded as “text”. 

2. The “base64” type shall be used for all values that cannot be represented using the “text” type. 
Extended attribute values stored using the “base64” type shall be encoded as base64 
according to RFC 4648, and the resulting string shall be recorded as the extended attribute 
value with the type recorded as “base64”. The encoded string may contain whitespace 
characters as defined by the W3C Extensible Markup Language (XML) 1.0 standard (space, 
tab, carriage return, and line feed). These characters shall be ignored when decoding the 
string. 



 

30 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

7.4 Name format 
File and directory names, and extended attribute keys in an LTFS Volume shall conform to the naming 
rules in this section. 

Names shall be valid Unicode and shall be 255 code points or less after conversion to Normalization 
Form C (NFC). Names shall be stored in a case-preserving manner. Since names are stored in an Index, 
they shall be encoded as UTF-8 in NFC. Names may include any characters allowed by the W3C 
Extensible Markup Language (XML) 1.0 standard except for the those listed in Table 12. 
 

Table 12 — Reserved characters for name format 

Character Description 
U+002F slash 
U+003A colon 

 

Note that the null character U+0000 is disallowed by W3C XML 1.0. See W3C XML 1.0 for a full list of 
disallowed characters. The characters listed in Table 13 are allowed, but they should be avoided for 
reasons of cross-platform compatibility. 

Table 13 — Characters which should be avoided for name format 

Character Description 
U+0009, U+000A and U+000D control codes 

U+0022 double quotation 
k U+002A Asterisk 

U+003F question mark 
U+003C less than sign 
U+003E greater than sign 
U+005C Backslash 
U+007C vertical line 

 

Implementations which claim compliance with version 2.4.0 or later of this specification shall support the 
percent-encoding of names as described below in order to avoid issues with the characters listed in Table 
12 above. 

Percent-encoding is described in IETF RFC3986.  Reserved characters are replaced by a triplet 
consisting of the percent character ‘%’ followed by the two hexadecimal digits representing the 
character’s numeric value.  For example the colon character (‘:’, U+003A) would be represented as the 
string “%3A”.  In accordance with RFC3986, this further means that for any names that already contain 
the percent character, and for which percent-encoding is enabled, that percent character itself needs to 
be encoded as the triplet “%25” (since the percent character is encoded as 0x25).  Also in accordance 
with RFC3986 uppercase hexadecimal digits should be used for all percent-encodings, although 
lowercase digits ‘a’ through ‘f’ shall be treated as equivalent to their uppercase equivalents ‘A’ through ‘F’. 

 

Table 14 shows some examples of the encoding: 

 

 



 

LTFS Format Specification SNIA Technical Position 31 
Version 2.5 

Table 14 — Name percent-encoding  

Source name Encoded name Description 

Testfile1.txt Testfile1.txt No transformation necessary 

Testfile:1.txt Testfile%3A1.txt Colon must be encoded since it is reserved 

Testfile%3A.txt Testfile%253A.txt Percent must be encoded to avoid ambiguity 

Testfile:%1.txt Testfile%3A%251.txt Both colon and percent characters encoded 

com.my.co:some_xattr com.my.co%3Asome_xattr Extended attribute name must be encoded 

 

Names which have been processed using percent-encoding are indicated by the inclusion of the attribute 
tag percentencoded. If a name element includes this attribute tag, the value of the tag shall contain a 
value conforming to the boolean format definition provided in Section 7.1 Boolean format. 

When the percentencoded attribute tag is present and has the value true, the corresponding name has 
been processed to replace one or more characters with an encoded triplet as described above. When 
reading back from the volume, the inverse operation should be applied to transform the name back into 
its original form. In cases where the underlying operating system does not support the characters in their 
original form, an implementation may choose to use the transformed name or to report an error to the 
user. 

If the percentencoded attribute tag does not exist, or has the value false, then the name encoding 
transformation shall not be performed when writing to or reading from the volume. 

Note that if the name does not contain any encoded triplets then it is strongly recommended that the 
percentencoded attribute tag should be omitted rather than including it with the value false. 

 

See Sections 9.2.7, 9.2.9 and 9.2.10 for further details. Annex G contains informative tables showing how 
various characters are represented in an index. 
 

7.5 Name pattern format 
File name patterns in data placement policies shall be valid names as defined in Section 7.4 Name 
format. A file name pattern shall be compared to a file name using these rules: 
1. Comparison shall be performed using canonical caseless matching as defined by the Unicode 

Standard, except for the code points U+002A and U+003F. 
2. Matching of name patterns to file names shall be case insensitive. 
3. U+002A (asterisk ‘*’) shall match zero or more Unicode grapheme clusters. 
4. U+003F (question mark ‘ ?’) shall match exactly one grapheme cluster. 

For more information on grapheme clusters, see Unicode Standard Annex 29, Unicode Text 
Segmentation. 

7.6 String format 
A character string encoded using UTF-8 in NFC. The string shall only contain characters allowed in 
element values by the W3C Extensible Markup Language (XML) 1.0 specification. 

7.7 Time stamp format 
Time stamps in LTFS data structures shall be specified as a string conforming to the ISO 8601 date and 
time representation standard. The time stamp shall be specified in UTC (Zulu) time as indicated by the ‘Z’ 
character in this example:   



 

32 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

 

2013-02-01T18:35:47.866846222Z 

The time shall be specified with a fractional second value that defines 9 decimal places after the period in 
the format. 

The general time format is YYYY-MM-DDThh:mm:ss.nnnnnnnnnZ where values are as described in 
Table 15. 
 

Table 15 — Time stamp format 

Symbol Description 
YYYY the four-digit year as measured in the Common Era. 

MM an integer between 01 and 12 corresponding to the month. 
DD an integer between 01 and 31 corresponding to the day in the month. 
hh an integer between 00 and 23 corresponding to the hour in the day. 
mm an integer between 00 and 59 corresponding to the minute in the hour. 
ss an integer between 00 and 59 corresponding to the second in the minute. 

nnnnnnnnn an integer between 000000000 and 999999999 measuring the decimal 
fractional second value. 

 

NOTE: The characters ‘-’, ‘T’, ‘:’, ‘.’, and ‘Z’ in the time stamp format are field separators. The ‘Z’ character indicates that the time 
stamp is recorded in UTC (Zulu) time. 

All date and time fields in the time stamp format shall be padded to the full width of the symbol using 0 
characters. For example, an integer month value of ‘2’ shall be recorded as ‘02’ to fill the width of the MM 
symbol in the general time format. 

7.8 UUID format 
LTFS UUID values shall be recorded in a format compatible with OSF DCE 1.1, using 32 hexadecimal 
case-insensitive digits (0-9, a-f or A-F) formatted as shown. UUID values are expected to uniquely identify 
the LTFS Volume, as in this example: 

30a91a08-daae-48d1-ae75-69804e61d2ea 
 



 

LTFS Format Specification SNIA Technical Position 33 
Version 2.5 

8 Label Format 
This section describes the content of the Label Construct. The content of the Content Area is described in 
Section 5.2 LTFS Constructs and in Section 9 Index Format. 

8.1 Label Construct 
Each partition in an LTFS Volume shall contain a Label Construct that conforms to the structure shown in 
Figure 16. The construct shall consist of an ANSI VOL1 Label, followed by a single file mark, followed by 
one record in LTFS Label format, followed by a single file mark. There shall not be any additional data 
trailing the end of the ANSI VOL1 Label, nor any additional data trailing the end of the LTFS Label. The 
Label Construct shall be recorded starting at the first logical block in the partition. Both Label constructs in 
an LTFS Volume shall contain identical information with the exception of the “location” field in the XML 
data for the LTFS Label. 
 

8.1.1 VOL1 Label 

A VOL1 label recorded on an LTFS Volume shall always be recorded in a Label Construct as defined in 
Section 8.1 Label Construct. 

The first record in a Label Construct is an ANSI VOL1 record. This record conforms to the ANSI Standard 
X3.27. All bytes in the VOL1 record are stored as ASCII encoded characters. The record is exactly 80 
bytes in length and has the structure and content shown in Table 16. 

Table 16  — VOL1 Label Construct 

Offset Length Name Value Notes 
0 3 label identifier ‘VOL’  
3 1 label number ‘1’  
4 6 volume identifier <volume  serial 

number> 
Typically matches the physical 
cartridge label. 

10 1 volume accessibility ‘L’ Accessibility limited to 
conformance to LTFS standard. 

11 13 Reserved all spaces  
24 13 implementation 

identifier 
‘LTFS’ Value is left-aligned and padded 

with spaces to length. 

37 14 owner identifier right  pad  with spaces Any printable characters. Typically 
reflects some user specified 
content oriented identification. 

51 28 Reserved all spaces  
79 1 label standard version ‘4’  

NOTE 1:  Single quotation marks in the Value column above should not be recorded in the VOL1 label. 
NOTE 2:  All fields in the VOL1 label must contain the constant values shown in the table above. The only exceptions are the 
‘volume identifier’ and ‘owner identifier’ fields. These two fields should contain user-provided values in conformance to the Notes 
provided. 

Figure 16 — Label construct 



 

34 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

8.1.2 LTFS Label 

The LTFS Label is an XML data structure that describes information about the LTFS Volume and the 
LTFS Partition on which the LTFS Label is recorded. The LTFS Label shall conform to the LTFS Label 
XML schema provided in Annex A. The LTFS Label shall be encoded using UTF-8 NFC. 

An LTFS Label recorded on an LTFS Volume shall always be recorded in an Label Construct as defined 
in Section 8.1 Label Construct. 

A complete schema for the LTFS Label XML data structure is provided in Annex A. An example LTFS 
Label is shown here: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<ltfslabel version="2.5.0"> 

<creator>IBM LTFS 2.5.0 - Linux - mkltfs</creator> 
<formattime>2018-10-16T18:35:47.866846222Z</formattime> 
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid> 
<location> 

<partition>b</partition> 
</location> 
<partitions> 

<index>a</index> 
<data>b</data> 

</partitions> 
<blocksize>524288</blocksize> 
<compression>true</compression> 

</ltfslabel> 

Every LTFS Label shall be an XML data structure that conforms to the W3C Extensible Markup Language 
(XML) 1.0 standard. Every LTFS Label shall have a first line that contains an XML Declaration as defined 
in the XML standard. The XML Declaration shall define the XML version and the encoding used for the 
Label. 

The LTFS Label XML shall be recorded in a single logical data block and shall contain the following 
information: 

• ltfslabel: this element defines the contained structure as an LTFS Label structure. The element shall 
have a version attribute that defines the format version of the LTFS Label in use. This document 
describes LTFS Label version 2.5.0. 

NOTE: The LTFS Label version defines the minimum version of the LTFS Format specification with which the LTFS Volume 
conforms. Implicitly, the LTFS Label version defines the lowest permitted version number for all LTFS Indexes written to the 
volume. 

• creator: this element shall contain the necessary information to uniquely identify the writer of the 
LTFS volume. The value shall conform to the creator format definition shown in Section 7.2 Creator 
format. 

• formattime: this element shall contain the time when the LTFS Volume was formatted. The value 
shall conform to the format definition shown in Section 7.7 Time stamp format. 

• volumeuuid: this element shall contain a universally unique identifier (UUID) value that uniquely 
identifies the LTFS Volume to which the LTFS Label is written. The volumeuuid element shall 
conform to the format definition shown in Section 7.8 UUID format. 

• location: shall contain a single partition element. The partition element shall specify the Partition ID 
for the LTFS Partition on which the Label is recorded. The Partition ID shall be a lower case ASCII 
character between ‘a’ and ‘z’. 



 

LTFS Format Specification SNIA Technical Position 35 
Version 2.5 

• partitions: this element specifies the Partition IDs of the data and index partitions belonging to this 
LTFS volume. It shall contain exactly one index element for the Index Partition and exactly one data 
element for the Data Partition, formatted as shown. A partition shall exist in the LTFS Volume with a 
partition identifier that matches the identifier recorded in the index element. Similarly, a partition shall 
exist in the LTFS Volume with a partition identifier that matches the identifier recorded in the data 
element. 

• blocksize: this element specifies the block size to be used when writing Data Extents to the LTFS 
Volume. The blocksize value is an integer specifying the number of 8-bit bytes that shall be written 
as a record when writing any full block to a Data Extent. Partial blocks may only be written to a Data 
Extent in conformance with the definitions provided in Section 5.2.2 Data Extent and in Section 6 
Data Extents. The minimum blocksize that may be used in an LTFS Volume is 4096 8-bit bytes. 

NOTE: For general-purpose storage on data tape media the recommended blocksize is 524288 8-bit bytes. 

• compression: this element shall contain a value conforming to the boolean format definition provided 
in Section 7.1 Boolean format. When the compression element is set, compression shall be enabled 
when writing to the LTFS Volume. When the compression element is unset, compression shall be 
disabled when writing to the LTFS Volume. The compression element indicates use of media-level 
“on-the-fly” data compression. Use of data compression on a volume is transparent to readers of the 
volume. 

8.1.3 Managing LTFS Labels 

The LTFS Label captures volume-specific values that are constant over the lifetime of the LTFS Volume. 
As such, the values recorded in an LTFS Label can only be set or updated at volume format time. 

Implementations should handle additional unknown XML tags when they occur as children of the ltfslabel 
element. In general, such unknown tags may be ignored when mounting the LTFS Volume. This handling 
of unknown XML tags reduces the risk of compatibility changes when future versions of this specification 
are adopted. It is a strict violation of this specification to add any XML tags to the Label beyond those 
defined in this document. 



 

36 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

9 Index Format 
The Content Area contains zero or more Data Extents and some number of Index Constructs in any 
order. This section describes the content of the Index Construct. The Label Construct is described in 
Section 8 Label Format. Data Extents are described in Section 6 Data Extents. 

9.1 Index Construct 
Each Content Area in an LTFS Volume shall contain some number of Index Constructs that conform to 
the structure shown in Figure 17. The Index Construct shall contain a single file mark, followed by one or 
more records in Index format, followed by a single file mark. There shall not be any additional data trailing 
the end of the Index. 

The contents of the Index are defined in Section 9.2 Index. 
 

The Index Constructs in a Content Area may be interleaved with any number of Data Extents. A complete 
partition shall have an Index Construct as the last construct in the Content Area, therefore there shall be 
at least one Index Construct per complete partition. 

9.2 Index 
An Index is an XML data structure that describes data files, directory information and associated 
metadata for files recorded on the LTFS Volume. An Index recorded on an LTFS Volume shall always be 
recorded in an Index Construct as defined in Section 9.1 Index Construct. 

An LTFS Index is either a Full Index or an Incremental Index. A Full Index describes the state of the entire 
volume, i.e. all data files, directory information and associated metadata. An Incremental Index describes 
only changes to the volume which have occurred since the last index (Full or Incremental) was written to 
the volume. Full and Incremental Indexes share many of the same constructs, and the remainder of this 
section applies to both types unless stated otherwise. 

The following rules define when Full or Incremental Indexes may be written: 

• The index partition shall only contain Full Indexes, i.e. Incremental Indexes shall not be written to the 
index partition. 

• A Full Index shall always be written to the data partition as part of the unmount processing (i.e. a 
cleanly unmounted volume always has a Full Index at the end of the data partition) 

• An Incremental Index may be written to the data partition at any time, to store any changes to the 
volume contents since the last index (Full or Incremental) was written. 

• A Full Index may be written to the data partition at any time, and shall represent the complete state of 
the volume at the time it is written. 

NOTE: Prior to version 2.5.0 of this specification, all indexes were implicitly Full Indexes and were referred to simply as 
Indexes. The concept of an Incremental Index was introduced to reduce the space needed (and time taken) to write periodic 
indexes during normal operation. 

 

Every Index shall be an XML data structure that conforms to the W3C Extensible Markup Language 
(XML) 1.0 standard. Every Index shall have a first line that contains an XML Declaration as defined in the 

Figure 17 — Index Construct 



 

LTFS Format Specification SNIA Technical Position 37 
Version 2.5 

XML standard. The XML Declaration shall define the XML version and the encoding used for the Index. 

An LTFS Index shall conform to the Index XML schema provided in Annex B (normative) LTFS Index 
XML Schema. The Index shall be encoded using UTF-8 NFC. The remainder of this section describes the 
content of the Index using an example XML Index. 

An Index consists of a Preface section containing multiple XML elements followed by a single directory 
element. This directory element is referred to as the “root” directory element. The root directory 
element corresponds to the root of the file system recorded on the LTFS Volume. 

Each directory element shall contain a contents element, which may contain zero or more directory 
elements and zero or more file elements.  The only exception is a directory entry marked as deleted in 
an Incremental Index, where no contents element is allowed. 

9.2.1 Example Full Index omitting the body 

An example of a Full Index that omits the body of the directory element is shown in this section. The 
omitted section in this example is represented by the characters ‘...’. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<ltfsindex version="2.5.0"> 

<creator>IBM LTFS 2.5.0 - Linux - ltfs</creator> 
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid> 
<generationnumber>3</generationnumber> 
<comment>A sample LTFS Index</comment> 
<updatetime>2018-10-16T19:39:57.245954278Z</updatetime> 
<location> 

<partition>a</partition> 
<startblock>6</startblock> 

</location> 
<previousgenerationlocation> 

<partition>b</partition> 
<startblock>20</startblock> 

</previousgenerationlocation> 
<allowpolicyupdate>true</allowpolicyupdate> 
<dataplacementpolicy> 

<indexpartitioncriteria> 
   <size>1048576</size> 

    <name>*.txt</name> 
</indexpartitioncriteria> 

</dataplacementpolicy> 
<volumelockstate>unlocked</volumelockstate> 
<highestfileuid>4</highestfileuid> 
<directory> 
... 
</directory> 

</ltfsindex> 

9.2.2 Example Incremental Index omitting the body 

An example of an Incremental Index that omits the body of the directory element is shown in this section. 



 

38 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

The omitted section in this example is represented by the characters ‘...’. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<ltfsincrementalindex version="2.5.0"> 

<creator>IBM LTFS 2.5.0 - Linux - ltfs</creator> 
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid> 
<generationnumber>3</generationnumber> 
<comment>A sample LTFS Incremental Index</comment> 
<updatetime>2018-10-16T19:39:57.245954278Z</updatetime> 
<location> 

<partition>b</partition> 
<startblock>1632</startblock> 

</location> 
<previousgenerationlocation> 

<partition>b</partition> 
<startblock>20</startblock> 

</previousgenerationlocation> 
<previousincrementallocation> 

<partition>b</partition> 
<startblock>960</startblock> 

</previousincrementallocation> 
<volumelockstate>unlocked</volumelockstate> 
<highestfileuid>46</highestfileuid> 
<directory> 
... 
</directory> 

</ltfsincrementalindex> 

9.2.3 Required elements for every index 

Every Index shall contain the following elements, unless otherwise noted: 

• ltfsindex or ltfsincrementalindex: These elements define the contained structure as an Index 
structure. Every index shall contain either an ltfsindex element or an ltfsincrementalindex element. 
Both shall have a version attribute that defines the format version of the LTFS Index in use. This 
document describes LTFS Index version 2.5.0. 

NOTE: The LTFS Label version defines the minimum version of the LTFS Format specification with which the LTFS Volume 
conforms. Implicitly, the LTFS Label version defines the lowest permitted version number for all LTFS Indexes written to the 
volume. 

An Index update occurs when an LTFS Volume containing a current Index of version M.N.R is written 
with a new Index using a version number with a higher value for M. The version for any LTFS Index 
written to an LTFS Volume shall have an M value that is greater than or equal to the M value in the 
current Index. When the M value for the new LTFS Index equals the M value in the current Index, the 
new Index may be written in conformance to any value of N and R so long as N and R match the 
version of a published LTFS Format Specification. 

An Index downgrade occurs when an LTFS Volume containing a current Index of version 
M.N.R is written with a new Index using a version number with a lower value for M. Index 
downgrades are explicitly disallowed in an LTFS Volume. Further details on Index version 
numbering is shown in Section 2.1 Versions. 

• creator: This element shall contain the necessary information to uniquely identify the writer of the 
Index. The value shall conform to the creator format definition shown in Section 7.2 Creator format. 

• volumeuuid: This element shall contain a universally unique identifier (UUID) value that uniquely 
identifies the LTFS Volume to which the Index is written. The value of the volumeuuid element shall 
conform to the format definition shown in Section 7.8 UUID format. The volumeuuid value shall 
match the value of the volumeuuid element in the LTFS Labels written to the LTFS Volume. 



 

LTFS Format Specification SNIA Technical Position 39 
Version 2.5 

• generationnumber: This element shall contain a non-negative integer corresponding to the 
generation number for the Index. The first Index on an LTFS Volume shall be generation number “1”. 
The generationnumber shall conform to the definitions provided in Section 5.4.1 Generation 
Number. 

• updatetime: This element shall contain the date and time when the Index was modified. The value 
shall conform to the format definition shown in Section 7.7 Time stamp format. 

• location: This element shall contain a single partition element and a single startblock element. The 
partition element shall specify the Partition ID for the LTFS Partition on which the Index is recorded. 
The startblock element shall specify the first logical block number, within the partition, in which the 
Index is recorded. The location element is a self-pointer to the location of the Index in the LTFS 
Volume. 

• allowpolicyupdate: This element shall contain a value conforming to the boolean format definition 
provided in Section 7.1 Boolean format. When the allowpolicyupdate value is set, the writer may 
change the content of the dataplacementpolicy element. When the allowpolicyupdate value is 
unset, the writer shall not change the content of the dataplacementpolicy element. This element is 
not permitted in Incremental Indexes, i.e. shall only be included as a child of an ltfsindex element. 
Additional rules for the allowpolicyupdate element are provided in Section 9.2.14 Data Placement 
Policy. 

• highestfileuid: This element contains an integer value that is equal to the value of the largest 
assigned fileuid element in the Index. An implementation shall be able to rely on the highestfileuid 
element to determine the highest assigned fileuid value in the Index without traversing all file and 
directory elements. The valid range of values for the highestfileuid value is 1 through 264 − 1 with 
the additional special value of zero (0x0). 
The highestfileuid can be used to determine the highest integer value assigned to the fileuid 
element for all directories and files in the Index. While the highestfileuid value not equal to zero 
(0x0), an implementation may increment the highestfileuid value to create unique fileuid values for 
new directory and file entries. 

A highestfileuid element value of zero (0x0) indicates that the LTFS Volume has exhausted the 
contiguous range of valid values for fileuid elements in the Index. In this case, an implementation 
should use a mechanism such as traversing all file and directory elements to identify an unused and 
therefore unique fileuid value for any new file and directory elements. 

• directory: This element corresponds to the “root” directory element in the Index. The content of this 
element is described later in this section. 

9.2.4 Optional elements for every index 

Every Index may contain the following elements, unless otherwise noted: 

• comment: This element, if it exists, shall contain a valid UTF-8 encoded string value. The value of 
this element shall be used to store a user-provided description of this generation of the Index for the 
volume. The value of this element shall conform to the format definition provided in Section 7.6 String 
format. An Index may have at most one comment element. The writer of an Index may remove or 
replace the comment element when recording a new Index. The value of this element shall not 
exceed 64KiB in size. 

• previousgenerationlocation: This element, if it exists, defines the back pointer for the Full Index. 
The previousgenerationlocation element shall contain a single partition element and a single 
startblock element. The value of the partition element shall specify the Partition ID for the LTFS 
Partition on which the back pointed Full Index is recorded. The startblock element shall specify the 
first logical block number, within the partition, in which the back pointed Full Index is recorded. If the 
Index does not have a back pointer there shall be no previousgenerationlocation element in the 
Index. Every Index that does have a back pointer shall have a previousgenerationlocation. Note 
that as a consequence this element is required in an Incremental Index, which will always contain a 



 

40 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

back pointer.  All data values recorded in the previousgenerationlocation element shall conform to 
the definitions provided in Section 5.4 Index Layout. 

• previousincrementallocation: This element, if present, defines the back pointer to the most recent 
Incremental Index written after the most recent Full Index. The previousincrementallocation 
element shall contain a single partition element and a single startblock element. The value of the 
partition element shall specify the Partition ID for the LTFS Partition on which the back pointed 
Incremental Index is recorded, which must be the Data Partition since Incremental Indexes are not 
permitted in the Index Partition. The startblock element shall specify the first logical block number, 
within the Data Partition in which the back pointed Incremental Index is recorded. If no Incremental 
Index has been written since the most recent Full Index then there shall be no 
previousincrementallocation element in the Index. If an Incremental Index has been written since 
the most recent Full Index then this Index shall have a previousincrementallocation. All data values 
recorded in the previousincrementallocation element shall conform to the definitions provided in 
Section 5.4 Index Layout. See also Figure 7 which illustrates the relationship between 
previousgenerationlocation and previousincrementallocation. 

• dataplacementpolicy: This element, if it exists, shall contain a single indexpartitioncriteria 
element. The indexpartitioncriteria element shall contain a single size element and zero or more 
name elements. The value of the size element shall define the maximum size of files that may be 
stored on the Index Partition. Each name element shall specify a file name pattern. The file name 
pattern value shall conform to the name pattern format provided in Section 7.5 Name pattern format. 
A description of the rules associated with the dataplacementpolicy element is provided in Section 
9.2.14 Data Placement Policy.  This element may exist in a Full Index but shall not exist in an 
Incremental Index. 

• volumelockstate: This element, if it exists, indicates the state of volume advisory locking for the 
volume. The following values are defined: 

 
unlocked The volume may be modified 
locked The volume shall not be modified other than to change the 

volumelockstate 
permlocked The volume is permanently locked and shall not be 

modified in any way 
 
If a volume is in the unlocked state, it may be modified either to the locked state or to the 
permlocked state.   
 
If a volume is in the locked state, it may be modified either to the unlocked state or to the 
permlocked state.   
 
If a volume is in the permlocked state, it may be reformatted to enable re-use of the cartridge; 
however no other write / update operations are permitted. 
 
If this element does not exist then the volume is implicitly treated as unlocked. 
 
Refer to Section 9.2.19 for more information. 

 

9.2.5 Example Full Index that omits the Preface section 

An example Full Index that omits the Preface section of the Index is shown in this section. The omitted 
section in this example is represented by the characters ‘...’. This example shows the root directory 
element for the Index. 
<?xml version="1.0" encoding="UTF-8"?> 
<ltfsindex version="2.5.0"> 

... 



 

LTFS Format Specification SNIA Technical Position 41 
Version 2.5 

<directory> 
<fileuid>1</fileuid> 
<name>LTFS Volume Name</name> 
<creationtime>2018-10-17T19:39:50.715656751Z</creationtime> 
<changetime>2018-10-17T19:39:55.231540960Z</changetime> 
<modifytime>2018-10-17T19:39:55.231540960Z</modifytime> 
<accesstime>2018-10-17T19:39:50.715656751Z</accesstime> 
<backuptime>2018-10-17T19:39:50.715656751Z</backuptime> 
<contents> 

<directory> 
<fileuid>2</fileuid> 
<name>directory1</name> 
<creationtime>2018-10-17T19:39:50.740812831Z</creationtime> 
<changetime>2018-10-17T19:39:56.238128620Z</changetime> 
<modifytime>2018-10-17T19:39:54.228983707Z</modifytime> 
<accesstime>2018-10-17T19:39:50.740812831Z</accesstime> 
<backuptime>2018-10-17T19:39:50.740812831Z</backuptime> 
<readonly>false</readonly> 
<contents> 

<directory> 
<fileuid>3</fileuid> 
<name>subdir1</name> 
<readonly>false</readonly> 
<creationtime>2018-10-17T19:39:54.228983707Z</creationtime> 
<changetime>2018-10-17T19:39:54.228983707Z</changetime> 
<modifytime>2018-10-17T19:39:54.228983707Z</modifytime> 
<accesstime>2018-10-17T19:39:54.228983707Z</accesstime> 
<backuptime>2018-10-17T19:39:54.228983707Z</backuptime> 

</directory> 
</contents> 

</directory> 
<file> 

<fileuid>4</fileuid> 
<name>testfile.txt</name> 
<length>5</length> 
<creationtime>2018-10-17T19:39:51.744583047Z</creationtime> 
<changetime>2018-10-17T19:39:57.245291730Z</changetime> 
<modifytime>2018-10-17T19:39:57.245291730Z</modifytime> 
<accesstime>2018-10-17T19:39:57.240774456Z</accesstime> 
<backuptime>2018-10-17T20:21:45.424385077Z</backuptime> 
<readonly>true</readonly> 
<extendedattributes> 
</extendedattributes> 
<extentinfo> 

<extent> 
<partition>a</partition> 
<startblock>4</startblock> 
<byteoffset>0</byteoffset> 
<bytecount>5</bytecount> 
<fileoffset>0</fileoffset> 

</extent> 
</extentinfo> 

</file> 
</contents> 

</directory> 
</ltfsindex> 

9.2.6 Required directory elements for a Full Index 

An Index shall have exactly one directory element recorded as a child of the ltfsindex element in the 
Index. The directory element recorded as a child of the ltfsindex element in the Index shall represent 
the root of the filesystem on the LTFS Volume. 



 

42 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Every directory element (at any level) shall contain the following information: 

• fileuid: This element shall contain an integer value that is a unique identifier with respect to 
directories and files in the Index. The valid range of values for the fileuid value is 1 through 264 − 1.  

An example of how to calculate this unique value is provided in the description of highestfileuid 
above. The directory element corresponding to the root of the filesystem shall have a fileuid value of 
one (0x1). 

name: This element shall contain the name of the directory. A directory name shall conform to the 
format specified in Section 7.4 Name format.  The value of the name element for the root directory 
element in an Index shall be used to store the name of the LTFS Volume. 

• creationtime: This element shall contain the date and time when the directory was created in the LTFS 
Volume. The value shall conform to the format definition shown in Section 7.7 Time stamp format. 

• changetime: This element shall contain the date and time when the extended attributes or readonly 
element for the directory was last altered. The value shall conform to the format definition shown in 
Section 7.7 Time stamp format. 

• modifytime: This element shall contain the date and time when the content of the directory was most 
recently altered. The value shall conform to the format definition shown in Section 7.7 Time stamp 
format. 

• accesstime: This element may contain the date and time when the content of the directory was last 
read. Implementators of the LTFS Format may choose to avoid or otherwise minimize recording Index 
updates that only change the accesstime element. The value shall conform to the format definition 
shown in Section 7.7 Time stamp format. 

• backuptime: This element may contain the date and time when the content of the directory was last 
archived or backed up. If the directory has never been archived or backed up this element shall 
contain a value equal to the value of the createtime element. The value shall conform to the format 
definition shown in Section 7.7 Time stamp format. 

• readonly: This element shall contain a value conforming to the boolean format definition provided in 
Section 7.1 Boolean format. When the readonly element is set, the directory shall not be modified by 
any writer. When the readonly element is unset, the directory may be modified by any writer. The 
following operations are considered to be modifications to a directory: 
• adding a child file or directory 
• removing a child file or directory, and 
• any change to the extendedattributes element. 

• contents: This element shall contain zero or more directory elements and zero or more file 
elements. The elements contained in the contents element are children of the directory. 

9.2.7 Optional directory elements for a Full Index 

Every directory element may contain the following elements: 

• extendedattributes: This element, if it exists, may contain zero or more xattr elements. The xattr 
elements are described in Section 9.2.10 extendedattributes elements. A directory element may 
have zero or one extendedattributes elements. 

9.2.8 Required file elements for a Full Index 

Every file element shall contain the following information: 

• fileuid: This element shall contain an integer value that is a unique identifier with respect to 
directories and files in the Index. The valid range of values for the fileuid value is 2 through  
264 − 1. An example of how to calculate this unique value is provided in the description of 
highestfileuid above. 



 

LTFS Format Specification SNIA Technical Position 43 
Version 2.5 

NOTE: The value of the ‘fileuid’ element for the root directory is one (0x01) as defined in Section 9.2.5  

All ‘fileuid’ elements shall be unique in the index therefore no file may have a ‘fileuid’ less than 2. 

• name: This element shall contain the name of the file. A file name shall conform to the format 
specified in Section 7.4 Name format. 

• length: for file elements containing an extentinfo element or file elements describing a regular file 
with no extentinfo element (zero length or sparse files), the length element shall contain the integer 
length of the file. The length is measured in bytes. For file elements containing a symlink element, 
the length element shall contain the integer length of the symlink target path. 

• creationtime: This element shall contain the date and time when the file was created in the LTFS 
Volume. The value shall conform to the format definition shown in Section 7.7 Time stamp format. 

• changetime: This element shall contain the date and time when the extended attributes or readonly 
element for the file was last altered. The value shall conform to the format definition shown in Section 
7.7 Time stamp format. 

• modifytime: This element shall contain the date and time when the content of the file was most 
recently altered. The value shall conform to the format definition shown in Section 7.7 Time stamp 
format. 

• accesstime: This element may contain the date and time when the content of the file was last read. 
Implementers of the LTFS Format may choose to avoid or otherwise minimize recording Index 
updates that only change the accesstime element. The value shall conform to the format definition 
shown in Section 7.7 Time stamp format. 

• backuptime: This element may contain the date and time when the content of the file was last 
archived or backed up. If the file has never been archived or backed up, this element shall contain a 
value equal to the value of the createtime element. The value shall conform to the format definition 
shown in Section 7.7 Time stamp format. 

• readonly: This element shall contain a value conforming to the boolean format definition provided in 
Section 7.1 Boolean format. When the readonly element is set, the file shall not be modified by any 
writer. When the readonly element is unset, the file may be modified by any writer. The readonly 
element is ignored for file elements containing a symlink element. 

9.2.9 Optional file elements for a Full Index 

Every file element may contain the following elements: 

• extendedattributes: This element, if it exists, may contain zero or more xattr elements. The xattr 
elements are described in Section 9.2.10 extendedattributes elements. A file element may have zero 
or one extendedattributes elements. 

• extentinfo: This element, if it exists, may contain zero or more extent elements. A file element may 
have zero or one extentinfo elements, however a file element shall not have both an extentinfo 
element and a symlink element . 

Every extent element shall describe the location where a file extent is recorded in the LTFS Volume. 
Every extent element shall contain one partition element, one startblock element, one byteoffset 
element, one bytecount element, and one fileoffset element. The values recorded in elements 
contained by the extentinfo element shall conform to the definitions provided in Section 5.2.2 Data 
Extent and in Section 6 Data Extents. The partition element shall contain the Partition ID 
corresponding to the LTFS partition in which the Data Extent is recorded. The startblock element 
shall specify the first logical block number, within the partition, in which the Data Extent is recorded. 
The byteoffset element shall specify the offset into the start block within the Data Extent at which the 
valid data for the extent is recorded. The bytecount element shall specify the number of bytes that 
comprise the extent. The fileoffset element shall specify the offset into the file where the data stored 
in this Data Extent starts. 

The order of extent elements within an extentinfo element is not significant. Implementors are 



 

44 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

encouraged to record extentinfo in the same order that the extents occur in the file. The definition of 
how extent values are determined and used is provided in Section 6 Data Extents  and in Section 6.1 
Extent Lists. 

 
• openforwrite: This element, if it exists, shall contain a  value conforming to the boolean format 

definition provided in Section 7.1 Boolean format.  When the openforwrite element exists and has 
the value true, the corresponding file was open for writing at the time that the index was written and 
so may not be complete. This information may be made available to the user by an application 
attempting to roll back a volume, for example to inform the user’s choice of rollback points. 

If the openforwrite element exists and has the value false, or if it does not exist, then there is no 
indication of whether or not the file was open for writing. 

An application claiming conformance to version 2.4 or later of this specification shall include the 
openforwrite element with the value true for all files open for writing when the index was written. 

NOTE 1: It is recommended that this element should only be included for files that are known to be in the open state, i.e. not included 
if the value would be false. 

NOTE 2: In normal usage the index (in both partitions) written on a clean unmount will not have the openforwrite element set to true, 
as all files should be closed as part of the unmount processing. 

 

• symlink: This element, if it exists, shall contain either the fully qualified path from the root of the file 
system tree to the target file, or shall contain a relative path to the target file. Path strings shall be 
stored using the Unix-style forward slash as the path delimiter. The path shall conform to the format 
specified in Section 7.4 Name format. A file element may have zero or one symlink elements, 
however a file element shall not have both an extentinfo element and a symlink element. 

NOTE: It is possible that an older implementation of LTFS could create a tape that violates the mutual exclusivity requirement for 
extentinfo and symlink elements.  In this case, the LTFS volume will not conform to this specification; it is recommended that an 
LTFS implementation encountering such a volume perform a recovery action before mounting or using the volume. 

9.2.10 extendedattributes elements 

All directory and file elements in an Index may specify zero or more extended attributes. These extended 
attributes are recorded as xattr elements in the extendedattributes element for the directory or file. 

An example directory element is shown in the following paragraph, with three extended attributes 
recorded. The empty_xattr and document_name extended attributes in this example both record string 
values. The binary_xattr attribute is an example of storing a binary extended attribute value. This example 
omits parts of the Index outside of the directory. The omitted sections in this example are represented by 
the characters “...”. 

... 
<directory> 

<fileuid>2</fileuid> 
<name>directory1</name> 
<creationtime>2013-01-28T19:39:50.740812831Z</creationtime> 
<changetime>2013-01-28T19:39:56.238128620Z</changetime> 
<modifytime>2013-01-28T19:39:54.228983707Z</modifytime> 
<accesstime>2013-01-28T19:39:50.740812831Z</accesstime> 
<backuptime>2013-01-28T19:39:50.740812831Z</backuptime> 
<extendedattributes> 

<xattr> 
<key>binary_xattr</key> 
<value  type="base64">/42n2QaEWDSX+g==</value> 

</xattr> 
<xattr> 

<key>empty_xattr</key> 
<value/> 



 

LTFS Format Specification SNIA Technical Position 45 
Version 2.5 

</xattr> 
<xattr> 

<key>document_name</key> 
<value type="text">LTFS Format Specification</value> 

</xattr> 
</extendedattributes> 
<contents> 
</contents> 

</directory> 
... 

Each extendedattributes element may contain zero or more xattr elements. 

Each xattr element shall contain one key element and one value element. The key element shall contain 
the name of the extended attribute. The name of the extended attribute shall conform to the format 
specified in Section 7.4 Name format. Extended attribute names shall be unique within any single 
extendedattributes element. The value element shall contain the value of the extended attribute. The 
value element may have a type attribute that defines the type of the extended attribute value. If the type 
attribute is omitted then the type for the extended attribute value shall be “text”. The value of the extended 
attribute shall conform to the format specified in Section 7.3 Extended attribute value format. 

All extended attribute names that match the prefix “ltfs” with any capitalization are reserved for use by the 
LTFS Format. (That is, any name starting with a case-insensitive match for the letters “ltfs” are reserved.) 
Any writer of an LTFS Volume shall only use reserved extended attribute names to store extended 
attribute values in conformance with the reserved extended attribute definitions shown in Annex C. 

9.2.11 Required and Optional elements for Incremental Indexes 

Because Incremental Indexes record only changes to the volume contents, the preceding sections may 
not apply in their entirety; however the following rules do apply: 

• Newly created directories shall follow the rules described in 9.2.6 Required directory elements for a 
Full Index and 9.2.7 Optional directory elements for a Full Index. 

• Newly created files shall follow the rules described in 9.2.8 Required file elements for a Full Index and 
9.2.9 Optional file elements for a Full Index. 

• Modified directories or files shall follow the same rules as for newly created directories or files except 
for the list of required elements. The name and fileuid elements are required and shall be recorded; 
any elements which have changed since the last index shall also be recorded. Elements which have 
not changed since the last index are not required to be recorded, but may be included if desired to 
make the implementation more straightforward. Note that if the extentinfo or extendedattributes 
elements have changed for a file or directory, they shall be included in an Incremental Index in their 
entirety. 

• Deleted files shall be denoted using a special file element deleted. If this element is present in a file 
entry, then the name and deleted elements are the only elements that shall appear in the 
Incremental Index entry for that file.  Every file deleted since the last index shall be included in the 
Incremental Index and shall include the deleted element. The only exception to this rule is where a 
parent directory has also been deleted (and so includes the deleted element); in this case the file is 
implicitly assumed to have been deleted or moved. 

• Deleted directories shall also be denoted using the optional deleted element. If this element is 
present in a directory entry, then the name and deleted elements are the only elements that shall 
appear in the Incremental Index entry for that directory.  Every directory deleted since the last index 
shall be included in the Incremental Index and shall include the deleted element. The only exception 
to this rule is where a parent directory has also been deleted (and so includes the deleted element); 
in this case the child directory is implicitly assumed to have been deleted or moved. 

NOTE: Normal file system operation requires that any children of a directory must previously have been deleted or moved/renamed 
as a prerequisite for the deletion of the directory. 



 

46 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

• Files or directories that have been moved or renamed shall be reflected in an Incremental Index using 
the deleted element for the old name and the insertion of the file or directory with its new name. A 
directory inserted due to a move or rename must include all of the information about the directory 
itself, along with all children (at any level) that have been relocated with it.  In other words, the 
inserted directory must record all of the information about the entire directory subtree that was moved 
or renamed. 

• The deleted element shall not appear in a Full Index. 

• Refer to Annex H for more information on handling Incremental Indexes. 

9.2.12 Example Incremental Index that omits the Preface section 

An example Incremental Index that omits the Preface section of the index is shown in this section.  The 
omitted section in this example is represented by the characters ‘…’.  This example illustrates the case 
where a new file samplefile.txt has been created in the top level directory, and both an empty directory 
subdir1 and a file named testfile.txt have been deleted. The modifytime timestamps for the affected 
parent directories are updated. 
<?xml version="1.0" encoding="UTF-8"?> 
<ltfsincrementalindex version="2.5.0"> 

... 
<directory> 

<fileuid>1</fileuid> 
<name>LTFS Volume Name</name> 
<modifytime>2018-10-02T19:39:54.228983707Z</modifytime> 
<changetime>2018-10-02T19:39:54.228983707Z</changetime> 
<contents> 

<directory> 
<fileuid>2</fileuid> 
<name>directory1</name> 
<modifytime>2018-10-02T19:39:54.228984707Z</modifytime> 
<changetime>2018-10-02T19:39:54.228984707Z</changetime> 
<contents> 

<directory> 
<name>subdir1</name> 
<deleted/> 

</directory> 
</contents> 

</directory> 
<file> 

<name>testfile.txt</name> 
<deleted/> 

</file> 
<file> 

<fileuid>5</fileuid> 
<name>samplefile.txt</name> 
<length>256</length> 
<creationtime>2018-10-02T19:39:54.228983701Z</creationtime> 
<changetime>2018-10-02T19:39:54.228983701Z</changetime> 
<modifytime>2018-10-02T19:39:54.228983701Z</modifytime> 
<accesstime>2018-10-02T19:39:54.228983701Z</accesstime> 
<backuptime>2018-10-02T19:39:54.228983701Z</backuptime> 
<readonly>false</readonly> 
<extendedattributes> 
</extendedattributes> 
<extentinfo> 

<extent> 
<partition>b</partition> 
<startblock>18</startblock> 
<byteoffset>0</byteoffset> 
<bytecount>256</bytecount> 



 

LTFS Format Specification SNIA Technical Position 47 
Version 2.5 

<fileoffset>0</fileoffset> 
</extent> 

</extentinfo> 
</file> 

</contents> 
</directory> 

</ltfsincrementalindex> 

9.2.13 Managing LTFS Indexes 

A Full Index is a snapshot representation of the entire content of the LTFS Volume at a given point in 
time. An Incremental Index is a snapshot representation of changes to the volume since the previous 
index (Full or Incremental) was written. Incremental Indexes may be written as needed to save the current 
state of the volume, but shall always be followed by a Full Index generated during unmount processing or 
as needed. An implementation claiming compliance with v2.5.0 or later of this specification shall be able 
to recognize and process Incremental Indexes, but is not required to write them. An implementation 
processing a consistent volume for mount will not normally need to know whether Incremental Indexes 
have been written in previous mounts.  

NOTE: This should minimize backward compatibility issues, allowing an older implementation to mount a volume containing 
Incremental Indexes without understanding them. Checking and rolling back of a volume containing Incremental Indexes will be 
more complex; it is here that backwards compatibility will be an issue since an older implementation will not be able to walk the full 
back pointer chain. Because an older implementation will not recognize incremental indexes, it will ignore them and use the Full 
Index back pointer chain for rollback.  Rollback can be performed, but it will be possible to roll back only to a Full Index (not to any 
Incremental Indexes).  Using an older implementation to recover a volume that is in an inconsistent state and that contains 
Incremental Indexes may fail or lead to data loss if the most recent index on the volume is an Incremental Index; for more details, 
refer to Section H.2 Backwards Compatibility. 

An implementation should allow the user to specify the interval between Full Indexes, i.e. how many 
Incremental Indexes may be written before a Full Index is required. For example if this value were set to 
5, then after five Incremental Indexes had been written to tape, the next index written would be a Full 
Index. If the interval were set to 0 then no Incremental Indexes would be written and the behavior would 
be unchanged from versions of this specification prior to v2.5.0. An implementation may choose to write a 
Full Index at any time. 
NOTE: It is recommended that an implementation should set a limit on this interval, because of the increased complexity and time 
required to rebuild a full index from a sequence of incremental indexes. A maximum value in the range 5-10 may be suitable. 

 

Implementations should handle additional unknown XML tags when they occur as children of the 
ltfsindex, ltfsincrementalindex, directory, and file elements. These additional tags shall be preserved 
when a new generation of the Index is written to the LTFS Volume. This handling of unknown XML tags 
reduces the risk of compatibility changes when future versions of this specification are adopted. It is a 
strict violation of this specification to add any XML tags to the Index beyond those defined in this 
document. 

9.2.14 Data Placement Policy 

A Full Index may specify a Data Placement Policy. This policy defines when the Data Extents for a file 
may be placed on the Index Partition. A Data Placement Policy specifies the conditions under which it is 
allowed to place Data Extents on the Index Partition.  An Incremental Index shall not specify a Data 
Placement Policy. 

An example Full Index that shows the elements that define the Data Placement Policy for an LTFS 
Volume is shown in this section. This example omits part of the Preface section and the root directory 
element. The omitted sections in this example are represented by the characters ‘...’. 

 

 
<?xml version="1.0" encoding="UTF-8"?> 
<ltfsindex version="2.5.0"> 



 

48 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

... 
<allowpolicyupdate>true</allowpolicyupdate> 
<dataplacementpolicy> 

<indexpartitioncriteria> 
<size>1048576</size> 
<name>*.txt</name> 
<name>*.bin</name> 

</indexpartitioncriteria> 
</dataplacementpolicy> 
<directory> 
... 
</directory> 

</ltfsindex> 

The Data Placement Policy for an LTFS Volume shall be defined in a dataplacementpolicy element in a 
Full Index. A Full Index may contain zero or one dataplacementpolicy elements. 

Every dataplacementpolicy element shall contain exactly one indexpartitioncriteria element. This 
means that the dataplacementpolicy constructs <dataplacementpolicy/> and 
<dataplacementpolicy></dataplacementpolicy> are explicitly disallowed. 

Every indexpartitioncriteria element shall contain exactly one size element. The size element shall 
define the maximum file size for the Data Placement Policy. 

Every indexpartitioncriteria element may contain zero or more name elements. The value of each 
name element shall define a Filename Pattern for the Data Placement Policy. The Filename Pattern 
value shall conform to the format defined in Section 7.5 Name pattern format. 

9.2.15 Data Placement Policy Alteration 

An LTFS Volume shall have an associated Allow Policy Update value. The current Allow Policy Update 
value for an LTFS Volume shall be defined in the most recent Full Index as described in Section 9.2.14 
Data Placement Policy. 

This section describes the conditions under which the Data Placement Policy and Allow Policy Update 
values may be altered. 

9.2.16 Allow Policy Update is set 

If the current Allow Policy Update value is set, as defined in Section 9.2.14 Data Placement Policy, a 
writer may record a Full Index that indicates the Allow Policy Update value is set or unset. 

If the current Allow Policy Update value is set, as defined in Section 9.2.14 Data Placement Policy, a 
writer may record a Full Index with the same dataplacementpolicy values recorded in the previous 
generation of the Index. 

If the current Allow Policy Update value is set, as defined in Section 9.2.14 Data Placement Policy, a 
writer may record a Full Index with dataplacementpolicy values that differ from the 
dataplacementpolicy values recorded in the previous generation of the Index. 

If the current Allow Policy Update value is set, as defined in Section 9.2.14 Data Placement Policy, a 
writer may record a Full Index without any dataplacementpolicy element. 

9.2.17 Allow Policy Update is unset 

If the current Allow Policy Update value is unset, as defined in Section 9.2.14 Data Placement Policy, a 
writer shall only record a Full Index that indicates the Allow Policy Update is unset. 

If the current Allow Policy Update value is unset, as defined in Section 9.2.14 Data Placement Policy, a 
writer shall only record a Full Index without a dataplacementpolicy element when the previous 
generation of the Index does not contain a dataplacementpolicy element. 

If the current Allow Policy Update value is unset, as defined in Section 9.2.14 Data Placement Policy, a 
writer shall only record a Full Index with dataplacementpolicy values when those values exactly match 



 

LTFS Format Specification SNIA Technical Position 49 
Version 2.5 

the dataplacementpolicy values recorded in the previous generation of the Index. 

9.2.18 Data Placement Policy Application 

An LTFS Volume may have an associated Data Placement Policy. The current Data Placement Policy for 
an LTFS Volume shall be defined in the current Full Index as described in Section 9.2.14 Data Placement 
Policy. This section describes how the current Data Placement Policy and current Allow Policy Update 
value shall affect the valid placement options for Data Extents when adding files to an LTFS Volume. 

The Data Placement Policy defines criteria controlling the conditions under which Data Extents may be 
recorded to the Index Partition. The current Data Placement Policy only affects the placement of Data 
Extents for new files written to the LTFS Volume. The Data Placement Policy has no impact on Data 
Extents already written to the LTFS Volume. Similarly, the Data Placement Policy does not imply any 
constraint on Data Extents previously written to the LTFS Volume. 

The Data Placement Policy in use for an LTFS Volume does not require that Data Extents conforming to 
the policy be written to the Index Partition. A Data Placement Policy only defines the conditions under 
which it is valid to write Data Extents to the Index Partition. When the Data Placement Policy in use does 
not allow a Data Extent to be written to the Index Partition the Data Extent shall be written to the Data 
Partition. Any Data Extent may be written to the Data Partition regardless of the Data Placement Policy in 
use. 

Any LTFS Volume without a defined Data Placement Policy, as described in Section 9.2.14 Data 
Placement Policy, shall have a NULL Data Placement Policy. 

A NULL Data Placement Policy shall mean that no criteria exist to control the conditions under which 
Data Extents may be recorded to the Index Partition. When a NULL Data Placement Policy is in effect, 
any Data Extent may be written to the Index Partition. In general, it is recommended that implementations 
should avoid use of NULL Data Placement Policies. 

A Data Placement Policy other than the NULL policy shall define the criteria under which the Data Extents 
for a new file may be written to the Index Partition. 

A non-NULL Data Placement Policy shall define a maximum file size for the policy. The maximum file size 
may be “0” or any positive integer. 

A non-NULL Data Placement Policy may define zero or more Filename Pattern values for the policy. The 
Filename Pattern values shall be defined and interpreted as file name patterns conforming to the format 
defined in Section 7.5 Name pattern format. 

A non-NULL Data Placement Policy shall “match” the Data Extents being recorded to an LTFS Volume if 
and only if all of the following conditions are met: 

• the size of the file being recorded is smaller than the maximum file size for the Data Placement Policy 
in effect, and 

• the file name of the file being recorded matches any of the file name patterns defined in the Data 
Placement Policy. The rules for matching file name patterns to file names are provided in Section 7.5 
Name pattern format. 

NOTE: Files with a size of 0 bytes have no Data Extents recorded anywhere in the volume. Therefore, a Data Placement Policy with 
size value of “0” indicates that no file shall have Data Extents stored on the Index Partition. 

As described in Section 9.2 Index, every Full Index shall contain a boolean allowpolicyupdate element 
corresponding to the Allow Policy Update value for the Index. When Allow Policy Update is unset, a writer 
shall not modify an LTFS Volume unless the modification conforms with the Data Placement Policy 
defined for the Index. Any writer unable to comply with the current Data Placement Policy shall leave the 
LTFS Volume unchanged. 

Writers are encouraged to comply with the current Data Placement Policy at all times. However, when 
Allow Policy Update is set, a writer is permitted to violate the Data Placement Policy. Violating the policy 
in this case is equivalent to changing the Policy, modifying the Volume, then changing the Policy back to 
the original Policy. 



 

50 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

NOTE: It is always valid to write a non-empty Data Extent to the Data Partition. This results from the Data Placement Policy and 
Allow Policy Update values defining when it is permitted to write Data Extents to the Index Partition rather than these values defining 
when it is required that Data Extents be written to the Index Partition. 

9.2.19 Volume Advisory Locking 

Although most tape cartridges incorporate some form of physical write protect mechanism, it is also useful 
for a software application to be able to mark an LTFS volume as write-protected.  This is achieved 
through the Volume Advisory Locking mechanism, whereby the application modifies the index to indicate 
the locked state of the volume.  Refer to Section 9.2.4 for details of permitted operations on a locked 
volume. 

It is recommended that a volume which has been locked should be mounted as Read Only to prevent 
inadvertent modification, and to indicate to the user that the volume is in a locked state. 

An implementation which claims to support version 2.3.0 or later of this specification shall support this 
Volume Advisory Locking mechanism and shall honor the locked state of the volume.  It is important to 
note that if a locked volume is mounted by an application that complies with an earlier version of this 
format specification, the application will be unaware of the Volume Advisory Locking mechanism and so 
will permit changes.  Also any different application can also overwrite or modify the volume; the Volume 
Advisory Locking mechanism is not intended to guard against all possible modifications.  To guarantee 
that no further changes can be made to the volume, it is necessary to use the physical write protect 
mechanism of the cartridge. 

 



 

LTFS Format Specification SNIA Technical Position 51 
Version 2.5 

10 Medium Auxiliary Memory 
An LTFS Volume may use standard Medium Auxiliary Memory (MAM) to store auxiliary information with 
the volume to improve the efficiency of LTFS Index retrieval and to aid the identification and management 
of an LTFS Volume. Values stored in the MAM are stored on the volume in non-volatile storage as MAM 
attributes. Use of these attributes can enhance performance of an implementation but are not required for 
compliance to the LTFS Format Specification. That is, an LTFS Volume may still be correctly read and 
written if the MAM attributes become inaccessible or are not updated. 

For each partition, LTFS stores a standardized Volume Coherency Information (VCI) value in a MAM 
attribute. This attribute contains a standardized value known as the Volume Change Reference (VCR), 
together with the Index generation number for the current Index and the on-media location of the current 
Index. These values can be used to determine whether a partition is complete and to verify volume 
consistency without requiring that the Index be read from both partitions. This allows an implementation to 
avoid the cost of seeking to the end of both partitions when verifying the consistency of an LTFS Volume. 

For performance reasons, it is strongly recommended that LTFS implementers use the MAM attributes as 
described in Section 10.3 Use of Volume Coherency Information for LTFS if such usage is supported by 
the underlying storage technology. 

Standard MAM attributes can be used to identify the volume as containing LTFS format, and it is strongly 
recommended that LTFS implementers populate the attributes described in Section 10.4 Use of Host-type 
Attributes for LTFS. Note that some of the attributes are mandatory for implementations which claim 
compliance to revision 2.2.0 or later of the LTFS format specification and where MAM attributes are 
supported by the underlying storage technology. 

NOTE: For consistency with the referenced specifications, throughout Section 10 Medium Auxiliary Memory, the word Volume is 
used to refer to a data storage medium (e.g., a tape cartridge). The words LTFS Volume is used when referencing an ’LTFS 
Volume’ as defined in Section 4.1.20  

LTFS Volume and throughout this document. 

10.1 Volume Change Reference 
Volume Change Reference (VCR) is a non-repeating, unique value associated with a volume coherency 
point. This section contains a partial description of the VCR (for informational purposes). See the 
T10/SSC4 Standard for a complete description of the VCR. 

The VCR attribute indicates changes in the state of the medium related to logical objects or format 
specific symbols of the currently mounted volume. There is one value for the volume change reference. 
The VCR attribute for each partition shall use the same single VCR value. The VCR attribute value shall: 

• be written to non-volatile medium auxiliary memory before the change on medium is valid for reading, 
and 

• change in a non-repeating fashion (i.e., never repeat for the life of the volume). 

The VCR attribute value shall change when: 

• the first logical object for each mount is written on the medium in any partition; 

• the first logical object is written after GOOD status has been returned for a READ ATTRIBUTE 
command with the SERVICE ACTION field set to ATTRIBUTE VALUES (i.e., 0x00) and the FIRST 
ATTRIBUTE IDENTIFIER field set to VOLUME CHANGE REFERENCE (i.e., 0x0009); 

• any logical object on the medium (i.e., in any partition) is overwritten; or 

• the medium is formatted. 

The VCR attribute may change at other times when the contents on the medium change. The VCR 
attribute should not change if the logical objects on the medium do not change. 

A binary value of all zeros (e.g., 0x0000) in the VCR attribute indicates that the medium has not had any 



 

52 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

logical objects written to it (i.e., the volume is blank and has never been written to) or the value is 
unknown. A binary value of all ones (e.g., 0xFFFF) in the VCR attribute indicates that the VCR attribute 
has overflowed and is therefore unreliable. In this situation, the VCR value shall not be used. 

10.2 Volume Coherency Information 
The Volume Coherency Information (VCI) attribute contains information used to maintain coherency of 
information for a volume. The VCI has six fields as listed in Table 17. There shall be one VCI attribute for 
each LTFS Partition that is part of an LTFS Volume. The correspondence between LTFS nomenclature 
and T10/SSC-4 nomenclature is shown in Table 17. 

Table 17 shows a partial listing  of the Volume Coherency Information attribute (for informational 
purposes). See the T10/SSC-4 Standard for a complete description of the Volume Coherency Information 
attribute. 

Table 17 — Volume Coherency Information 

LTFS Name T10 SSC-4 Name 
VCR Length VOLUME CHANGE REFERENCE VALUE LENGTH 
VCR VOLUME CHANGE REFERENCE VALUE 
generation number VOLUME COHERENCY COUNT 
block number VOLUME COHERENCY SET IDENTIFIER 
Application Client Specific Information Length APPLICATION CLIENT SPECIFIC INFORMATION LENGTH 
Application Client Specific Information APPLICATION CLIENT SPECIFIC INFORMATION 

 

Notes for Table 17: 
 
1. VCR Length: this field contains the length of the VCR field. The VCR Length field is a one-byte field. 
2. VCR: this field contains the value returned in the VCR attribute after all information for which coherency is desired was written 

to the volume. The length of this field is specified by the value of the VCR Length field. 
3. generation number: this field contains the generation number of the LTFS Index that is pointed to by the block number field. 

The generation number field is an 8-byte field. The value stored in this field shall be a big-endian binary integer value. 
4. block number: this field contains the logical block number of the LTFS Index on this partition for which coherency is desired. 

Typically coherency is desired for the most recently written LTFS Index. This field and the partition ID of this partition comprise 
the position of the LTFS Index on the media. A value of zero is invalid. The block number field is an 8-byte field. 

5. Application Client Specific Information Length: this field contains the length of the Application Client Specific Information field. 
The Application Client Specific Information Length field is a two-byte field. 

6. Application Client Specific Information: this field contains information the application client associates with this coherency set. 
The length of this field is specified by the value of the Application Client Specific Information Length field. 

10.3 Use of Volume Coherency Information for LTFS 
Use of the Volume Coherency Information (VCI) attribute with the LTFS format is optional, but it is 
recommended to improve performance. If the VCI attribute is stored for an LTFS Partition, it shall be used 
as described in this section. 

The VCI attribute for each volume partition contains the Application Client Specific Information (ACSI) for 
the LTFS Partition stored on the volume partition. The ACSI for LTFS shall be formatted as shown in 
Table 18. All offsets and lengths are measured in bytes. 
 



 

LTFS Format Specification SNIA Technical Position 53 
Version 2.5 

Table 18 — ACSI format for LTFS 

Offset Length Value Notes 
0 4 ‘LTFS’  
4 1 0x00 string terminator (binary) 
5 36 <volume UUID> as defined in Section 7.8 UUID format 
41 1 0x00 string terminator (binary) 
42 1 0x01 version number (binary) 

NOTE: Single quotation marks in the ‘Value’ column shall not be recorded in the Application Client Specific 
Information. 

The first 43 bytes of the Application Client Specific Information will retain their current meaning in all 
future versions of the LTFS Format. A future version of the LTFS Format may define additional content to 
be appended to the Application Client Specific Information, in which case the version number field will be 
incremented. 
NOTE: The version number stored at offset 42 has been incremented from 0x0 in IBM LTFS Format Specification version 1.0 to 0x1 
for LTFS Format Specification version 2.0.0.  This increment allows identification of LTFS Volumes created with incorrect MAM 
values by an implementation of the IBM LTFS Format Specification version 1.0. 

An application may write the VCI attribute for an LTFS Partition at any time when the partition is 
complete. The attribute shall contain the VCR of the cartridge and the generation number of the last LTFS 
Index on the partition, with both values determined at the time the attribute is written. When writing the 
VCI attribute for any LTFS Partition, an application should write the VCI attribute for all complete 
partitions. Implementations of the LTFS Format Specification should update the VCI attribute for all 
complete partitions immediately after fully writing an Index Construct to any partition. The recommended 
order of operations is: 
1. Write an Index Construct to a partition. 
2. Ensure that all pending write requests are flushed to the medium. The procedure for doing this may 

depend on the underlying storage technology. 
3. Read the VCR attribute immediately (before issuing any additional write requests to the medium). 
4. If the VCR attribute value is valid (i.e., does not contain a binary value of all ones or all zeros), 

compute and write the VCI attributes containing the read VCR value for all complete partitions. 

A VCR instance in a VCI attribute is up-to-date if it equals the VCR value of the cartridge. Any LTFS 
Partition with a corresponding VCI attribute that contains an up-to-date VCR instance is complete. If all 
partitions in an LTFS Volume have VCI attributes containing up-to-date VCR instances, the attribute with 
the highest generation number determines the block position of the current Index for the LTFS Volume. 
This allows an implementation to determine the state of an LTFS Volume quickly by reading that single 
LTFS Index. 

If any partition in an LTFS Volume has a VCI attribute containing a VCR instance which is not up-to-date, 
that partition is not guaranteed to be complete. In this case, the consistency of the LTFS Volume cannot 
be determined from the values in the VCI attributes for each partition. For example, the following 
sequence of operations results in exactly one partition having a VCI attribute containing an up-to-date 
VCR instance but the LTFS Volume is not consistent: 
1. An implementation writes an Index Construct to partition ‘a’, then writes the VCI attribute for partition 

‘a’. 
2. The implementation appends a Data Extent to partition ‘a’. The VCI attribute for partition ‘a’ now 

contains an out-of-date VCR instance. 
3. The implementation Writes an Index Construct to partition ‘b’, then writes the VCI attribute for partition 

‘b’. 

In this case, the current Index for the LTFS Volume cannot be identified without reading Indexes from 
both partitions and comparing their generation numbers. 



 

54 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

10.4 Use of Host-type Attributes for LTFS 
The T10 technical committee of INCITS owns the specification for MAM attributes (published in the SCSI 
Primary Commands standard SPC-4), and these attributes include a category known as Host-type 
Attributes intended to provide host-settable information describing the volume.  For full details of these 
attributes refer to the T10/SPC-4 Standard. 

The relevant attributes are shown in Table 19. The “Support” column indicates whether implementations 
which claim compliance to revision 2.4.0 or later of the LTFS format specification should support (O – 
optional) or shall support (M- mandatory) the corresponding attribute. 

Table 19 — Relevant Host-type Attributes for LTFS 

Attribute Name Identifier Size Format Support 
APPLICATION VENDOR 0800h 8 bytes ASCII M 
APPLICATION NAME 0801h 32 bytes ASCII M 
APPLICATION VERSION 0802h 8 bytes ASCII M 
USER MEDIUM TEXT LABEL 0803h 160 bytes TEXT O 
TEXT LOCALIZATION IDENTIFIER 0805h 1 byte BINARY O 
BARCODE 0806h 32 bytes ASCII O 
MEDIA POOL 0808h 160 bytes TEXT O 
APPLICATION FORMAT VERSION 080Bh 16 bytes ASCII M 
MEDIUM GLOBALLY UNIQUE IDENTIFIER 0820h 36 bytes BINARY O 
MEDIA POOL GLOBALLY UNIQUE IDENTIFIER 0821h 36 bytes BINARY O 

 

When accessing these attributes, the PARTITION NUMBER field in the READ ATTRIBUTE and WRITE 
ATTRIBUTE SCSI commands shall be set to 0. 

IMPORTANT NOTE: The Mandatory attributes are required to be set by the application which formats the volume.  Some storage 
technology may have insufficient available capacity to store all the attributes in MAM, in which case writing the Mandatory attributes 
should take precedence over the Optional attributes.  However an implementation which attempts to mount the volume should not 
fail just because these attributes are not set or are unreadable. 

10.4.1 Application Vendor 

This attribute shall be set to indicate the manufacturer of the LTFS software which formatted the volume.  
It shall be consistent with the Company name (if any) used in the Creator format in LTFS label and index 
constructs (see Section 7.2 Creator format).  The attribute shall be left-aligned, and shall be padded with 
ASCII space (20h) characters if the company name is less than 8 characters in length.  If the company 
name exceeds 8 ASCII characters then the 8 left-most characters of the name shall be used. 

10.4.2 Application Name 

This attribute shall be set to the ASCII string “LTFS”, left-aligned and followed by at least one ASCII 
space (20h) character.  This may be followed by a vendor-specific ASCII string further identifying the 
application, also left-aligned and padded with ASCII space characters.  If no further identification is 
desired then ASCII space characters shall be added to pad to the width of the field.  Both of the following 
are valid uses of this attribute: 

 “LTFS                            ” 
 “LTFS Standalone XYZ             ” 

10.4.3 Application Version 

This attribute shall be set to indicate the  application version used to format the volume and shall be 
consistent with the Version identifier (if any) used in the Creator format in LTFS label and index 
constructs (see Section 7.2 Creator format).  The attribute shall be left-aligned and padded with ASCII 



 

LTFS Format Specification SNIA Technical Position 55 
Version 2.5 

space (20h) characters.  The LTFS format specification does not define any particular style or content for 
the value of this attribute. 

10.4.4 Text Localization Identifier 

This defines the character set used for the User Medium Text Label attribute (Section 10.4.5 User 
Medium Text Label), in accordance with the table in the T10/SPC-4 draft standard (SPC-4 r36e Table 
448).  If this attribute is not set then the default assumed value shall be ASCII (value 00h). 

NOTE: It is strongly recommended that the attribute should be set to indicate UTF-8 encoding (value 81h) for compatibility with the 
encoding used in the rest of the LTFS format. 

10.4.5 User Medium Text Label 

This attribute may be used to record the volume name.  If set, it shall be left-aligned and null-terminated, 
and its value should be consistent with the value of the name element for the root directory element in an 
index construct (see Section 9.2 Index).  If the number of bytes required to store the root directory name 
exceeds the available attribute storage size of 160 bytes, then the name stored in the attribute shall be 
truncated at the most appropriate character boundary.  If this attribute is set, and the name is updated by 
writing to the VEA ltfs.volumeName, then this attribute shall be updated to maintain consistency. 

10.4.6 Barcode 

It is recommended that this attribute should be set to match the physical cartridge label (if any).  If set, it 
shall be left-aligned and padded with ASCII space (20h) characters. 

NOTE: This attribute is related to the volume identifier in the VOL1 label (see Section 8.1.1) but without the restriction of six 
characters; the attribute can hold up to 32 characters. 

10.4.7 Media Pool 

This attribute may be set to a media pool name and/or additional information as specified in Annex F.4. 

10.4.8 Application Format Version 

This attribute shall be set to indicate the version of the LTFS format specification with which this volume 
was formatted. It shall be consistent with the version attribute of the ltfslabel element as found in the 
LTFS label construct (see Section 8.1.2 LTFS Label).  It shall be left-aligned and padded with ASCII 
space (20h) characters. 

NOTE: In the special case where a volume is migrated to a newer version of the format, this attribute should be updated to continue 
to provide an accurate view of the volume.  In this case, the attribute may no longer be consistent with the version attribute of the 
ltfslabel element. 

10.4.9 Medium Globally Unique Identifier 

This attribute may be used to store the volume UUID, generated when a volume is formatted. It provides 
access to the UUID of the volume without requiring it to be mounted. 

If implemented, the value shall be stored according to the format defined in Section 7.8 UUID format and 
shall be stored without null termination.  The value shall be consistent with the volumeuuid value stored 
in the LTFS volume label (Section 8.1.2 LTFS Label) and in the LTFS index (Section 9.2.3 Required 
elements for every index). 

10.4.10 Media Pool Globally Unique Identifier 

This attribute may be set to a media pool UUID as specified in Annex F.4. 

10.4.11 Example attributes 

An implementation that populates all of the attributes described in Section 10.4 Use of Host-type 



 

56 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Attributes for LTFS would follow the pattern shown in Table 20: 

Table 20 — Example of Host-type Attributes  

Name 1 2 3 4 5 6 7 8 ... ... 
Application Vendor “H” “P” 20h 20h 20h 20h 20h 20h   
Application Name “L” “T” “F” “S” 20h 20h 20h 20h ... 20h 
Application Version “1” “.” “2” “.” “3” 20h 20h 20h   
User Medium Text Label “M” “y” “T” “a” “p” “e” “V” “o” “l” 00h 
Text Localization Identifier 81h          
Barcode “A” “B” “1” “2” “3” “4” “L” “5” … 20h 
Media Pool “A” “n” “i” “m” “a” “t” “i” “o” “n” 00h 
Application Format Version “2” “.” “2” “.” “0” 20h 20h 20h … 20h 
Medium Globally Unique Identifier “3” “0” “a” “9” “1” “a” “0” “8” “-“ … 
Media Pool Globally Unique Identifier “8” “c” “5” “5” “c” “1” “4” “1” “-” “...” 

10.5 Volume Advisory Locking 
The Volume Advisory Locking state of the volume is stored in MAM attribute 1623h, as shown in Table 21 
below. This attribute falls within the “Vendor-specific Host-type” range of attributes; the identifier has been 
chosen to minimize the likelihood of collision with a different application. 
 

Table 21 — Volume Locked MAM Attribute 
 

Attribute Name Identifier Size Format Support 
VOLUME LOCKED 1623h 1 byte BINARY M 

 
 
The MAM attribute shall be set to one of the values shown in Table 22. 
 

Table 22 — Volume Locked MAM Attribute Values 
 

Value Meaning 
0x00 Volume is unlocked (default state) 
0x01 Volume is locked at user request 
0x02 Volume is locked due to a permanent write error, location is not specified 
0x03 Volume is permanently locked at user request 
0x04 Volume is locked due to a permanent write error in the data partition 
0x05 Volume is locked due to a permanent write error in the index partition 
0x06 Volume is locked due to permanent write errors in both partitions 

 
 
The value 0x02 is retained for backwards compatibility with version 2.3 of the specification but is 
deprecated for implementations claiming support for version 2.4 or later. 
 
When a volume is formatted, the attribute shall be set to the unlocked state.  If a volume does not report 
this MAM attribute or does not support MAM at all, the locked state can only be determined by reading 
the index. The volumelockstate element which may be stored in the volume index (see Section 9.2.4) 
shall be treated as definitive except in the case where the MAM attribute indicates that the volume 
encountered a permanent write error (in which case the index cannot be trusted). 
 
If a volume has been locked due to a permanent write error, an implementation may choose whether to 
require recovery before mounting or to allow mounting while still in the locked error state. A volume in this 
state shall be mounted as read-only using the highest generation index available on the tape in either 



 

LTFS Format Specification SNIA Technical Position 57 
Version 2.5 

partition. If the volume is later recovered using some other means, the MAM attribute should be reset to 
the unlocked state. 
 
The attribute shall be stored for the index partition (i.e. the PARTITION field in the SCSI WRITE 
ATTRIBUTE command shall correspond to the index partition of the volume). 

 



 

58 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Annex A  (normative) LTFS Label XML Schema 

This annex shows the LTFS Label XML Schema. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema  xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:element name="ltfslabel"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="creator" type="xs:string"/> 
    <xs:element name="formattime" type="datetime"/> 
    <xs:element name="volumeuuid" type="uuid"/> 
    <xs:element name="location"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="partition" type="partitionid"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
    <xs:element name="partitions"> 
     <xs:complexType> 
      <xs:all> 
       <xs:element name="index" type="partitionid"/> 
       <xs:element name="data" type="partitionid"/> 
      </xs:all> 
     </xs:complexType> 
    </xs:element> 
    <xs:element  name="blocksize"  type="blocksize"/> 
    <xs:element name="compression" type="xs:boolean"/> 
   </xs:all> 
   <xs:attribute name="version" use="required" type="version"/> 
  </xs:complexType> 
 </xs:element> 
 
 <xs:simpleType name="blocksize"> 
  <xs:restriction base="xs:integer"> 
   <xs:minInclusive value="4096"/> 
  </xs:restriction> 
 </xs:simpleType> 
 
 <xs:simpleType name="version"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+"/> 
   <xs:enumeration value="2.5.0"/> 
  </xs:restriction> 
 </xs:simpleType> 
 
 <xs:simpleType  name="datetime"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern 
    value="[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{9}Z"/> 
  </xs:restriction> 
 </xs:simpleType> 
 

 <xs:simpleType name="partitionid"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[a-z]"/> 
  </xs:restriction> 
 </xs:simpleType> 

http://www.w3.org/2001/XMLSchema


 

LTFS Format Specification SNIA Technical Position 59 
Version 2.5 

 
 <xs:simpleType name="uuid"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern 
    value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-
9]{12}"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 



 

60 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Annex B (normative) LTFS Index XML Schemas 

This annex contains the XML schemas for Full and Incremental LTFS Indexes. 
 

B.1 LTFS Full Index XML Schema 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:element name="ltfsindex"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="creator" type="xs:string" /> 
    <xs:element name="comment" type="xs:string" minOccurs="0" /> 
    <xs:element name="volumeuuid" type="uuid" /> 
    <xs:element name="generationnumber" type="xs:nonNegativeInteger" /> 
    <xs:element name="updatetime" type="datetime" /> 
    <xs:element name="location" type="tapeposition" /> 
    <xs:element name="previousgenerationlocation" type="tapeposition" minOccurs="0" /> 
    <xs:element name="previousincrementallocation" type="tapeposition" minOccurs="0" /> 
    <xs:element name="allowpolicyupdate" type="xs:boolean" /> 
    <xs:element name="dataplacementpolicy" type="policy" minOccurs="0" /> 
    <xs:element name="volumelockstate" type="locktype" minOccurs="0" /> 
    <xs:element name="highestfileuid" type="xs:nonNegativeInteger" /> 
    <xs:element ref="directory" /> 
   </xs:all> 
   <xs:attribute name="version" use="required" type="version" /> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="directory"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="fileuid" type="xs:nonNegativeInteger" /> 
    <xs:element name="name" type="nametype" /> 
    <xs:element name="creationtime" type="datetime" /> 
    <xs:element name="changetime" type="datetime" /> 
    <xs:element name="modifytime" type="datetime" /> 
    <xs:element name="accesstime" type="datetime" /> 
    <xs:element name="backuptime" type="datetime" /> 
    <xs:element name="readonly" type="xs:boolean" /> 
    <xs:element ref="extendedattributes" minOccurs="0" /> 
    <xs:element name="contents"> 
     <xs:complexType> 
      <xs:choice minOccurs="0" maxOccurs="unbounded"> 
       <xs:element ref="directory" /> 
       <xs:element ref="file" /> 
      </xs:choice> 
     </xs:complexType> 
    </xs:element> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="file"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="fileuid" type="xs:nonNegativeInteger" /> 
    <xs:element name="name" type="nametype" /> 
    <xs:element name="length" type="xs:nonNegativeInteger" /> 
    <xs:element name="creationtime" type="datetime" /> 
    <xs:element name="changetime" type="datetime" /> 
    <xs:element name="modifytime" type="datetime" /> 
    <xs:element name="accesstime" type="datetime" /> 
    <xs:element name="backuptime" type="datetime" /> 
    <xs:element name="readonly" type="xs:boolean" /> 
    <xs:element ref="extendedattributes" minOccurs="0" /> 



 

LTFS Format Specification SNIA Technical Position 61 
Version 2.5 

    <xs:element name="openforwrite" type="xs:boolean" minOccurs="0" /> 
    <xs:element ref="extenttype" minOccurs="0" /> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="extendedattributes"> 
  <xs:complexType> 
   <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
    <xs:element name="xattr"> 
     <xs:complexType> 
      <xs:all> 
       <xs:element name="key" type="nametype" /> 
       <xs:element name="value"> 
        <xs:complexType mixed="true"> 
         <xs:attribute name="type" default="text"> 
          <xs:simpleType> 
           <xs:restriction base="xs:token"> 
            <xs:enumeration value="base64" /> 
            <xs:enumeration value="text" /> 
           </xs:restriction> 
          </xs:simpleType> 
         </xs:attribute> 
        </xs:complexType> 
       </xs:element> 
      </xs:all> 
     </xs:complexType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="extenttype" abstract="true" /> 
 <xs:element name="extentinfo" substitutionGroup="extenttype"> 
  <xs:complexType> 
   <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
    <xs:element name="extent"> 
     <xs:complexType> 
      <xs:all> 
       <xs:element name="partition" type="partitionid" /> 
       <xs:element name="startblock" type="xs:nonNegativeInteger" /> 
       <xs:element name="byteoffset" type="xs:nonNegativeInteger" /> 
       <xs:element name="bytecount" type="xs:positiveInteger" /> 
       <xs:element name="fileoffset" type="xs:nonNegativeInteger" /> 
      </xs:all> 
     </xs:complexType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="symlink" type="nametype" substitutionGroup="extenttype" /> 
 <xs:complexType name="policy"> 
  <xs:sequence> 
   <xs:element name="indexpartitioncriteria"> 
    <xs:complexType> 
     <xs:sequence> 
      <xs:element name="size" type="xs:nonNegativeInteger" /> 
      <xs:element name="name" type="nametype" minOccurs="0" maxOccurs="unbounded" /> 
     </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="tapeposition"> 
  <xs:all> 
   <xs:element name="partition" type="partitionid" /> 
   <xs:element name="startblock" type="xs:nonNegativeInteger" /> 
  </xs:all> 
 </xs:complexType> 



 

62 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

 <xs:complexType name="nametype"> 
  <xs:simpleContent> 
   <xs:extension base="xs:string"> 
    <xs:attribute name="percentencoded" type="xs:boolean" default="false" /> 
   </xs:extension> 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:simpleType name="version"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+" /> 
   <xs:enumeration value="2.5.0" /> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="datetime"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern 
    value="[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{9}Z" /> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="partitionid"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[a-z]" /> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="locktype"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="unlocked" /> 
   <xs:enumeration value="locked" /> 
   <xs:enumeration value="permlocked" /> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="uuid"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern 
    value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 
 

B.2 LTFS Incremental Index XML Schema 

The XML Schema Definition (XSD) language has a limited ability to define and validate complex 
constraint relationships such as those shown below. As a result, the schema definition in this section will 
perform basic validation of an Incremental Index, but is not capable of detecting certain invalid constructs 
within the file and directory elements. Thus an Incremental Index may pass validation by the schema 
below, but still be invalid according to the definitions in this specification (which always take precedence). 

The specific constraints that cannot be expressed in the XSD (but must be adhered to according to the 
specification) are: 

1. A directory element in an Increment Index must contain: 
• a name element, AND 

• exactly ONE of the following: 
o a deleted element 
o a contents element 
o a fileuid element AND a contents element PLUS any other valid directory elements 

(except deleted) 

2. A file element in an Increment Index must contain: 
• a name element, AND 

• exactly ONE of the following: 
o a deleted element 
o a fileuid element PLUS any other valid file elements (except deleted) 



 

LTFS Format Specification SNIA Technical Position 63 
Version 2.5 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:element name="ltfsincrementalindex"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="creator" type="xs:string"/> 
    <xs:element name="comment" type="xs:string" minOccurs="0"/> 
    <xs:element name="volumeuuid" type="uuid"/> 
    <xs:element name="generationnumber" type="xs:nonNegativeInteger"/> 
    <xs:element name="updatetime" type="datetime"/> 
    <xs:element name="location" type="tapeposition"/> 
    <xs:element name="previousgenerationlocation" type="tapeposition"/> 
    <xs:element name="previousincrementallocation" type="tapeposition" minOccurs="0"/> 
    <xs:element name="volumelockstate" type="locktype" minOccurs="0"/> 
    <xs:element name="highestfileuid" type="xs:nonNegativeInteger"/> 
    <xs:element ref="directory"/> 
   </xs:all> 
   <xs:attribute name="version" use="required" type="version"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="directory"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="name" type="nametype"/> 
    <xs:element name="fileuid" type="xs:nonNegativeInteger" minOccurs="0" /> 
    <xs:element name="creationtime" type="datetime" minOccurs="0"/> 
    <xs:element name="changetime" type="datetime" minOccurs="0"/> 
    <xs:element name="modifytime" type="datetime" minOccurs="0"/> 
    <xs:element name="accesstime" type="datetime" minOccurs="0"/> 
    <xs:element name="backuptime" type="datetime" minOccurs="0"/> 
    <xs:element name="readonly" type="xs:boolean" minOccurs="0"/> 
    <xs:element name="deleted" type="xs:string" fixed="" minOccurs="0"/> 
    <xs:element ref="extendedattributes" minOccurs="0"/> 
    <xs:element ref="contents" minOccurs="0" /> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="contents"> 
  <xs:complexType> 
   <xs:choice minOccurs="0" maxOccurs="unbounded"> 
    <xs:element ref="directory"/> 
    <xs:element ref="file"/> 
   </xs:choice> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="file"> 
  <xs:complexType> 
   <xs:all> 
    <xs:element name="name" type="nametype"/> 
    <xs:element name="fileuid" type="xs:nonNegativeInteger" minOccurs="0" /> 
    <xs:element name="length" type="xs:nonNegativeInteger" minOccurs="0"/> 
    <xs:element name="creationtime" type="datetime" minOccurs="0"/> 
    <xs:element name="changetime" type="datetime" minOccurs="0"/> 
    <xs:element name="modifytime" type="datetime" minOccurs="0"/> 
    <xs:element name="accesstime" type="datetime" minOccurs="0"/> 
    <xs:element name="backuptime" type="datetime" minOccurs="0"/> 
    <xs:element name="readonly" type="xs:boolean" minOccurs="0"/> 
    <xs:element name="deleted" type="xs:string" fixed="" minOccurs="0"/> 
    <xs:element ref="extendedattributes" minOccurs="0"/> 
    <xs:element name="openforwrite" type="xs:boolean" minOccurs="0"/> 
    <xs:element ref="extenttype" minOccurs="0"/> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="extendedattributes"> 
  <xs:complexType> 
   <xs:sequence minOccurs="0" maxOccurs="unbounded"> 



 

64 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

    <xs:element name="xattr"> 
     <xs:complexType mixed="true"> 
      <xs:all> 
       <xs:element name="key" type="nametype"/> 
       <xs:element name="value"> 
        <xs:complexType> 
         <xs:attribute name="type" default="text"> 
          <xs:simpleType> 
           <xs:restriction base="xs:token"> 
            <xs:enumeration value="base64"/> 
            <xs:enumeration value="text"/> 
           </xs:restriction> 
          </xs:simpleType> 
         </xs:attribute> 
        </xs:complexType> 
       </xs:element> 
      </xs:all> 
     </xs:complexType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="extenttype" abstract="true"/> 
 <xs:element name="extentinfo" substitutionGroup="extenttype"> 
  <xs:complexType> 
   <xs:sequence minOccurs="0" maxOccurs="unbounded"> 
    <xs:element name="extent"> 
     <xs:complexType> 
      <xs:all> 
       <xs:element name="partition" type="partitionid"/> 
       <xs:element name="startblock" type="xs:nonNegativeInteger"/> 
       <xs:element name="byteoffset" type="xs:nonNegativeInteger"/> 
       <xs:element name="bytecount" type="xs:positiveInteger"/> 
       <xs:element name="fileoffset" type="xs:nonNegativeInteger"/> 
      </xs:all> 
     </xs:complexType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="symlink" type="nametype" substitutionGroup="extenttype"/> 
 <xs:complexType name="tapeposition"> 
  <xs:all> 
   <xs:element name="partition" type="partitionid"/> 
   <xs:element name="startblock" type="xs:nonNegativeInteger"/> 
  </xs:all> 
 </xs:complexType> 
 <xs:complexType name="nametype"> 
  <xs:simpleContent> 
   <xs:extension base="xs:string"> 
    <xs:attribute name="percentencoded" type="xs:boolean" default="false"/> 
   </xs:extension> 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:simpleType name="version"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+"/> 
   <xs:enumeration value="2.5.0"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="datetime"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{9}Z"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="partitionid"> 
  <xs:restriction base="xs:string"> 



 

LTFS Format Specification SNIA Technical Position 65 
Version 2.5 

   <xs:pattern value="[a-z]"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="locktype"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="unlocked"/> 
   <xs:enumeration value="locked"/> 
   <xs:enumeration value="permlocked"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="uuid"> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-
9]{12}"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 



 

66 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Annex C (normative) Reserved Extended Attribute definitions 

In an LTFS Index, all extended attribute names that start with the prefix “ltfs” with any capitalization are 
reserved for use by the LTFS Format; i.e., any names starting with a case-insensitive match for the letters 
“ltfs” are reserved. 

Any writer of an LTFS Volume shall only use reserved extended attribute names to store extended 
attribute values in conformance with the lists in Table C. 1 through Table C. 5. However, two extended 
attribute namespaces are reserved for implementation-specific information. 

The extended attribute namespace “ltfs.permissions.<type>” shall be used only for storing permissions as 
described in Annex F.2 File Permissions in LTFS. 

The extended attribute namespace “ltfs.mediaPool.<attribute>” shall be used only for storing media pool 
information as described in Annex F.4 LTFS Media Pools. 

The extended attribute namespace “ltfs.vendor.X.Y” shall be used for implementation-specific attributes, 
where X identifies a company, organization or technology standard and Y is an attribute name. 

NOTE: The Storage Networking Industry Association (SNIA) maintains a list of registered vendor names at http://www.snia.org/ltfs. 

This section describes the meaning of defined, reserved extended attributes. 

Support for each of these defined, reserved extended attributes is optional for implementations in 
compliance with this specification. 

C.1 Software Metadata 

 Table C. 1 describes the extended attribute values for software metadata. 
 

Table C. 1 — Reserved extended attribute definitions: Software metadata 

Extended Attribute Value description 

ltfs.softwareProduct Product name of this software 

ltfs.softwareVendor Software vendor of this software 

ltfs.softwareVersion LTFS version number 

ltfs.softwareFormatSpec LTFS Format spec version supported by this software 

 

C.2 Drive Metadata 

Table C. 2 describes the extended attribute values for drive metadata. 

Table C. 2 — Reserved extended attribute definitions: Drive metadata 

Extended Attribute Value description 
ltfs.driveEncryptionState Current encryption status of the drive ("true", "false", or 

"unknown"). 
ltfs.driveEncryptionMethod Current encryption method of the drive. 
ltfs.driveCaptureDump Writing any value to this extended attribute shall trigger a 

drive dump on any implementation that supports this 
extended attribute. 

 

http://www.snia.org/ltfs


 

LTFS Format Specification SNIA Technical Position 67 
Version 2.5 

C.3 Object Metadata 

Table C. 3 describes the extended attribute values for object metadata. 

Table C. 3 — Reserved extended attribute definitions: Object metadata 

Extended Attribute Value description 

ltfs.accessTime Date and time of last access to object. 

ltfs.backupTime Date and time of last archive or backup of object. 
ltfs.changeTime Date and time of last status change to object. 
ltfs.createTime Date and time of object creation. 
ltfs.fileUID Integer identifier for objects in the filesystem. Guaranteed to be 

unique within the LTFS Volume. 
ltfs.modifyTime Date and time of last object modification. 
ltfs.partition Partition on which the first extent of the file is stored. 
ltfs.startblock Block address where the first extent of the file is stored. 
ltfs.spannedFileOffset The logical file offset of the first byte of the segment relative to the 

full file. See Annex F.1 for full description. 
 

C.4 Volume Metadata 

Table C. 4 describes the extended attribute values for volume metadata. 

Table C. 4 — Reserved extended attribute definitions: Volume metadata 

Extended Attribute Value description 
ltfs.commitMessage On any implementation that supports this extended attribute, writing text to this 

extended attribute shall trigger a filesystem sync, using the provided text as the 
comment tag for the index written to the medium. A filesystem sync is an 
operation that causes all in-memory filesystem changes to be flushed to the 
storage medium followed by writing of an LTFS index. The sync operation is not 
required to produce a consistent LTFS Volume, but shall ensure that sufficient 
data is written to the medium so as to allow the LTFS Volume to be recovered to 
a consistent state without loss of data. 
 
Note that in contrast to ltfs.sync, writing to this extended attribute shall always 
cause an index to be written to the storage medium, even when there are no 
changed objects in the filesystem. 
 
Reading this extended attribute shall return the commit message in the most 
recent LTFS index on the storage medium. 

ltfs.indexVersion LTFS format version string for the Index. This string provides a human-readable 
identifier for the LTFS format version that generated the Index. 

ltfs.indexType Either “Full” or “Incr”, describing the most recent index on the media. 
ltfs.indexCreator Creator string for the Index. This string provides a human- readable identifier for 

the product that generated the Index. As defined in Section 7.2 Creator format. 
ltfs.indexGeneration Last LTFS Index generation number written to media. 
ltfs.indexLocation Location of the last Index on the media in the form ‘p:l’, where p is an alphabetic 

character value indicating the internal LTFS partition identifier, and l is the 
logical block number within the partition. For example, the value ‘a:1000’ 
indicates that the last Index starts at logical block 1000 on partition a. 

ltfs.indexPrevious Location of the previous Full Index on the media in the form ‘p:l’, where p is an 
alphabetic character value indicating the internal LTFS partition identifier, and l 
is the logical block number within the partition. For example, the value ‘b:55’ 



 

68 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Extended Attribute Value description 
indicates that the previous Full Index starts at logical block 55 on partition b. 

ltfs.indexPreviousIncremental Location of the previous Incremental Index on the media since the preceding 
Full Index, in the form ‘p:l’ as for ltfs.indexPrevious.  Reported as the value ‘z:0’ 
if there has not been an Incremental Index since the last Full Index.  

ltfs.incrIndexCount Number of Incremental Indexes on the media since the last Full Index. 
ltfs.indexTime Date and time of when last LTFS Index was written to media. 
ltfs.labelVersion LTFS format version string for the LTFS label. This string provides a human-

readable identifier for the LTFS format version that generated the LTFS label. 
ltfs.labelCreator Creator string for the LTFS Label. This string provides a human- readable 

identifier for the product that generated the LTFS Label. As defined in Section 
7.2 Creator format. 

ltfs.partitionMap The on media partition layout for the LTFS Volume. Value is of the form 
“W:x,Y:z” where W and Y have the value ‘I’ indicating an index partition, or ‘D’ 
indicating a data partition. x and y are an alphabetic character value indicating 
the internal LTFS partition identifier. For example, the value “I:a,D:b” indicates 
that LTFS Partition ‘a’ is used as the index partition, and LTFS Partition ‘b’ is 
used as the data partition. 

ltfs.policyAllowUpdate Indicates whether the data placement policy for the volume may be updated. 
ltfs.policyExists Indicates whether a data placement policy has been set for the volume. 
ltfs.policyMaxFileSize Maximum file size for files that match the data placement policy for the volume. 
ltfs.sync On any implementation that supports this extended attribute, writing any value to 

this extended attribute shall trigger a filesystem sync, except as noted below. A 
filesystem sync is an operation that causes all in-memory filesystem changes to 
be flushed to the storage medium followed by writing of an LTFS index. The 
sync operation is not required to produce a consistent LTFS Volume, but shall 
ensure that sufficient data is written to the medium so as to allow the LTFS 
Volume to be recovered to a consistent state without loss of data.  An 
implementation may define its own commit message to be used in the index 
written by this operation. 
 
If there are no changed objects in the filesystem (i.e. the most recent index on 
the storage medium is consistent with the in-memory index) then an 
implementation is not required to write another index. 
 
Reading this extended attribute shall trigger the same behavior. 

ltfs.volumeBlocksize Blocksize for the LTFS Volume specified at format time. 
ltfs.volumeCompression Compression setting for the LTFS Volume. 
ltfs.volumeFormatTime Date and time when the LTFS Volume was formatted. 
ltfs.volumeName Name of the LTFS Volume. 
ltfs.volumeSerial Serial number for the LTFS Volume specified at format time. 
ltfs.volumeUUID UUID for the LTFS Volume. 
ltfs.mamBarcode The MAM attribute value stored as BARCODE 
ltfs.mamApplicationVendor The MAM attribute value stored as APPLICATION VENDOR 
ltfs.mamApplicationVersion The MAM attribute value stored as APPLICATION VERSION 
ltfs.mamApplicationFormat 
Version 

The MAM attribute value stored as APPLICATION FORMAT VERSION 

ltfs.volumeLockState Reflects the protected state of the volume (see Section 9.2.19 Volume Advisory 
Locking).  A value of 0 means the volume may be modified; a non-zero value 
indicates that the volume has been locked against further modifications. 
 



 

LTFS Format Specification SNIA Technical Position 69 
Version 2.5 

Extended Attribute Value description 
This attribute may be written to change the volumelockstate element in the 
index; the implementation should update the corresponding MAM attribute 
accordingly (see Section 10.5).    
 
An application may report various forms of protection by encoding them into 
these bit fields: 

 
Bit 31 ... 8 7 6 5 4 3 2 1 0 

Field 0 
(Reserved) IPPWE DPPWE PWE PERSWP PRMWP 

Physical 
Write 

Protect 

Perm-
Locked Locked 

 
The Locked and PermLocked bits correspond to the index information described 
in Section 9.2.4 for the volumelockstate element and are mutually exclusive. 

 
The Physical Write Protect bit should be reported as 1 if writing to the volume 
has been prevented by some physical means (for example sliding a Protect tab 
on a tape cartridge).  It cannot be changed by writing this attribute and should be 
ignored in that case. 
 
The Persistent Write Protect (PERSWP) and Permanent Write Protect 
(PRMWP) bits should be reported as 1 if the tape drive has been set into the 
corresponding mode.  Note that support for PERSWP and PRMWP is 
dependent on the underlying tape drive technology.  An application may support 
changing PERSWP and PRMWP, contingent on the underlying device also 
supporting those fields.  Refer to the T10 draft specification SSC4 Section 
4.2.16 “Write Protection” for further details.   
 
The Index Partition Permanent Write Error (IPPWE) and Data Partition 
Permanent Write Error (DPPWE) bits should be reported as 1 if the tape drive 
encountered a permanent write error whilst writing in the corresponding partition. 
 
The non-partition-specific Permenent Write Error (PWE) bit is preserved for 
backwards compatibility with version 2.3 but is deprecated for implementations 
claiming compliance with version 2.4 of the specification. IPPWE and/or DPPWE 
should be used instead (based on the value stored in the MAM attribute 1623h, 
see Section 10.5 Volume Advisory Locking). 
 
The IPPWE, DPPWE and PWE bits cannot be changed by writing this attribute, 
and should be ignored in that case. If one or more of these bits are reported as 
one then the Locked bit should also be reported as 1. 
 

 

NOTE 1: The USER MEDIUM TEXT LABEL MAM attribute is available as ltfs.volumeName. 

NOTE 2: The VEAs ltfs.softwareVendor, ltfs.softwareProduct, ltfs.softwareVersion, and ltfs.softwareFormatSpec refer to the 
currently executing software, whereas the above names ltfs.mamApplicationVendor etc refers to the values stored in the MAM at 
format time. 

NOTE 3: Setting or updating the VEA ltfs.mamBarcode after the volume has been formatted should update the MAM attribute but 
shall not modify the VOL1 label nor the value reported for the VEA ltfs.volumeSerial. 

C.5 Media Metadata 

Table C. 5 describes the extended attribute values for media metadata. 



 

70 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Table C. 5 — Reserved extended attribute definitions: Media metadata 

Extended Attribute Value description 
ltfs.mediaBeginningMediumPasses Total number of times the beginning of medium position 

has been passed. If the storage hardware cannot report 
this data the value will be −1. 

ltfs.mediaDataPartitionAvailableSpace Total available space in the Data Partition on the medium. 
Value is an integer count measured in units of 1048576 
bytes. 

ltfs.mediaDataPartitionTotalCapacity Total capacity of the Data Partition on the medium. Value is 
an integer count measured in units of 1048576 bytes. 

ltfs.mediaDatasetsRead Total number of datasets read from the medium over the 
lifetime of the media. If the storage hardware cannot report 
this data the value will be −1. 

ltfs.mediaDatasetsWritten Total number of datasets written to the medium over the 
lifetime of the media. If the storage hardware cannot report 
this data the value will be −1. 

ltfs.mediaEfficiency An overall measure of the condition of the loaded media. 
The value 0x00 indicates that the condition is unknown. 
The range of known values is from 0x01 (best condition) to 
0xFF (worst condition). If the storage hardware cannot 
report this data the value will be −1. 

ltfs.mediaIndexPartitionAvailableSpace Total available space in the Index Partition on the medium. 
Value is an integer count measured in units of 1048576 
bytes. 

ltfs.mediaIndexPartitionTotalCapacity Total capacity of the Index Partition on the medium. Value 
is an integer count measured in units of 1048576 bytes. 

ltfs.mediaLoads Number of times the media has been loaded in a drive. For 
example, with tape media this will be the tread count. If the 
storage hardware cannot report this data the value will be 
−1. 

ltfs.mediaMBRead Total number of megabytes of logical object data read from 
the medium after compression over the lifetime of the 
media. The value shall be rounded up to the next whole 
megabyte. The value reported shall include bytes read as 
part of reading filemarks from the media. If the storage 
hardware cannot report this data the value will be −1. 

ltfs.mediaMBWritten Total number of megabytes of logical object data written to 
the medium after compression over the lifetime of the 
media. The value shall be rounded up to the next whole 
megabyte. The value reported shall include bytes written 
as part of writing filemarks to the media. If the storage 
hardware cannot report this data the value will be −1. 

ltfs.mediaMiddleMediumPasses Total number of times the physical middle position of the 
user data region of medium has been passed. If the 
storage hardware cannot report this data the value will be 
−1. 

ltfs.mediaEncrypted True if the Medium is encrypted or False if not. 
ltfs.mediaPermanentReadErrors Total number of unrecovered data read errors over the 

lifetime of the media. This is the total number of times that 
a read type command terminated with a sense key of 
MEDIUM ERROR, HARDWARE ERROR, or equivalent 
over the media life. If the storage hardware cannot report 
this data the value will be −1. 

ltfs.mediaPermanentWriteErrors Total number of unrecovered data write errors over the 
lifetime of the media. This is the total number of times that 



 

LTFS Format Specification SNIA Technical Position 71 
Version 2.5 

Extended Attribute Value description 
a write type command terminated with a sense key of 
MEDIUM ERROR, HARDWARE ERROR, or equivalent 
over the media life. If the storage hardware cannot report 
this data the value will be −1. 

ltfs.mediaPreviousPermanentReadErrors Total number of unrecovered read errors that occurred 
during the previous load of the media. This is the total 
number of times that a read type command terminated with 
a sense key of MEDIUM ERROR, HARDWARE ERROR, 
or equivalent during the previous load session. If the 
storage hardware cannot report this data the value will be 
−1. 

ltfs.mediaPreviousPermanentWriteErrors Total number of unrecovered write errors that occurred 
during the previous load of the media. This is the total 
number of times that a write type command terminated with 
a sense key of MEDIUM ERROR, HARDWARE ERROR, 
or equivalent during the previous load session. If the 
storage hardware cannot report this data the value will be 
−1. 

ltfs.mediaRecoveredReadErrors Total number of recovered read errors for the lifetime of the 
media. If the storage hardware cannot report this data the 
value will be −1. 

ltfs.mediaRecoveredWriteErrors Total number of recovered data write correction errors over 
the lifetime of the media. If the storage hardware cannot 
report this data the value will be −1. 

ltfs.mediaStorageAlert A 64bit value containing alert flags for the storage system. 
For data tape media this value is equal to the standard 
tape alert flags. The standard tape alert flags are cleared 
when read, but this flag’s values are latched after a flag is 
raised once. When a 64bit value is written to this EA the 
flags that correspond to the 1 bits written are cleared; this 
is the only way that flags are cleared. If the storage 
hardware cannot report this data the value will be the string 
“UNKNOWN”. 



 

72 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Annex D (informative) Example of Valid Simple Complete LTFS Volume 

Figure D.1 shows the content of a simple LTFS volume. This volume contains three files “A”, “B”, and “C”. 
File “A” is comprised of three extents. Files “B” and “C” each have one extent. 

 
Figure D.1 — Content of a simple LTFS volume 

 
 



 

LTFS Format Specification SNIA Technical Position 73 
Version 2.5 

Annex E (informative) Complete Example LTFS Full Index 

This annex shows a complete example of an LTFS Full Index that includes the important features of the 
Index format.  

In this index: 

• The file directory2/binary_file.bin has a length (20000000 bytes) greater than that of its 
extent list (10485760 bytes). The extra length is implicitly filled with zero bytes as described 
in Section 6.1 Extent Lists. 

• Block 8 of partition ‘b’ is shared. The first 720000 bytes of the block are used by 
directory2/binary_file.bin and directory2/binary_file2.bin. The next  105008 bytes are used 
only by directory2/binary_file2.bin. This form of sharing data between files is described in 
Section 6.3.4 Shared Data. 

• The file partialfile.bin was still open for writing at the time that the index was written. The 
length and extent information reflect the file properties at that point in time. A cleanly 
unmounted volume would not have any open files so the openforwrite element (see Section 
9.2.9 ) would not normally be present. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<ltfsindex version="2.5.0"> 
 <creator>IBM LTFS 2.5.0 - Linux - ltfs</creator> 
 <volumeuuid>5d217f76-53e6-4d6f-91d1-c4213d94a742</volumeuuid> 
 <generationnumber>3</generationnumber> 
 <updatetime>2018-10-01T11:45:27.150534438Z</updatetime> 
 <location> 
  <partition>a</partition> 
  <startblock>6</startblock> 
 </location> 
 <previousgenerationlocation> 
  <partition>b</partition> 
  <startblock>20</startblock> 
 </previousgenerationlocation> 
 <allowpolicyupdate>true</allowpolicyupdate> 
 <dataplacementpolicy> 
  <indexpartitioncriteria> 
   <size>1048576</size> 
   <name>*.txt</name> 
  </indexpartitioncriteria> 
 </dataplacementpolicy> 
 <highestfileuid>11</highestfileuid> 
 <directory> 
  <fileuid>1</fileuid> 
  <name>LTFS Volume Name</name> 
  <readonly>false</readonly> 
  <creationtime>2013-02-16T19:13:42.986549106Z</creationtime> 
  <changetime>2013-02-16T19:13:47.517309274Z</changetime> 
  <modifytime>2013-02-16T19:13:47.517309274Z</modifytime> 
  <accesstime>2013-02-16T19:13:42.986549106Z</accesstime> 
  <backuptime>2013-02-16T19:13:42.986549106Z</backuptime> 
  <contents> 
   <directory> 
    <fileuid>2</fileuid> 
    <name>directory1</name> 
    <readonly>false</readonly> 
    <creationtime>2013-02-16T19:13:43.006599071Z</creationtime> 
    <changetime>2013-02-16T19:13:48.524075283Z</changetime> 



 

74 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

    <modifytime>2013-02-16T19:13:46.514736591Z</modifytime> 
    <accesstime>2013-02-16T19:13:43.006599071Z</accesstime> 
    <backuptime>2013-02-16T19:13:43.006599071Z</backuptime> 
    <extendedattributes> 
     <xattr> 
      <key>binary_xattr</key> 
      <value  type="base64">yDaaBPBdIUqMhg==</value> 
     </xattr> 
     <xattr> 
      <key>empty_xattr</key> 
      <value/> 
     </xattr> 
    </extendedattributes> 
    <contents> 
     <directory> 
      <fileuid>3</fileuid> 
      <name>subdir1</name> 
      <readonly>false</readonly> 
      <creationtime>2013-02-16T19:13:46.514736591Z</creationtime> 
      <changetime>2013-02-16T19:13:46.514736591Z</changetime> 
      <modifytime>2013-02-16T19:13:46.514736591Z</modifytime> 
      <accesstime>2013-02-16T19:13:46.514736591Z</accesstime> 
      <backuptime>2013-02-16T19:13:46.514736591Z</backuptime> 
      <contents/> 
     </directory> 
    </contents> 
   </directory> 
   <directory> 
    <fileuid>4</fileuid> 
    <name>directory2</name> 
    <readonly>false</readonly> 
    <creationtime>2013-02-16T19:13:43.007872849Z</creationtime> 
    <changetime>2013-02-16T19:13:46.512350773Z</changetime> 
    <modifytime>2013-02-16T19:13:46.512350773Z</modifytime> 
    <accesstime>2013-02-16T19:13:43.007872849Z</accesstime> 
    <backuptime>2013-02-16T19:13:43.007872849Z</backuptime> 
    <contents> 
     <file> 
      <fileuid>5</fileuid> 
      <name>sparse_file.bin</name> 
      <length>20000000</length> 
      <readonly>false</readonly> 
      <creationtime>2013-02-16T19:13:45.012828533Z</creationtime> 
      <changetime>2013-02-16T19:13:46.509553802Z</changetime> 
      <modifytime>2013-02-16T19:13:46.509553802Z</modifytime> 
      <accesstime>2013-02-16T19:13:45.012828533Z</accesstime> 
      <backuptime>2013-02-17T19:15:34.032137221Z</backuptime> 
      <extentinfo> 
       <extent> 
        <partition>b</partition> 
        <startblock>8</startblock> 
        <byteoffset>0</byteoffset> 
        <bytecount>720000</bytecount> 
        <fileoffset>0</fileoffset> 
       </extent> 
       <extent> 
        <partition>b</partition> 
        <startblock>18</startblock> 
        <byteoffset>0</byteoffset> 
        <bytecount>600000</bytecount> 



 

LTFS Format Specification SNIA Technical Position 75 
Version 2.5 

        <fileoffset>720000</fileoffset> 
       </extent> 
       <extent> 
        <partition>b</partition> 
        <startblock>9</startblock> 
        <byteoffset>271424</byteoffset> 
        <bytecount>9165760</bytecount> 
        <fileoffset>1375000</fileoffset> 
       </extent> 
      </extentinfo> 
     </file> 
     <file> 
      <fileuid>6</fileuid> 
      <name>binary_file2.bin</name> 
      <length>825008</length> 
      <readonly>false</readonly> 
      <creationtime>2013-02-16T19:13:46.512350773Z</creationtime> 
      <changetime>2013-02-16T19:13:46.513510263Z</changetime> 
      <modifytime>2013-02-16T19:13:46.513510263Z</modifytime> 
      <accesstime>2013-02-16T19:13:46.000000000Z</accesstime> 
      <backuptime>2013-02-16T19:13:46.512350773Z</backuptime> 
      <extentinfo> 
       <extent> 
        <partition>b</partition> 
        <startblock>8</startblock> 
        <byteoffset>0</byteoffset> 
        <bytecount>825008</bytecount> 
        <fileoffset>0</fileoffset> 
       </extent> 
      </extentinfo> 
     </file> 
    </contents> 
   </directory> 
   <file> 
    <fileuid>7</fileuid> 
    <name>testfile.txt</name> 
    <length>5</length> 
    <readonly>false</readonly> 
    <creationtime>2013-02-16T19:13:44.009581288Z</creationtime> 
    <changetime>2013-02-16T19:13:49.532111261Z</changetime> 
    <modifytime>2013-02-16T19:13:49.532111261Z</modifytime> 
    <accesstime>2013-02-16T19:13:49.527726902Z</accesstime> 
    <backuptime>2013-02-16T19:13:44.009581288Z</backuptime> 
    <extendedattributes> 
     <xattr> 
      <key>author_name</key> 
      <value>Michael Richmond</value> 
     </xattr> 
    </extendedattributes> 
    <extentinfo> 
     <extent> 
      <partition>a</partition> 
      <startblock>4</startblock> 
      <byteoffset>0</byteoffset> 
      <bytecount>5</bytecount> 
      <fileoffset>0</fileoffset> 
     </extent> 
    </extentinfo> 
   </file> 
   <file> 



 

76 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

    <fileuid>8</fileuid> 
    <name>read_only_file</name> 
    <length>0</length> 
    <readonly>true</readonly> 
    <creationtime>2013-02-16T19:13:47.517309274Z</creationtime> 
    <changetime>2013-02-16T19:13:47.519534438Z</changetime> 
    <modifytime>2013-02-16T19:13:47.000000000Z</modifytime> 
    <accesstime>2013-02-16T19:13:47.000000000Z</accesstime> 
    <backuptime>2013-02-16T19:13:47.517309274Z</backuptime> 
    <extendedattributes> 
     <xattr> 
      <key>author_name</key> 
      <value>Brian Biskeborn</value> 
     </xattr> 
    </extendedattributes> 
   </file> 
   <file> 
    <fileuid>9</fileuid> 
    <name>symlink_file</name> 
    <length>27</length> 
    <readonly>false</readonly> 
    <creationtime>2013-02-16T19:49:11.247309274Z</creationtime> 
    <changetime>2013-02-16T19:49:11.249534438Z</changetime> 

    <modifytime>2013-02-16T19:49:11.000000000Z</modifytime> 
    <accesstime>2013-02-16T19:49:11.000000000Z</accesstime> 
    <backuptime>2013-02-16T19:49:11.247309274Z</backuptime> 
    <extendedattributes> 
     <xattr> 
      <key>author_name</key> 
      <value>David Pease</value> 
     </xattr> 
    </extendedattributes> 
    <symlink>directory2/binary_file2.bin</symlink> 
   </file> 
   <file> 
    <fileuid>10</fileuid> 
    <name percentencoded="true">Testfile%3A1.txt</name> 
    <length>13652</length> 
    <readonly>false</readonly> 
    <creationtime>2014-07-02T09:13:27.730249274Z</creationtime> 
    <changetime>2014-07-02T09:13:27.749534438Z</changetime> 
    <modifytime>2014-07-02T09:13:27.000000000Z</modifytime> 
    <accesstime>2014-07-02T09:13:27.000000000Z</accesstime> 
    <backuptime>2014-07-02T09:13:27.730249274Z</backuptime> 
    <extendedattributes> 
     <xattr> 
      <key>author_name</key> 
      <value>Chris Martin</value> 
     </xattr> 
     <xattr> 
      <key percentencoded="true">Sample%3Aencoded_name</key> 
      <value>Value: is never %-encoded!</value> 
     </xattr> 
    </extendedattributes> 
    <extentinfo> 
     <extent> 
      <partition>b</partition> 
      <startblock>20</startblock> 
      <byteoffset>0</byteoffset> 
      <bytecount>13652</bytecount> 



 

LTFS Format Specification SNIA Technical Position 77 
Version 2.5 

      <fileoffset>0</fileoffset> 
     </extent> 
    </extentinfo> 
   </file> 
   <file> 
    <fileuid>11</fileuid> 
    <name>partialfile.bin</name> 
    <length>10485760</length> 
    <readonly>false</readonly> 
    <openforwrite>true</openforwrite> 
    <creationtime>2016-02-05T11:45:27.123449274Z</creationtime> 
    <changetime>2016-02-05T11:45:27.150534438Z</changetime> 
    <modifytime>2016-02-05T11:45:27.150534438Z</modifytime> 
    <accesstime>2016-02-05T11:45:27.150534438Z</accesstime> 
    <backuptime>2016-02-05T11:45:27.150534438Z</backuptime> 
    <extentinfo> 
     <extent> 
      <partition>b</partition> 
      <startblock>21</startblock> 
      <byteoffset>0</byteoffset> 
      <bytecount>10485760</bytecount> 
      <fileoffset>0</fileoffset> 
     </extent> 
    </extentinfo> 
   </file> 
  </contents> 
 </directory> 
</ltfsindex> 



 

78 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Annex F (normative) Interoperability Recommendations 

This annex describes recommended practices to enable LTFS interoperability. 

F.1 Spanning Files across Multiple Tape Volumes in LTFS 

LTFS is designed so that tape volumes are self-contained and self-describing. However, there may be 
times when a file simply does not fit on a single tape and it is necessary to span the file across two or 
more tapes. A standard method of identifying such files and indicating where the other segments of them 
may be found is important to guarantee interoperability between LTFS implementations.  

The term spanned file refers to a file which is represented by multiple files segments, each typically on a 
separate tape volume. The term file segment refers to a file on a single LTFS volume which is actually a 
part of a spanned file. 

F.1.1 File Naming 

A file segment shall have a name that consists of the true (base) file name with a suffix that identifies the 
file as a segment of a spanned file. The format of the suffix shall be: 

-LTFSsegn where capitalization is as shown and n is the segment number. Segment numbering shall start 
at 1 for the first segment of the file (i.e., file offset 0), and increment by 1 for each subsequent segment (in 
increasing file offset order). 

For example, if the true name of a file is foo.txt, and the file is spanned into two segments, the first 
segment name shall be foo.txt-LTFSseg1 and the second shall be foo.txt-LTFSseg2. The original file 
name can always be found by stripping the suffix from the stored name. 

F.1.2 File Location 

Each segment of a spanned file shall have the same directory path on its respective LTFS volume. For 
example, if the fully qualified LTFS path name to foo.txt-LTFSseg1 is /user/data/foo.txt-LTFSseg1, then 
the fully qualified path name to foo.txt-LTFSseg2 shall be /user/data/foo.txt-LTFSseg2.  

F.1.3 Segment References 

Each segment shall be accompanied on its tape volume by a reference to the prior segment and a 
reference to the next segment, as appropriate. The implementation of these references shall be a 
symbolic link containing the fully qualified path to the referenced segment. For example, if 
/user/data/foo.txt-LTFSseg1 is on tape volume 001005 and /user/data/foo.txt-LTFSseg2 is on tape 
volume 001006, there shall be a symbolic link on tape 001005 named /user/data/foo.txt-LTFSseg2, 
whose target value is /001006/user/data/foo.txt-LTFSseg2. Similarly, there shall be a symbolic link on 
tape 001006 named /user/data/foo.txt-LTFSseg1, whose target value is /001005/user/data/foo.txt-
LTFSseg1. For files that span more than two tapes (so that multiple preceding and following segments 
exist for some tapes), the implementation may optionally include segment references to all other 
segments, but shall minimally include prior and next references (as appropriate).  

F.1.4 Extended Attributes 

To allow easy identification of spanned file segments, to enable efficient access to those segments, and 
to verify the correctness of the segmentation, each spanned file segment shall be accompanied by an 
extended attribute. The name of this extended attribute shall be ltfs.spannedFileOffset, and its value shall 
be the logical file offset of the first byte of the segment relative to the full file. A file that is not a segment of 
a spanned file shall not have an ltfs.spannedFileOffset attribute. 



 

LTFS Format Specification SNIA Technical Position 79 
Version 2.5 

Representation of Spanned File Segment Offset Extended Attribute: 

 
<xattr> 

        <key>ltfs.spannedFileOffset</key> 

        <value>offset</value> 

</xattr> 

 

Where; 

    offset = the logical file offset of the first byte of the file segment (decimal representation)    

 

Example: 

 
<xattr> 

        <key>ltfs.spannedFileOffset</key> 

        <value>800</value> 

</xattr> 

 

In this example, the length of file foo.txt is 1000 bytes, and the length of segment foo.txt-LTFSseg1 is 800 
bytes. The value of the ltfs.spannedFileOffset attribute for file foo.txt-LTFSseg1 shall be 0 and the value 
of the ltfs.spannedFileOffset attribute for file foo.txt-LTFSseg2 shall be 800 as shown above. 

F.1.5 File Operations 

LTFS file system implementations that support creating or modifying spanned files are not required to 
support the renaming of spanned files nor the random overwrite of bytes within a spanned file. They 
should support appending to the end of a spanned file and truncation of spanned files (which may be 
immediately followed by an append), as well as any other file system operations supported for non-
spanned files. For every segment of the file, the attributes of the segment represent the state of the file at 
the time that the segment was written. 
  



 

80 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

F.1.6 Examples 
F.1.6.1 Example 1 

File “NorthAmerica.map” is too large for 1 tape, so it is to be split across four tapes (tape volume ids 
123401 – 123404). The resulting file segments are “NorthAmerica.map-LTFSseg1” through 
“NorthAmerican.map-LTFSseg4”. It is desired to utilize a minimum number of required symlinks on each 
tape. 

 
 Tape Volume 123401    Tape Volume 123402 

 
 
 
 
 
 
 
 
 

 
 Tape Volume 123403    Tape Volume 123404 

 
 
 
 
 
 
 
 
  

NorthAmerica.map-LTFSseg1 
    File 

NorthAmerica.map-LTFSseg2 
    symlink 123402 
 

NorthAmerica.map-LTFSseg1 
    File 

 
      
 

 
     

 
      
 

 
     

 
      

NorthAmerica.map-LTFSseg1 
    symlink 123401 

NorthAmerica.map-LTFSseg2  
    File 

NorthAmerica.map-LTFSseg3 
    symlink 123403 
 

 
      

  
     

 
      
 

 
      

  
     

 
      
 

 
      

  
     

 
      

NorthAmerica.map-LTFSseg2 
    symlink 123402 

NorthAmerica.map-LTFSseg3 
    File 

NorthAmerica.map-LTFSseg4 
    symlink 123404 
 

 
      

 
     

 
      
 

 
      

 
     

 
      
 

 
      

 
     

 
      

NorthAmerica.map-LTFSseg3 
    symlink 123403 

NorthAmerica.map-LTFSseg4 
    File 
 

NorthAmerica.map-LTFSseg3 
      

 
     
 

 
      

 
     
 

 
      

 
     



 

LTFS Format Specification SNIA Technical Position 81 
Version 2.5 

F.1.6.2 Example 2 

File “NorthAmerica.map” is too large for 1 tape, so it is to be split across four tapes (tape volume ids 
123401 – 123404). The resulting file segments are “NorthAmerica.map-LTFSseg1” through 
“NorthAmerican.map-LTFSseg4”. It is desired to utilize all of the allowed symlinks on each tape. 

 

 Tape Volume 123401    Tape Volume 123402 
 
 
 
 
 
 
 
 
 
 
 
 
 Tape Volume 123403    Tape Volume 123404 
 
 
 
 
 
 
 
 
 
 
 
  

NorthAmerica.map-LTFSseg1 
     symlink 123401 

NorthAmerica.map-LTFSseg2 
     file 

NorthAmerica.map-LTFSseg3 
     symlink 123403 

NorthAmerica.map-LTFSseg4 
     symlink 123404 
 

 
       

 
      

 
       

 
       
 

 
       

 
      

 
       

 
       
 

 
       

 
      

 
       

 
       

NorthAmerica.map-LTFSseg1  
     file 

NorthAmerica.map-LTFSseg2 
     symlink 123402 

NorthAmerica.map-LTFSseg3 
     symlink 123403 

NorthAmerica.map-LTFSseg4 
     symlink 123404 
 

  
      

 
       

 
       

 
       
 

  
      

 
       

 
       

 
       
 

  
      

 
       

 
       

 
       

NorthAmerica.map-LTFSseg1 
     symlink 123401 

NorthAmerica.map-LTFSseg2 
     symlink 123402 

NorthAmerica.map-LTFSseg3 
     symlink 123403 

NorthAmerica.map-LTFSseg4 
     file 
 

 
       

 
       

 
       

 
      
 

 
       

 
       

 
       

 
      
 

 
       

 
       

NorthAmerica.map-LTFSseg1 
     symlink 123401 

NorthAmerica.map-LTFSseg2 
     symlink 123402 

NorthAmerica.map-LTFSseg3 
     file 

NorthAmerica.map-LTFSseg4 
     symlink 123404 
 

 
       

 
       

 
      

 
       
 

 
       

 
       

 
      

 
       
 

 
       

 
       

 



 

82 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

F.1.6.3 Example 3 
Typically, it is expected that spanned file segments for the same file will reside on different volumes. 
However, files on a volume may be copied to another volume. One reason for doing so might be to 
reclaim the space taken up by deleted or overwritten files as well as old indexes. This operation is 
sometimes referred to as “reclamation”. If the destination of the reclamation operation is a non-empty 
volume, it is possible that the operation may result in two or more spanned file segments for the same file 
on the destination volume. In this case, there is potential for a collision between a symlink and the 
spanned file segment that it points to, because they have the same name and reside at the same location 
in the directory tree. In this case, the symlink shall not be written. 
 
Given the volumes of Example 2, file segment “NorthAmerica.map-LTFSseg2” has been moved from tape 
volume 123402 to tape volume 123403. Tape volume 123402 is no longer part of the set of spanned 
volumes. The symlink on volume 123403 which referenced file segment “NorthAmerica.map-LTFSseg2” 
has been replaced by the file segment itself. The symlinks on tape volume 123401 and tape volume 
123404 have been updated to reference the file segment at the new location. 
 

 Tape Volume 123401     

 

 

 

 

 

 

 

 

 

 

 

 

Tape Volume 123403    Tape Volume 123404 

 

  

NorthAmerica.map-LTFSseg1 
     file 
 
NorthAmerica.map-LTFSseg2 
     symlink 123403 
 
NorthAmerica.map-LTFSseg3 
     symlink 123403 
 
NorthAmerica.map-LTFSseg4 
     symlink 123404 
 

 
      
 

 
       
 

 
       
 

 
       
 

 
      
 

 
       
 

 
       
 

 
       
 

 
      
 

 
       
 

 
       

NorthAmerica.map-LTFSseg1 
     symlink 123401 
 
NorthAmerica.map-LTFSseg2 
     symlink 123403 
 
NorthAmerica.map-LTFSseg3 
     symlink 123403 
 
NorthAmerica.map-LTFSseg4 
     file 
 

 
       
 

 
       
 

 
       
 

 
      
 

NorthAmerica.map-LTFSseg1 
     symlink 123401 
 
NorthAmerica.map-LTFSseg2 
     file 
 
NorthAmerica.map-LTFSseg3 
     file 
 
NorthAmerica.map-LTFSseg4 
     symlink 123404 
 

 
       
 

 
      
 

 
      
 

 
       
 



 

LTFS Format Specification SNIA Technical Position 83 
Version 2.5 

F.2 File Permissions in LTFS 

File permissions in interchange media are problematic for two reasons: First, they rely on some type of 
user (and often group) identification that is usually not transportable except within a narrow scope 
(typically the same OS in the same location). Second, they are not standard across different types of 
operating systems, and it is difficult or impossible to accurately convert one type of permission to another 
(for example, POSIX ACLs to NTFS ACLs or Unix permission bits).  

However, there are some instances where storing and enforcing permissions in LTFS may be desirable, 
including in a single data center where the operating system environment is constant and a central user 
identification system is used, or when the data on tape is being stored for retention purposes and the 
permission information is an important attribute of the data to be able to retrieve. 

The recommendation is to optionally store permissions in a well-defined, operating system-specific 
reserved LTFS extended attribute, and optionally honor those permissions if they exist for the operating 
system environment being used.  

The LTFS extended attribute (EA) for File and Directory Permissions is of the form: 

 ltfs.permissions.<permissiontype> 

For example, ltfs.permissions.unix for unix permission bits or ltfs.permissions.ntfsacl for Windows NTFS 
ACLs. The list of currently identified permission types includes: 

 unix  Unix permission bits 

 posixacl POSIX ACL 

 ntfsacl  NTFS ACL 

 nfsv4acl NFS V4 ACL 

Multiple Permission EAs are not precluded for a given file or directory although there can be at most one 
EA of a given permission type. 

It is recommended that an LTFS implementation provide mount-time options that specify whether 
permissions are stored and/or enforced. When storing of file permissions is enabled, the system-specific 
permission EA associated with the file should be created or updated (for example, during file creation, 
chmod processing, icacls command in Windows, etc.). Additionally, when permissions are enforced and a 
file is accessed, if an appropriate system-specific permission EA exists for the file, it should be used to 
determine whether the file access is allowed.   

F.2.1 Unix Permissions: 

Representation of Unix Permissions Extended Attribute: 

 
<xattr> 

        <key>ltfs.permissions.unix</key> 

        <value>uuuuu;ggggg;pppp</value> 

</xattr> 

Where; 
  uuuuu = numeric uid associated with file (decimal representation) 
  ggggg = numeric gid associated with file (decimal representation) 

  pppp  = octal representation of Unix permission bits 

Example: 
<xattr> 

        <key>ltfs.permissions.unix</key> 

        <value>12156;1001;0640</value> 



 

84 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

</xattr> 

This example has read and write permission for the owner, read permission for the group, and no access 
for others.  The owner's user id (uid) is 12156 (pease), and the owner's group id (gid) is 1001 (users).  

F.2.2 POSIX ACLs: 

Representation of POSIX ACLs Extended Attribute: 

                
<xattr> 

        <key>ltfs.permissions.posixacl</key> 

        <value>uuuu;gggg;[fff];ACE[;...]</value> 

</xattr> 

Where; 

  uuuuu = numeric uid associated with file ownership (decimal representation) 

  ggggg = numeric gid associated with file group (decimal representation) 

  fff = optional file flags which represent the high-order octal digit of the Unix permissions 
(e.g., a file with the “setuid” bit on would have a flag value of “s--”) 

 ACE = an Access Control Entry, of the form “[default:]type:[id]:value”; multiple ACEs can 
exist in an ACL, separated by semicolons (“;”); fields within the ACE are separated by 
colons (“:”)  

                               default is an optional literal string value “default” 

                               type is string value of either “group”, “user”, “mask”, or “other” 

                               id is an optional decimal representation 

                               value is a 3 character string representation of the permission flags (“r”,”w”,”x” or “-“) 

Example: 
<xattr> 

        <key>ltfs.permissions.posixacl</key> 

        <value>12156;1001;;user::rw-;group::r--;other::---</value> 

</xattr> 

In this example, the user id 12156 has read/write access. Members of group 1001 have read only access. 
All other users and group members have no access.  There are no special flags.  

The next example shows the use of multiple user and group ids as well as special file flags in an ACL: 
<xattr> 

        <key>ltfs.permissions.posixacl</key> 

        <value>12156;1001;--t;user::rw-;user:9532:r--;user:1476:rw-;group::r--
;group:17:rw-;mask::rw-;other::---</value> 

 

</xattr> 

 

In this example, the user id 12156 has read/write access, the user id 9532 has read access and the user 
id 1476 has read/write access. Members of group 1001 have read only access and the members of group 
17 have read/write access. All other users and group members have no access.  The file has the Unix 
“sticky bit” set (file flag “--t”). 

F.2.3 NFSv4 ACLs: 

Representation of NFSv4 ACLs Extended Attribute (see IETF RFC 3530 NFS version 4 protocol) is as 



 

LTFS Format Specification SNIA Technical Position 85 
Version 2.5 

follows:  

  
<xattr> 

        <key> ltfs.permissions.nfsv4acl</key> 

        <value>ACE[;ACE...]</value> 

</xattr> 

Where; 

        ACE  = An Access Control Entry of the form “type:flag:mask:who”; multiple ACEs can exist in 
an ACL, separated by semicolons (“;”); fields within the ACE are separated by colons 
(“:”) 
 

                                type is defined as a unsigned int (uint32_t) (hexadecimal) 

        flag is defined as a unsigned int (uint32_t) (hexadecimal) 

        mask is defined as a unsigned int (uint32_t) (hexadecimal) 

        who is defined as a opaque utf8 mixed case string (utf8str_mixed) 

Example: 
<xattr> 

        <key> ltfs.permissions.nfsv4acl</key> 

        <value>0x00:0x00:0x02:OWNER@</value> 

</xattr> 

Where the type is ACCESS ALLOWED, the flag is undefined, the mask is WRITE DATA, and the who is 
“OWNER@” 

In this example, the file can only be written by the file owner. 

NOTE   There can be multiple of the above entries for a given file. For example; 
<xattr> 

        <key> ltfs.permissions.nfsv4acl</key> 

        <value>0x00:0x00:0x010002:OWNER@;0x01:0x00:0x01:EVERYONE@</value> 

</xattr> 

Where the type is ACCESS ALLOWED, the flag is undefined, the mask is WRITE DATA and DELETE, 
and the who is “OWNER@” for the first ACL and the type is ACCESS ALLOWED, the mask is READ 
DATA and the who is “EVERYONE@” for the 2nd ACL. 

In this example, the file can be written and deleted by the file owner and read by everyone. 

F.2.4 NTFS ACLs: 

Representation of NTFS ACLs Extended Attribute is as follows: 

 
<xattr> 

        <key>ltfs.permissions.ntfsacl</key> 

        <value>osid;gsid;type:flag:mask:sid[;type:flag:mask:sid][…]</value> 

</xattr> 

Where; 

  osid is the owner sid (UTF8 string) 

  gsid is the group sid (UTF8 string) 



 

86 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

  type is defined as a numeric value (hexadecimal) 

  flag is defined as a numeric value (hexadecimal) 

  mask is defined as a 32 bit value (hexadecimal) 

  sid is  the Security ID (UTF8 string) 

Example: 
<xattr> 

       <key>ltfs.permissions.ntfsacl</key> 

       <value>S-1-5-32-545;S-1-5-64-10;0x00:0x00:0x1F0000:S-1-5-32-544</value> 

</xattr> 

Where the owner sid is “S-1-5-32-545”, the group sid is “S-1-5-64-10”, the type is ACCESS ALLOWED, 
the flag value is zero, the mask is STANDARD_WRITES_ALL and the SID is “S-1-5-32-544” 

 

F.3 Storing File Hash Values in LTFS 

It is desireable to have a method of verifying the contents of files stored on an LTFS volume.  This is 
typically done by calculating a checksum or secure hash value for the file.  This hash value can be stored 
in the index, then at a later date the same calculation can be repeated and compared with the value from 
the index which was stored at the time the file was written.  
 
The mechanism used to generate the hash values, details of how they are maintained and updated, and 
the process for checking them, are all outside the scope of this format specification.  There is no 
requirement for an implementation to generate or to check hash values.  However if an implementer 
decides to make use of this technique, the extended attributes defined in this section should be used to 
enable interoperability of implementations. 
 

F.3.1  Extended Attributes 
The hash values may optionally be stored using LTFS extended attribute (EA) names of the form 
 ltfs.hash.<hashtype> 
where hashtype identifies the algorithm used.  Table F.1 — Hash Types lists the hashtype values are 
covered by this format specification; all other hashtype values are reserved. 

  

Table F.1 — Hash Types 

hashtype Algorithm 
reference 

Message Digest 
size (bits) 

UTF-8 representation 
(hex characters) 

crc32sum ANSI X3.66  32 8 
md5sum IETF RFC1321 128 32 
sha1sum FIPS PUB 180-4 160 40 
sha256sum FIPS PUB 180-4 256 64 
sha512sum FIPS PUB 180-4 512 128 

 
In general the algorithms using more bits provide a greater level of confidence (less risk of false matches 
or “collisions”) but at the expense of increased computation time. 
 
A single file may have multiple EA’s storing different hashtypes, but shall have at most one EA for any 
given hashtype. 
 



 

LTFS Format Specification SNIA Technical Position 87 
Version 2.5 

The hashtype EA is undefined (i.e. is not valid) for directory elements and for file elements which contain 
a symlink element. 
 

F.3.2 Representation 
The hash values are stored in the index as xattr key/value pairs.  The name of the key shall be the full EA 
name, and the value shall be a UTF-8 encoded hexadecimal string representation of the message digest, 
of the length shown in Table F.1 — Hash Types above. 
 
Example: 
<xattr> 

 <key>ltfs.hash.md5sum</key> 

 <value>43aba6a17650519558fede41dd10d400</value> 

</xattr> 

 

F.4 LTFS Media Pools 

A storage system may combine LTFS volumes into media pools. One reason for doing so might be to 
create a file system which spans multiple volumes and whose capacity may be increased by adding 
volumes to the media pool. If an LTFS volume belongs to a media pool, and that membership is to be 
persistent outside of the storage system, then there needs to be a way of identifying the media pool to 
which the LTFS volume belongs. 

 

When working with media pools, because the media pool name may be changed, the media pool UUID is 
considered to be definitive when determining whether volumes reside in the same media pool. 

F.4.1 Media Pool Membership of a Volume 

The media pool name to which an LTFS volume belongs may be stored in an extended attribute for the 
root directory element in an index (see 9.2). as follows: 

 
<xattr>  

<key>ltfs.mediaPool.name</key>  
<value>name</value>  

</xattr> 
 
Example: 
<xattr> 

<key>ltfs.mediaPool.name</key> 
<value>Animation</value> 

</xattr> 

 



 

88 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

The UUID of the media pool to which an LTFS volume belongs may be stored in an extended attribute for 
the root directory element in an index (see 9.2). as follows: 

 
<xattr>  

<key>ltfs.mediaPool.uuid</key>  
<value>uuid</value>  

</xattr> 
 
Example: 
<xattr> 

<key>ltfs.mediaPool.uuid</key> 
<value>8c55c141-8cff-4312-b4ec-b18a335f495d</value> 

</xattr> 

 

 
F.4.1.1 Media Pool MAM Attributes  

 

The name of the media pool to which a volume belongs may optionally be stored in the Media Pool MAM 
host type attribute (see Section 10.4 Use of Host-type Attributes for LTFS). If set, this attribute shall be 
left-aligned and null-terminated, and its value should be consistent with the value of the 
ltfs.mediaPool.name extended attribute for the root directory element in an index (see Section 9.2). 

In addition, application-specific additional information may optionally be stored in the Media Pool MAM 
host type attribute, with or without the name of a media pool.  If additional information is stored in the 
Media Pool MAM attribute, it must be enclosed in square brackets (“[“ and “]”), and must immediately 
precede the null terminator for the attribute.  For example, if the Media Pool MAM attribute contains both 
a pool name and additional information, the values are stored as: 

 media pool name[additional information] 

If this attribute contains only additional information, it is stored as: 

 [additional information] 

If the Media Pool MAM attribute does not contain any additional information, it should not contain the 
square bracket delimiters.  Square brackets are reserved characters for this MAM attribute, and may not 
be used in the media pool name or additional information values.  The additional information value, if any, 
is never stored in the LTFS index. 

 If the number of bytes required to store the media pool name (or the combination of the media pool name 
and the additional information) exceeds the available attribute storage size of 160 bytes, then the media 
pool name stored in the attribute shall be truncated at the most appropriate character boundary. For an 
example of this host type attribute, see Section 10.4.11 Example attributes. 

Writing to the ltfs.mediaPool.name extended attribute updates the values of both the extended attribute in 
the LTFS index and the media pool name portion of the Media Pool MAM attribute.  The  additional  
information value of the Media Pool MAM attribute is written and read using the 
ltfs.mediaPool.additionalInfo extended attribute.  Writing the ltfs.mediaPool.name extended attribute 
should attempt to preserve any existing additional information previously written to the Media Pool MAM 
attribute through the use of the ltfs.mediaPool.additionalInfo extended attribute. 

The UUID of the media pool to which a volume belongs may optionally be stored in the Media Pool 
Globally Unique Identifier host type attribute (see Section 10.4 Use of Host-type Attributes for LTFS). This 
value should be consistent with the value of the ltfs.mediaPool.uuid extended attribute for the root 
directory element in an index (see Section 9.2). 



 

LTFS Format Specification SNIA Technical Position 89 
Version 2.5 

Annex G (informative) Character representations 

This annex describes how various characters are expected to be expressed in an LTFS index, both for 
implementations which comply with version 2.3 or later of this specification, and for implementations 
complying with previous versions. 

Table G.1 — Character representations : version 2.3 or later 

Hex Character 
File name, 

Directory name, 
Name pattern4 

Symlink target 
name 

Extended 
Attribute name 

00 NUL Not allowed 
01 SOH Percent encode 
02 STX Percent encode 
03 ETX Percent encode 
04 EOT Percent encode 
05 ENQ Percent encode 
06 QCK Percent encode 
07 BEL Percent encode 
08 BS Percent encode 
09 TAB Allowed 
0A NL Allowed 
0B VTAB Percent encode 
0C NP Percent encode 
0D CR Allowed 
0E SO Percent encode 
0F SI Percent encode 
10 DLE Percent encode 
11 DC1 Percent encode 
12 DC2 Percent encode 
13 DC3 Percent encode 
14 DC4 Percent encode 
15 NAK Percent encode 
16 SYN Percent encode 
17 ETB Percent encode 
18 CAN Percent encode 
19 EM Percent encode 
1A SUB Percent encode 
1B ESC Percent encode 
1C FS Percent encode 
1D GS Percent encode 
1E RS Percent encode 
1F US Percent encode 
22 " XML Entity replacement 
25 % Percent encode or Allowed 1 



 

90 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Hex Character 
File name, 

Directory name, 
Name pattern4 

Symlink target 
name 

Extended 
Attribute name 

26 & XML Entity replacement 
27 ' XML Entity replacement 
2F / Not allowed Allowed3 Allowed 
3A : Percent encode 
3C < XML Entity replacement 
3E > XML Entity replacement 

All other characters2 Allowed 
 

NOTE 1 When writing an index, if the percent character is present in a name and no other characters in the name require percent-
encoding, an implementation may choose whether to use the percent character as-is (without encoding) or to percent-encode it (i.e. 
represent as %25).  When reading and parsing an index, an implementation should accept either and treat them as equivalent. 

NOTE 2 Although other characters could be percent-encoded, it is strongly recommended that they should be used as-is (without 
encoding) to minimize backward compatibility issues with implementations conforming to earlier versions of the standard. 

NOTE 3 The forward slash character is allowed in the symlink target name, but the name of the file which contains the symlink 
element follows the same rules as for other file & directory names (i.e. the forward slash character is not allowed). 

NOTE 4 See Section 7.5 for the description of the name pattern format. 

 

Table G.2 — Character representations : version 2.2 or earlier 

Hex Character 
File name, 

Directory name, 
Name pattern 

Symlink target 
name 

Extended 
Attribute name 

00 NUL Not allowed 
01 SOH Not allowed 
02 STX Not allowed 
03 ETX Not allowed 
04 EOT Not allowed 
05 ENQ Not allowed 
06 QCK Not allowed 
07 BEL Not allowed 
08 BS Not allowed 
09 TAB Allowed 
0A NL Allowed 
0B VTAB Not allowed 
0C NP Not allowed 
0D CR Allowed 
0E SO Not allowed 
0F SI Not allowed 
10 DLE Not allowed 
11 DC1 Not allowed 



 

LTFS Format Specification SNIA Technical Position 91 
Version 2.5 

Hex Character 
File name, 

Directory name, 
Name pattern 

Symlink target 
name 

Extended 
Attribute name 

12 DC2 Not allowed 
13 DC3 Not allowed 
14 DC4 Not allowed 
15 NAK Not allowed 
16 SYN Not allowed 
17 ETB Not allowed 
18 CAN Not allowed 
19 EM Not allowed 
1A SUB Not allowed 
1B ESC Not allowed 
1C FS Not allowed 
1D GS Not allowed 
1E RS Not allowed 
1F US Not allowed 
22 " XML Entity replacement 
25 % Allowed 
26 & XML Entity replacement 
27 ' XML Entity replacement 
2F / Not allowed 
3A : Not allowed 
3C < XML Entity replacement 
3E > XML Entity replacement 

All other 
characters Allowed 

 



 

92 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

Annex H (informative) Incremental Indexes 

This annex describes Incremental Indexes: the motivation behind them, their impact on compatibility with 
earlier versions of LTFS, hints for processing them, and whatever other information on the subject the 
authors consider useful.  Some of this information is a restatement of information found elsewhere in this 
specification, and is included here in an attempt to collect much of the information relevant to Incremental 
Indexes in a single place. 

H.1 Background 

LTFS implementations periodically write copies of the file system’s volatile state to the Data Partition of 
the tape, in the form of an LTFS Index.  There are two major reasons for doing this: most importantly, to 
provide a recovery point for the file system in the case of a system failure, but also to provide a roll-back 
point for accessing an earlier state of the tape volume (either permanently or temporarily).  As tape media 
has continued to grow in capacity, the number of files written to the tape volume has likewise tended to 
increase.  Because any copy of the index written to tape has historically been required to contain the full 
state of the file system, the size of the index (and the time taken to write it) have also been growing, to the 
point where the overhead of indexes in the data partition has become problematic for some installations.   

As a result, versions of LTFS claiming compliance with version 2.5.0 or later of the LTFS format 
specification are required to support Incremental Indexes.  (We refer to a traditional LTFS index, which 
contains a full copy of the file system state, as a Full Index.)  An Incremental Index contains only the 
information necessary to update the file system from its state at the previous index (either Full or 
Incremental) to its state at the time the Incremental Index is written; i.e., it contains only the changes to 
the file system since the previous index was written to tape.  

Incremental Indexes are only written in the Data Partition, and are never written in order to create a 
consistent volume suitable for unmounting.  Thus, the Index at the end of the Data Partition on a 
consistent volume must always be a Full Index (as, of course, must all of the indexes in the Index 
Partition). 

Versions of LTFS claiming compliance with version 2.5.0 or later are not required to create Incremental 
Indexes (though their implementors are strongly encouraged to do so).  However, such implementations 
are required to recognize and correctly process Incremental Indexes when they are encountered in a 
Data Partition.   

H.2 Backwards Compatibility 

Changing the format of an index on an LTFS volume has serious implications for backwards compatibility, 
specifically for the ability of an earlier implementation to read data from a later volume.  Therefore 
Incremental Indexes have been merged into the LTFS format with the specific goal of minimizing their 
impact on backwards compatibility with earlier implementations. 

Of course, Incremental Indexes do not completely replace traditional Full Indexes; they exist in the Data 
Partition along with Full Indexes.  At the very least, an implementation must ensure that there are current 
Full Indexes in both the Data and Index Partitions every time the the volume is made consistent (ready for 
unmount).   
NOTE: We expect an implementation to continue to write Full Indexes to the Data Partition periodically (perhaps after every 5-10 
Incremental Indexes).  The reason for this is the overhead of recovery (or roll-back) using Incremental Indexes: in order to recover to 
the point of an Incremental Index the LTFS system must locate the most recent Full Index prior to the desired Incremental Index, 
process that Full Index, then apply the changes from each subsequent Incremental Index until the desired Incremental Index has 
been processed.   

Because a consistent volume must have Full Indexes both in the Index Partition and at the end of the 
Data Partition, mounting and processing a consistent volume containing Incremental Indexes will pose no 
problem for earlier LTFS implementations. 

In earlier versions of the LTFS format the Index back pointer (previousgenerationlocation) forms an 
unbroken chain of back pointers to the first index written in the Data Partition.  This chain is preserved in 



 

LTFS Format Specification SNIA Technical Position 93 
Version 2.5 

the current version, with the added provision that the chain includes only Full Indexes.  Thus, an earlier 
implementation of LTFS processing this back-chain will operate correctly, and will be able to access any 
Full Index in the chain.  However, the earlier implementation will skip over all of the Incremental Indexes 
on the volume.  As a result, an earlier implementation processing a volume with Incremental Indexes will 
find far fewer points to which it can roll back than will a current implementation. 

Depending on how recovery processing is implemented, an earlier implementation attempting to recover 
an inconsistent volume containing Incremental Indexes will likely have one of two outcomes: it may fail 
due to not immediately finding a recognizable (Full) index where it expects one, or it may succeed by 
continuing to search the tape volume until it encounters a recognizable index.  In the latter case, while 
recovery will succeed, there will be a loss of data due to the recovery process skipping Incremental 
Indexes which it does not recognize.   

Neither of these is an ideal outcome.  In practice, however, this is unlikely to be a problem, as it is 
improbable that an inconsistent volume would be moved to an environment running an earlier version of 
LTFS before being recovered.  (It may also be possible to use the latest version of an LTFS recovery 
utility, e.g. ltfsck, in an environment that continues to run an earlier implementation of LTFS; this would 
allow proper recovery of volumes containing Incremental Indexes even in such an environment.) 

In summary, the steps taken to mitigate backwards compatibility issues make it probable that earlier LTFS 
implementations will be able to process volumes containing Incremental Indexes correctly and without 
issues. 

H.3 Traversing the Index Back Pointer Chain 

During rollback and potentially during recovery processing it may be necessary to follow the 
index back chain to a desired index.  In earlier versions of LTFS this was done by simply 
following the previousgenerationlocation element pointer.  However, version 2.5.0 of the LTFS format 
specification introduces a second index back pointer, previousincrementallocation.   
NOTE: Every index (except the first one written in the Data Partition) will continue to contain a previousgenerationlocation 
element, and that element will always point to the preceding Full Index.   

This previousincrementallocation element may occur in either a Full or Incremental Index, and if 
present, it indicates that the index written immediately before the one in which it occurs was an 
Incremental Index and provides a pointer to it.  If this element exists, it should be used as the index back 
chain pointer in order to traverse all of the indexes in the chain.  Only when this element does not exist (or 
when, for some reason, it is necessary to skip over Incremental Indexes) should the 
previousgenerationlocation pointer be used.  (As noted in Section H.2, earlier implementations of LTFS 
will only recognize the previousgenerationlocation element, and thus will only follow the Full Index 
chain.) 

Refer to Figure 7 in Section 5.4.3 Back Pointer for an illustration of index back chains with Incremental 
Indexes. 

H.4 Incremental Index Format 

The format of an Incremental Index has been kept as similar to the format of a Full Index as possible.  
With the exception of the change of the ltfsindex element to ltfsincrementalindex, the only new element 
is deleted.  The deleted element indicates that the file or directory should be deleted from the index, and 
in the case of a directory, that the entire directory sub-tree is truncated (all child objects are also deleted).  
(This is consistent with file system behavior, which does not allow the deletion of non-empty directories.) 

Although the XML elements used in Full and Incremental Indexes are almost identical, the rules 
governing the use of the XML elements are quite different.  Because a Full Index must completely 
describe the state of the LTFS file system, all of the XML elements needed to represent the state of every 
object (file or directory) in the file system are required in a Full Index.  

An Incremental Index is only required to describe the changes from the prior index.  At a high level, there 
are three cases for what XML is required to be included in an Incremental Index: 



 

94 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

• Deleted objects:  Within the object element (directory or file), the only elements that can appear 
are name and deleted. 

• New objects:  All of the information that would have been recorded in a Full Index for the new 
object must appear in the Incremental Index.   

• Modified objects:  Only the name and fileuid elements are required.  Any XML elements needed 
to describe the changed attributes of the object since the prior index was written must also be 
included. 

However, there are some additional details regarding the Incremental Index XML that are important to 
understand: 

• Because the Incremental Index is recorded in the same tree structure as a Full Index, all 
directory entries that are necessary to navigate to the correct location in the name space must 
also be included in the Incremental Index.  These unmodified directory elements should contain 
only the name and contents elements necessary for navigating the name space, and are the 
only case where an unmodified object must be included in an Incremental Index. 

• In the prior discussion, objects are described as either deleted, new, or modified; those definitions 
are from a file system name space point of view.  When an object is moved (or renamed) from 
one location in the name space to another, we tend not to think of it as a new object; it has the 
same attributes, including its fileuid, as before it was moved.  From a name space view, though, 
the object has been deleted from its original location, and has been added to its new location.  An 
Incremental Index must represent it in that way: it must be deleted from its old location, and 
added as a new object in its new location.  For a file, this is simply one file element with a name 
and deleted element, and another file element with all of the information for the file, including the 
original fileuid.  For a directory, this is also a single directory element with a name and deleted 
element, however the new directory element must contain all of the information for the entire 
name space subtree that was moved.  (Admittedly, this could be quite large, but no larger than 
what would have been recorded in a Full Index). 

• For modified objects, ideally the Incremental Index would contain only those elements whose 
value has actually changed since the prior index.  Practically speaking, this goal may be 
impossible, since it could require having some type of “change bit” for each possible value in the 
index.  Implementations should strive to write as little information as is practical for modified 
objects; however, writing more information than is actually needed is harmless, and impacts only 
the size of the Incremental Index. 

• In order to avoid ambiguity, the extentinfo and extendedattributes elements, if  included in an 
Incremental Index, must occur in their entirety. 

• Only a single entry for a given name in the name space should appear in the index.  Thus, if 
object “foo” is deleted and a new object “foo” (with a different fileuid) is created in its place, only 
the new entry for the object should be included in the Incremental Index.  (An object with the 
same name as in the prior index but a different fileuid implies deletion of the prior object and 
addition of the new one; refer to the processing shown in Figure H.1.) 

• A minimal (i.e., empty) Incremental Index must contain (besides the required Preface section) the 
directory element for the volume root directory, and a name and an empty contents element for 
that directory.  (As in a Full Index, the name element contains the LTFS volume name).  This is 
illustrated in the following XML document for an empty Incremental Index (omitting the Preface): 



 

LTFS Format Specification SNIA Technical Position 95 
Version 2.5 

<?xml version="1.0" encoding="UTF-8"?> 
<ltfsincrementalindex version="2.5.0"> 
...  
 <directory> 
  <name>LTFS Volume Name</name> 
  <contents></contents> 
 </directory> 
</ltfsincrementalindex> 

 
As a further example, the following XML document shows an Incremental Index which records the 
addition of a second data block to an existing file file_1 in directory dir_B, which is itself a child of the 
directory dir_A located at the root of the volume.  All other contents of the volume are unchanged. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<ltfsincrementalindex version="2.5.0">  
... 
 <directory> 
  <name>LTFS Volume Name</name> 
  <contents> 
   <directory> 
    <name>dir_A</name> 
    <contents> 
     <directory> 
      <name>dir_B</name> 
      <contents> 
       <file> 
        <fileuid>131</fileuid> 
        <name>file_1</name> 
        <length>512</length> 
        <modifytime>2019-01-23T16:24:31.228983707Z</modifytime> 
        <changetime>2019-01-23T16:24:31.228983707Z</changetime> 
        <extentinfo> 
         <extent> 
          <partition>b</partition> 
          <startblock>18</startblock> 
          <byteoffset>0</byteoffset> 
          <bytecount>256</bytecount> 
          <fileoffset>0</fileoffset> 
         </extent> 
         <extent> 
          <partition>b</partition> 
          <startblock>49</startblock> 
          <byteoffset>0</byteoffset> 
          <bytecount>256</bytecount> 
          <fileoffset>256</fileoffset> 
         </extent> 
        </extentinfo> 
       </file> 
      </contents> 
     </directory> 
    </contents> 
   </directory> 
  </contents> 
 </directory> 
</ltfsincrementalindex> 
 
 

H.5 Processing Incremental Indexes 

As has already been stated, versions of LTFS claiming compliance with version 2.5.0 or later of the LTFS 



 

96 SNIA Technical Position LTFS Format Specification 
  Version 2.5 

format specification must be able to process Incremental Indexes during recovery and roll-back 
processing.  It has also been explained that this process must begin by processing the preceding Full 
Index, then successively applying changes from the chain of desired Incremental Indexes.   

The format of the Incremental Index has been designed not only to minimize the space taken on tape, but 
also to make the application of the index to an existing file system state relatively straightforward.   

The flowchart in Figure H.1 shows the high-level flow of Incremental Index application that was developed 
for a prototype implementation.  In this figure, the term “dentry” refers to an entry in the file system 
metadata to which the index is to be applied (often in memory); the term “object” refers to either a file or 
directory element encountered in the Incremental Index.  Processing starts by passing the “root” 
directory element of the LTFS volume (refer to Section 9.2.3 Required elements for every index) to the 
function which applies changes to the index.  That function processes each of the objects passed to it in 
turn, deleting, adding, or updating files and directories as needed.  After processing a directory that is not 
marked as having been deleted, it immediately descends recursively into that directory (creating a depth-
first traversal of the Incremental Index tree). 
Note: There is a case in the flowchart where an object indicating a deleted file or directory is found but there is no matching dentry.  
This may appear to be an error case, but can validly occur when an object is both created and deleted in the same index generation. 

H.6 Miscellaneous 

As noted earlier, it is expected that Incremental Indexes and Full Indexes will be intermixed in the Data 
Partition.  We recommend that an implementation allow the maximum number of Incremental Indexes that 
can be written before writing a Full Index to be specified by the installation; we suggest that the 
implementation also set an upper limit on that value (such as 10).  We also recommend that a value of 
zero be used to indicate that no Incremental Indexes are to be written, making version 2.5.0 volumes 
identical to (and completely interchangeable with) earlier implementations of LTFS. 



 

LTFS Format Specification SNIA Technical Position 97 
Version 2.5 

 
Figure H.1 — Processing an Incremental Index (flowchart) 


	1 Introduction
	2  Scope
	2.1 Versions
	2.2 Conformance

	3 Normative references
	3.1 Approved references
	3.2 References under development
	3.3 Other references

	4 Definitions and Acronyms
	4.1 Definitions
	4.1.1
	4.1.2
	4.1.3
	4.1.4
	4.1.5
	4.1.6
	4.1.7
	4.1.8
	4.1.9
	4.1.10
	4.1.11
	4.1.12
	4.1.13
	4.1.14
	4.1.15
	4.1.16
	4.1.17
	4.1.18
	4.1.19
	4.1.20
	4.1.21
	4.1.22
	4.1.23
	4.1.24
	4.1.25
	4.1.26

	4.2 Acronyms

	5 Volume Layout
	5.1 LTFS Partitions
	5.2 LTFS Constructs
	5.2.1 Label Construct
	5.2.2 Data Extent
	5.2.3 Index Construct

	5.3 Partition Layout
	5.4 Index Layout
	5.4.1 Generation Number
	5.4.2 Self Pointer
	5.4.3 Back Pointer


	6 Data Extents
	6.1 Extent Lists
	6.2 Extents Illustrated
	6.2.1 Starting and ending Data Extent with full block
	6.2.2 Starting Data Extent with full block and ending with fractional block
	6.2.3 Starting and ending Data Extent in mid-block

	6.3 Files Illustrated
	6.3.1 Simple Files
	6.3.2 Shared Blocks
	6.3.3 Sparse Files
	6.3.4 Shared Data


	7 Data Formats
	7.1 Boolean format
	7.2 Creator format
	7.3 Extended attribute value format
	7.4 Name format
	7.5 Name pattern format
	7.6 String format
	7.7 Time stamp format
	7.8 UUID format

	8 Label Format
	8.1 Label Construct
	8.1.1 VOL1 Label
	8.1.2 LTFS Label
	8.1.3 Managing LTFS Labels


	9 Index Format
	9.1 Index Construct
	9.2 Index
	9.2.1 Example Full Index omitting the body
	9.2.2 Example Incremental Index omitting the body
	9.2.3 Required elements for every index
	9.2.4 Optional elements for every index
	9.2.5 Example Full Index that omits the Preface section
	9.2.6 Required directory elements for a Full Index
	9.2.7 Optional directory elements for a Full Index
	9.2.8 Required file elements for a Full Index
	9.2.9 Optional file elements for a Full Index
	9.2.10 extendedattributes elements
	9.2.11 Required and Optional elements for Incremental Indexes
	9.2.12 Example Incremental Index that omits the Preface section
	9.2.13 Managing LTFS Indexes
	9.2.14 Data Placement Policy
	9.2.15 Data Placement Policy Alteration
	9.2.16 Allow Policy Update is set
	9.2.17 Allow Policy Update is unset
	9.2.18 Data Placement Policy Application
	9.2.19 Volume Advisory Locking


	10 Medium Auxiliary Memory
	10.1 Volume Change Reference
	10.2 Volume Coherency Information
	10.3 Use of Volume Coherency Information for LTFS
	10.4 Use of Host-type Attributes for LTFS
	10.4.1 Application Vendor
	10.4.2 Application Name
	10.4.3 Application Version
	10.4.4 Text Localization Identifier
	10.4.5 User Medium Text Label
	10.4.6 Barcode
	10.4.7 Media Pool
	10.4.8 Application Format Version
	10.4.9 Medium Globally Unique Identifier
	10.4.10 Media Pool Globally Unique Identifier
	10.4.11 Example attributes

	10.5 Volume Advisory Locking

	Annex A  (normative) LTFS Label XML Schema
	Annex B (normative) LTFS Index XML Schemas
	B.1 LTFS Full Index XML Schema
	B.2 LTFS Incremental Index XML Schema

	Annex C (normative) Reserved Extended Attribute definitions
	C.1 Software Metadata
	C.2 Drive Metadata
	C.3 Object Metadata
	C.4 Volume Metadata
	C.5 Media Metadata

	Annex D (informative) Example of Valid Simple Complete LTFS Volume
	Annex E (informative) Complete Example LTFS Full Index
	Annex F (normative) Interoperability Recommendations
	F.1 Spanning Files across Multiple Tape Volumes in LTFS
	F.1.1 File Naming
	F.1.2 File Location
	F.1.3 Segment References
	F.1.4 Extended Attributes
	F.1.5 File Operations
	F.1.6 Examples
	F.1.6.1 Example 1
	F.1.6.2 Example 2
	F.1.6.3 Example 3


	F.2 File Permissions in LTFS
	F.2.1 Unix Permissions:
	F.2.2 POSIX ACLs:
	F.2.3 NFSv4 ACLs:
	F.2.4 NTFS ACLs:

	F.3 Storing File Hash Values in LTFS
	F.3.1  Extended Attributes
	F.3.2 Representation

	F.4 LTFS Media Pools
	F.4.1 Media Pool Membership of a Volume
	F.4.1.1 Media Pool MAM Attributes



	Annex G (informative) Character representations
	Annex H (informative) Incremental Indexes
	H.1 Background
	H.2 Backwards Compatibility
	H.3 Traversing the Index Back Pointer Chain
	H.4 Incremental Index Format
	H.5 Processing Incremental Indexes
	H.6 Miscellaneous


