

# LTFS and CDMI - Tape for the Cloud

David Slik NetApp, Inc.

## **Session Agenda**



- Why Tape?
- Tape as a Cloud Protection Backing Store
- Tape as a Cloud Cold Storage Tier
- Tape for Bulk Transport
- Object Storage for LTFS
- Demo







- Isn't Tape Dead?
  - Not where it costs less then the alternatives!
- □ For **PB Scale Archives**, tape has significant economic savings compared to disk:
  - Lower capital cost (\$/GB),
  - Lower power & cooling costs, and a
  - Longer amortization period



### □ In 2013, 2 PB crossover: Disk CapEx > Tape

| Cost Analysis              | Disk          | Таре          |
|----------------------------|---------------|---------------|
| Equipment Cost             | \$198,000 (1) | \$123,200 (2) |
| Media Cost                 | \$0           | \$73,300 (3)  |
| Replacement Costs per year | \$66,000 (4)  | \$19,650 (5)  |
| Power and Cooling per year | \$7,154 (6)   | \$1,208 (7)   |
| Floor Space Cost per year  | \$13,650 (8)  | \$3,900 (9)   |
| Maintenance Costs per year | \$39,600 (10) | \$24,640 (10) |
| Total Capital Costs        | \$198,000     | \$196,500     |
| Per year Costs             | \$126,404     | \$49,398      |

http://snia.org/sites/default/files/Cloud lapeUseCases\_v1.0.pdf

### □ Tape OpEx is almost 1/3 that of Disk



- Tape has flourished in several vertical market niches:
  - Oil and Gas: Tape is environmentally robust and easy to safely transport in harsh environments
  - Media & Entertainment: Tape simplifies workflows and data exchange
  - Archiving & Preservation: Tape provides low bit error rates and long shelf life for large scale archives



- □ So, to summarize:
  - If you have many PB's of archival data, tape makes sense
  - If you need to physically move data around, tape makes sense
  - If you need a long shelf life, tape makes sense

## Tape and cloud



- If you are a cloud provider, you have several challenges:
- 1. How do you protect against data loss?
- 2. How do you provide lower cost offerings?
- 3. How do you bulk transfer data between/into/out of the cloud?

# Tape can help!

### **Cloud Protection Tier**



- Scenario 1 Reducing cost for data protection
- Assume you are a cloud provider and you want to reduce the probability of customer data loss.
  - Your options are:
    - 1. Deploy more disks and mirror
    - 2. Deploy tape and archive
- □ Google chose #2, and it saved more than money

For more details, search for: "gmail outage 2011 tape"

### **Cloud Protection Tier**



- As tape has higher latency, a cloud provider must still have disk storage
- To handle common failures and maintenance activities, at least two disk locations are required
- However, two disk locations are insufficient to provide sufficient survivability and fault isolation
  - Tape reduces the cost of additional copies
  - Tape reduces the probability of cascading failures that corrupt/destroy all copies

### **Cloud Archival SLO**



- □ Scenario 2 Reduced Cost Storage
- If data is stored directly to tape (or through a small staging area), savings can be passed on to the customer
- This allows a cloud service provider to offer a lower-cost differentiated service, similar to what Amazon has done with their Glacier offering

### **Cloud Protection Tier**



- A couple of important restrictions:
  - This only works for infrequently accessed data. If data is randomly access at a frequent enough rate, tape wear will increase costs due to media replacement rates
  - This only works for data where high latencies can be tolerated by the customer
  - This requires different software interfaces in older to handle the higher latency, typically involving notifications of data availability

### **Cloud Protection Tier**



- LTFS standardization reduces complexity, simplifies development, and enables new service offerings:
  - □ For example, if customer data is stored on standard tapes, in a standard format, that opens the option for a customer to request that the tapes (or copies of the tapes) be sent to them

Which leads us into our third and final scenario...



- □ Scenario 3 Bulk Cloud transfer
- Q. How do you get large amounts of data in and out of the cloud?
- A. Slowly and expensively!
- □ This is a significant problem for organizations that generate more data then they have bandwidth to send, and when they need to retrieve large amounts of data quickly.



### □ Transferring 2 PB over an OC-12 Link

| Cost Analysis                 | Network      | Таре                             |
|-------------------------------|--------------|----------------------------------|
| Provisioning Cost             | \$0          | \$0                              |
| Provisioning Time             | 0 Days       | 0 Days                           |
| On-Site Data Preparation Cost | \$0          | \$73,300 for tape cartridges (1) |
| On-Site Data Preparation Time | 0 Days       | 10.3 Days (2)                    |
| Transfer Cost                 | \$61,700 (3) | \$6,000 (4)                      |
| Transfer Time                 | 370 Days     | 2 Days                           |
| Cloud Storage Cost            | \$0          | \$9,900 (5)                      |
| Cloud Storage Time            | 0 Days       | 10.3 Days (2)                    |
| Total Cost                    | \$61,700     | \$89,200                         |
| Total Time                    | 370 Days     | 23 Days                          |

http://snia.org/sites/default/files/CloudTapeUseCases\_v1.0.pdf

Save time!



### □ Transferring 10 TB over an 10 Mbit/sec Link

| Cost Analysis                 | Network     | Таре                          |
|-------------------------------|-------------|-------------------------------|
| Provisioning Cost             | \$0         | \$0                           |
| Provisioning Time             | 0 Days      | 0 Days                        |
| On-Site Data Preparation Cost | \$0         | \$366 for tape cartridges (1) |
| On-Site Data Preparation Time | 0 Days      | 1 Day (2)                     |
| Transfer Cost                 | \$1,852 (3) | \$52 (4)                      |
| Transfer Time                 | 92.6 Days   | 2 Days                        |
| Cloud Storage Cost            | \$0         | \$50 (5)                      |
| Cloud Storage Time            | 0 Days      | 1 Day (2)                     |
| Total Cost                    | \$1,852     | \$468                         |
| Total Time                    | 92.6 Days   | 4 Days                        |

http://snia.org/sites/default/files/CloudTapeUseCases\_v1.0.pdf

Save time AND money!



- □ The LTFS TWG is working on a standard way to transfer collections of data:
  - An XML manifest that describes:
    - ■Which tapes are used to store the data
    - Which files, directories and objects are being transferred
    - □ Fixity and integrity verification information
    - Instructions on how to merge data into an existing namespace
  - A standard workflow for bulk data transfer

### **Demonstration**





## **Ruby Cloud -> LTFS Transfer Demonstration**



- LTFS provides:
  - Standardized POSIX-style directory and files
  - Standard file metadata and ACL storage
  - Standard tape spanning for large files
- This reduces the complexity of using tape as a backing store, and simplifies development
- The LTFS TWG has begun an effort to standardize how objects are stored on tape



- Storing objects on LTFS adds:
  - Support for rich metadata
  - ID-based namespaces for object access
  - Support for composite objects (Queues, etc)
  - Support for object versioning
- This allows objects from object storage systems using Azure, CDMI, S3, and Swift to be stored on LTFS and accessed in a standard way



- CDMI <-> LTFS Mapping Examples:
  - CDMI Named Data Object "LTFS.pdf"
  - CDMI Unnamed Data Object "00007ED90..."
  - CDMI Container "SDC 2013"
  - CDMI Queue "Messages"
- □ S3 & Swift mappings in the works
  - Standard Header Metadata mapping



- CDMI Named Data Object "LTFS.pdf"
  - Metadata "Author" : "LTFS TWG"
- LTFS Layout:

| 1    |                                        | LTFS Root                               |
|------|----------------------------------------|-----------------------------------------|
| /LTF | S.pdf                                  | LTFS file with object name as file name |
|      | Itfs.vendor.cdmi.objectid              | "00007ED90010F0E4FA063BCEB659D6ED"      |
|      | Itfs.vendor.cdmi.mimetype              | "application/pdf"                       |
|      | Itfs.vendor.cdmi.metadata              | {"Author" : "LTFS TWG"}                 |
|      | ltfs.vendor.cdmi.valuetransferencoding | "Base64"                                |
| /cdn | ni_objectid/                           | Object ID Container                     |
| /cdm | ni_objectid/00007ED90010F0E4FA0        | Symlink to /LTFS.pdf                    |



- CDMI Unnamed Data Object "00007ED90..."
  - Metadata "Conference": "SDC"
- LTFS Layout:

| /    |                                        | LTFS Root                             |
|------|----------------------------------------|---------------------------------------|
| /cdn | ni_objectid/                           | Object ID Container                   |
| /cdn | ni_objectid/00007ED90010A49F2A0        | LTFS file with object ID as file name |
|      | Itfs.vendor.cdmi.objectid              | "00007ED90010F0E4FA063BCEB659D6ED"    |
|      | Itfs.vendor.cdmi.mimetype              | "application/pdf"                     |
|      | ltfs.vendor.cdmi.metadata              | {"Conference" : "SDC"}                |
|      | ltfs.vendor.cdmi.valuetransferencoding | "Base64"                              |



- □ CDMI Container "SDC2013"
  - Metadata "cdmi\_latency" : "1000000"
- LTFS Layout:

| /    |                                  | LTFS Root                          |
|------|----------------------------------|------------------------------------|
| /SD0 | C2013/                           | LTFS directory                     |
|      | Itfs.vendor.cdmi.objectid        | "00007ED900105E38846F7EAA6C061CA7" |
|      | Itfs.vendor.cdmi.metadata        | {"cdmi_latency" : "1000000"}       |
| /cdm | ni_objectid/                     | Object ID Container                |
| /cdm | ni_objectid/00007ED900105E38846F | Symlink to /SDC2013/               |



- CDMI Queue "Messages"
- LTFS Layout:

| /    |                                        | LTFS Root                                    |
|------|----------------------------------------|----------------------------------------------|
| /Mes | ssages                                 | LTFS file with queue name as file name       |
|      | ltfs.vendor.cdmi.objectid              | "00007ED90010A49F2A0F1F996095A626"           |
| /Mes | ssages.cdmi_queue/                     | LTFS directory for queue values              |
| /Mes | ssages.cdmi_queue/0                    | LTFS file corresponding to first queue value |
|      | Itfs.vendor.cdmi.mimetype              | "text/plain"                                 |
|      | ltfs.vendor.cdmi.valuetransferencoding | "UTF8"                                       |
| /Mes | ssages.cdmi_queue/1                    | LTFS file corresponding to next queue value  |
|      | ltfs.vendor.cdmi.mimetype              | "text/plain"                                 |
|      | ltfs.vendor.cdmi.valuetransferencoding | "UTF8"                                       |
| /cdm | ni_objectid/                           | Object ID Container                          |
| /cdm | ni_objectid/00007ED90010A49F2A0        | Symlink to /Messages                         |

### **Next Steps**



- Read the SNIA Cloud Tape Use Cases document:
  - http://snia.org/sites/default/files/CloudTapeUseCases\_v1.0.pdf
- Join the SNIA Joint Cloud/LTFS Technical Working Group
- Active projects include:
  - Cloud Data Transfer Workflow & XML
  - Object storage for LTFS Tape

### **Thank You!**



# **Questions and Answers**

Contact Info: dslik@netapp.com