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Data Integrity Reference Model 
1 Introduction 

1.1 Scope 
This document describes a model for how data integrity can be protected between an Application 
client and a storage device.  If all nodes in an implementation follow this model then there will be 
end-to-end data protection for the following class of data integrity errors:  

a. silent data corruption: 

a. in flight; and 

b. at rest; 

b. wrong address on device; and 

c. buffer corruption. 

While this model does address most of the common data integrity errors, in the current 
embodiment it does not address all possible errors.  Some examples of errors that are not 
handled are: stale data caused by lost writes or fractured writes greater than a block, some 
cases of systematic miss-addressing between nodes. The model does not attempt to detect 
errors that are detected by the underlying storage protocol. 

1.2 Definition of Terms 
1.2.1 Address Stamp: the information that validates the locale of the data within a 

specific domain. As applied to the T10 Data Protection model this is the Logical 
Block Reference Tag. 

1.2.2 Application Stamp: information that is assigned by the application to validate 
the originator of the data. As applied to the T10 Data Protection model this is the 
Logical Block Application Tag.  

1.2.3 Blocking: a property of a node in which the node, by design, does not pass Data 
Integrity Meta Data.   

1.2.4 Combined protection envelope: multiple contiguous protection envelopes that 
allow data and associated Data Integrity Metadata to flow through them while allowing  
modifications of the Data Integrity Metadata. 

1.2.5 Converting: a property of a node in which the node modifies the Data Stamp 
received to a different Data Stamp that is transmitted. 

1.2.6 Data Channel: The logical and physical components that Data are transferred 
through. 
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1.2.7 Data Consumer: a component that is the final destination for data (e.g., 
application or storage device).  

1.2.8 Data Integrity Metadata: consists of Data Stamp, Application Stamp, and 
Address Stamp. 

1.2.9 Data Producer: a component that is the initial source of data (e.g., application or 
storage device) 

1.2.10 Data Stamp: the information (e.g., checksum, CRC, or hash code) that validates 
the data within the protection envelope. As applied to the T10 Data Protection model 
this is the Logical Block Guard.  

1.2.11 Error Handling Domain: a portion of a Protection Envelope that includes an 
Error Handling node, a Verifying node, and a Generating node. The Error Handling 
Domain is instantiated by an Error Handling node when it originates a protected I/O 
request and is deinstantiated upon return of completion status to the Error Handling 
node. See 8.2. 

1.2.12 Error Handling: a property of a node in which the node receives error 
notification from a Verifying node and processes data integrity errors. 

1.2.13 Generating: a property of a node in which the node generates Data Integrity 
Metadata. 

1.2.14 Initiating: a property of a node in which the node requests a protected transfer. 

1.2.15 node: a component of a data integrity environment. 

1.2.16 Passing: a property of a node in which the node passes data and Data Integrity 
Metadata un-modified. 

1.2.17 Protection Envelope: all of the components that allow data and associated Data 
Integrity Metadata to flow through them without any modification of the  Data Stamp & 
Application Stamp. 

1.2.18 Protection Information Channel: The logical and physical components that 
Data Integrity Metadata are transferred through.  

1.2.19 Receiving: a property of a node in which the node receives data and Data 
Integrity Metadata and is the termination of the Combined protection envelope. 

1.2.20 Translating: a property of a node in which the node modifies the Address Stamp 
in the Data Integrity Metadata received to a different Stamp in the Data Integrity 
Metadata that is transmitted. 

1.2.21 Verifying: a property of a node in which the node verifies the Data Integrity 
Metadata that is associated with the data and passes errors to the Error Handling node 
of the Error Handling Domain. 
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1.3 INCITS T10 Protection Information Model 

The T10 Protection Information Model is an optional set of features in the SCSI 
Block Commands protocol (SBC) that provide 8 bytes of extra storage per 
protection information interval.  The 8 bytes are arranged into a 16-bit CRC called 
the guard tag (Data Stamp), a 16-bit application tag (Application Stamp) and 32-
bit reference tag (Address Stamp). The format of the guard tag and the reference 
tag are defined in SBC, allowing initiators and targets to verify that data integrity 
has been preserved. 

1.4 Data Integrity Extensions (DIX) 
The T10 Protection Information Model only concerns itself with communication between 
a SCSI initiator and a target. The Data Integrity Extensions define a mechanism that 
allows an operating system to exchange Data Integrity Metadata with a SCSI initiator, 
thus enabling end-to-end data integrity protection.  

Note that DIX is a specific implementation and may not map into this model. See 
http://oss.oracle.com/projects/data-integrity/dist/documentation/dix.pdf for more 
information on DIX. 

2 Model Description 

2.1 Overview 

The purpose of the data integrity model is to define a set of mechanisms which 
ensure preservation of the data integrity of an I/O request as it is transferred from 
the application to the physical storage and vice versa. 

The I/O stack consists of an arbitrary number of connected nodes: User 
applications, system libraries, filesystems, logical volume managers, host 
adapters, storage network switches, storage arrays and disk drives are examples 
of nodes. 

Data integrity is protected by attaching additional information to each I/O request.  
This extra information, known as Data Integrity Metadata, consists of a set of 
parameters that can be used to verify that the data buffer and the control path are 
in agreement and that the integrity of the data buffer has been preserved. There 
may be a handoff of the Data Integrity Metadata between protection envelopes, 
because it may not be feasible for the content of the Data Integrity Metadata to be 
identical between connected nodes. 

A handoff is the process that occurs with the Data, Address, and Data Integrity 
Meta Data of an I/O transaction in a node that is both a Receiving node and a 
Generating node (i.e., Converting node or Translating node). 

http://oss.oracle.com/projects/data-integrity/dist/documentation/dix.pdf
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A protected handoff is a handoff where Data Integrity Meta Data that is to be 
transmitted is generated before the validation of the received Data Integrity Meta 
Data in such a way that any intervening data corruption is detected.  

An unprotected handoff is a handoff where it is possible that neither of the 
protection envelopes detects an error introduced during the handoff (e.g., the 
data is outside the protection envelope during the handoff). 
A combined protection envelope is two or more adjoining protection envelopes 
where a protected handoff is performed by the nodes in each pair of adjoining 
envelopes. 

The full path of an I/O request between the application and the storage may be 
protected by 1 or more protection envelopes. These protection envelopes may 
provide 0 or more combined protection envelopes. If this path consists of exactly 
1 protection envelope or exactly 1 combined protection envelope with all nodes in 
the I/O stack included, then data integrity is protected over the full path. 

Each node in the I/O stack can have one or more data integrity properties. The 
properties are specific to a particular I/O request and a node can have a different 
set of properties for other I/O requests. The properties that a node may have are: 

a) Blocking; 

b) Converting; 

c) Error Handling; 

d) Generating; 

e) Initiating; 

f) Passing; 

g) Receiving; 

h) Translating; and 

i) Verifying. 

The following examples use Data Integrity Extensions and INCITS T10 Protection 
Information; however, other protection information models may be used for any of the 
protection envelopes. 
 
Figure 1 shows the different nodes in an example system and the properties of those 
nodes when only the INCITS T10 Protection Information Model is implemented. 
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Figure 1 INCITS T10 Protection Information Model 

 
Figure 2 shows the different nodes in an example system and the properties of those 
nodes when only the Data Integrity Extensions are implemented. 
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Figure 2 Data Integrity Extensions 

 
Figure 3 shows the different nodes in an example system and the properties of those 
nodes when the Data Integrity Extensions are implemented in the server and the 
INCITS T10 Protection Information Model is implemented internally in the disk array. 
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Figure 3 Data Integrity Extensions with T10 Protection Information inside 

array 
 
Figure 4 shows the different nodes in an example system and the properties of those 
nodes when the Data Integrity Extensions are implemented in the server and the 
INCITS T10 Protection Information Model is implemented between the HBA and the 
disk array and the INCITS T10 Protection information is passed to the disk drive by the 
disk array controller. This provides protection from the application to the physical media 
where the data is stored. 
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Figure 4 Full protection 

 

3 Use Cases 

3.1 Overview 
Multi-core processors and virtualization are leading to many big benefits within the 
industry.  This also is driving software to become more complex in dealing with multiple 
contexts, distributed work, and multi-tenant capabilities.  With these new complexities 
comes a greater potential for silent data corruption (SDC) within these systems.  This 
added flexibility makes it virtually impossible to verify the many configuration 
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permutations possible, leaving a potential for SDC. This model is being developed to 
provide mechanisms to eliminate sources of SDC. 
 

3.2 Description of Data Integrity Errors 

3.2.1 Overview 

There are three attributes associated with Data Integrity errors.  These are: 

a) Time; 

b) Type; and 

c) Location. 

3.2.2 When does data corruption occur 

There are a number of times that data corruption can occur.  Each of these times 
is associated with a reference (e.g., Twrite) for the purpose of categorizing error 
scenarios. These times include: 

a) Latent sector errors (i.e., Application is not able to read once valid data – 
I/O returns an error), which are not addressed by the SNIA Data Integrity 
Architectural Model;  

b) Silent data corruption (i.e., Data read by application is not what was last 
written), which is addressed by the SNIA Data Integrity Architectural model 
include: 

a. Corruption that occurs when an application writes data to storage 
(Twrite); 

b. Corruption that occurs when an application reads data from storage 
(Tread); and 

c. Corruption that occurs while data is at rest (Trest). 

3.2.3 Types of data integrity errors 

There are a number of types of data integrity errors.  Each of these errors is 
associated with a reference (e.g., CE) for the purpose of categorizing error 
scenarios.  The types of data integrity errors include: 
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a) Misplacement Error (ME(a,d)) – data is stored or retrieved from the wrong 
location or device. There are two variations; wrong address and wrong 
device; 

b) Content Error (CE) – data content is changed during a read or write; 

c) Lost Operation (LO) – data write operation was acknowledged written but 
was not really written; and 

d) Mis-ordered Operation (MO). 

3.2.4 Location of Data Integrity Errors 

There are a number of locations where data integrity errors can originate. Each of 
these locations is associated with a reference (e.g., Lapp) for the purpose of 
categorizing error scenarios.  The locations include: 

a.  Application layer (Lapp); 

b. Operating System (Los); 

c. Host Hardware (Lhost); 

d. I/O Controller (or any storage interface) (Lioc); 

e. Storage Fabric (Lfabric); 

f. Storage Array (Larray); and 

g. Hard Disk Drive (Ldisk). 

 

3.3 Causes of Data Integrity errors addressed by this model (real 
world causes) 

3.3.1 Operating System memory mapping failure leading to wrong data going to an 
LBA 

E{ Twrite, MEa, Los} 

Modern operating systems depend on a memory management unit (MMU) in the 
host processor for segmenting system memory into user memory. The MMU 
translates virtual memory references made by user applications to system 
memory references. When an application performs a write I/O operation, it 
prepares a buffer in user space (virtual) that an I/O controller ultimately accesses 
for carrying out the write I/O operation. I/O controllers do not generally have 
access to the processor’s MMU and they either implement their own MMU, or 
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depend on the operating system kernel for translating virtual (user) addressable 
I/O buffers to system addressable addresses. The code implementing these 
translations is a potential source of bugs and there are many documented cases 
of operating system bugs pertaining to translation errors leading to the wrong 
buffer being written to a device.  

This type of error will be detected by a mis-match of the Data Stamp. 

3.3.2 Operating System memory mapping failure leading to wrong data presented to 
an application while reading a LUN. 

E{ Tread, MEd, Los}  

An operating system memory mapping failure leading to a wrong block being 
presented to an application is similar to the failure described in 3.3.1 with the 
difference being that the memory mapping failure occurs during a read operation 
rather than a write operation. In the path between I/O controller and virtual (user) 
memory, a translation bug, as described in 3.3.1 can cause the wrong block of 
memory to be presented to an application during a read operation. 

This error will be detected by a mis-match of the Data Stamp. 

3.3.3 Misplacement of valid data 

E{ T*, MEd, L*} 

Errors in hardware and logic can lead to I/O buffers being delivered to unintended 
locations. These errors can lead to good data being overwritten, or invalid data 
being presented as good data. Areas where this may happen include: 

a. I/O controller memory; 
b. Server Memory addressing; 
c. Spindle misplacement; and 
d. Storage controller firmware errors. 

 
This error will be detected by a mis-match of the: 

a) Data Stamp if this error is at a granularity below the block level; or  
b) Address Stamp. 

 

3.3.4 Host hardware failures 

E{ T*, CE, Lhost}  

Errors in hardware and logic can lead to incorrect data being delivered. These 
errors can lead to invalid data being presented as good data. Causes of this 
include: 
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a. I/O controller memory failures; and 
b. Cache coherency failures. 

This error will be detected by a mis-match of the Data Stamp. 

3.4 Causes of Data Integrity errors not covered by this model 

3.4.1 Lost write caused by storage array 

E{ Twrite, LO, Larray}  

Storage arrays commonly use a cache memory for buffering I/O operations 
between internal storage devices and the array’s I/O controllers, providing 
connections to external hosts. Array caches are also used for improving array 
performance by keeping frequently accessed data in memory. Data residing in an 
array’s cache usually also resides on the array’s storage devices. This means that 
data blocks, may exist in multiple places inside of an array. When there are 
multiple copies of a block in the array, the array firmware must keep track of 
which version of a data block is current. For example, just after receiving a block 
write operation from a host, the copy of the block in the cache may be current, 
while the version on the storage device(s) is out of date. One way in which a lost 
write is manifested is if a bug in the array firmware loses track of which version of 
a data block is current and inadvertently returns an older version of a block on a 
subsequent read operation.  Another way in which a lost write is manifested is a 
failure of a volatile write cache. 

3.4.2 Storage array mapping algorithm failure  

E{ T*, CE, Larray}  

Storage arrays may provide a mapping mechanism between the LBA provided to a LBA 
on the physical medium. If this mapping mechanism fails, then data may be written to a 
physical device with the correct Address Stamp for that physical device; or data may be 
read from the wrong address on the physical device and the Address Stamp presented 
to the upper layer will reflect the address that was requested even though the wrong 
data is presented. 
 
Storage arrays may provide a mapping mechanism between the Application Stamp 
provided and an Application Stamp on the physical medium, causing similar 
undetectable translation errors to occur. 
3.4.3 Operating System bug over-writing wrong LUN on system crash 

E{Twrite, MEd, Los}  

Operating systems often reserve a storage device, or a portion of a storage 
device for storing the memory contents of an operating system after a crash. A 
LUN reserved for an application can be corrupted, if through an incorrect 
configuration the reserved device was not large enough for the contents of the 



 

Architectural Model for Data Integrity SNIA Technical Proposal 11 
Version 1.0 

operating system memory, and because of an operating system bug the memory 
dump operation can overwrite a normal application LUN. 

3.4.4 Administrative Error 

E{Twrite, MEd, Lapp}  

A frequent cause for the loss of data integrity is through an administrative error. 
Many people in an I/T organization have operational privileges enabling them to 
execute destructive actions that can lead to a loss of data. The problem is 
exacerbated by the fact that I/T configurations are usually extremely complex, and 
the tools used by administrative users often provide little or no safeguards against 
accidentally corrupting data. Three common examples of administrative errors 
that lead to data loss include: 

1. Double allocating a storage device that was previously allocated to another 
application to a new application; 

2. Initializing the wrong storage device causing all data to be lost; and 

3. Disabling an I/O path between a server and its storage devices. 

4 Best Practices 

4.1 Increasing Soft Error Rate (SER) within Servers 
ASIC’s and memories are rapidly increasing in density and speed.  With the current 
trend, process geometries are shrinking.  With this geometry shrink comes increased 
soft error rates.  Where in the past, systems only needed to deal with memory bit flips, 
which is where error correction circuits (ECC) technology has been very helpful.  With 
the smaller geometries, flip flops and combinational logic are also now adversely 
affected, and providing similar error correcting circuits can be complex and expensive. 
 
When a particle strikes a sensitive region of an SRAM cell, the charge that accumulates 
could exceed the minimum charge that is needed to flip the value stored in the cell, 
resulting in a soft error.  The smallest charge that results in a soft error is called the 
critical charge (Qcrit) of the SRAM cell.  Sources of these disruptions can come from 
cosmic rays or alpha particles. 
 
Alpha particles have been problematic for memories for quite some time, and can come 
from internal process materials.  Shielding, better materials and other techniques have 
helped to control this.  Cosmic rays, on the other hand, cannot practically be controlled 
by the same techniques.  Before the geometry shrinks, chips weren’t as affected by 
cosmic rays, thus the techniques used to control alpha particles was sufficient.  Now, for 
chips that are being developed in these geometries, an active awareness is needed and 
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extra measures taken to identify SER and control the potential for silent data corruption 
(SDC). 
 
SER is calculated for each individual chip within a system, and is additive for all the 
chips within the system.  The potential for SDC within a server then increases with each 
additional device.  A target goal approaching zero SER for SDC in a single device is 
what should be sought, and this Data Integrity model will help to achieve this goal. 
 

4.2 Scatter-Gather List Separation 
 
Operating systems traditionally work on buffers that are multiples of 512 bytes. 
Some of this is a result of the processor page size (which is usually 4KB) and 
filesystem block size.  As a result it is difficult to support a non-exponent of 2 
sector size required by the T10 Protection Information Model. 
 
To overcome this, a different approach that involves separating the data and 
protection information buffers at the operating system level can be taken.  The OS 
data path is unchanged and the accompanying T10 protection information is 
pinned to the I/O requests as separate buffers which are subsequently described 
by extra scatter-gather lists passed to the HBA. 
 
When writing, the HBA will interleave the data and protection information buffers 
resulting in non-exponent of 2 (e.g., 520-byte) sectors being sent to the T10 
target that supports protection information.  When reading, the HBA will split the 
sectors into a data portion and a protection information portion that are 
transferred to different areas in host memory. 
 
Separation of the data and protection information buffers enables end-to-end data 
integrity support without requiring intrusive changes to the operating system 
memory management subsystem and I/O stack. 
 
4.3 Buffer Management 
 
On UNIX systems it is common to have a buffer or a page cache that sits in front of a 
storage device, enhancing both read and write performance. For writes the cache is 
used to buffer requests for a number of seconds before they are sent to the disk.  This 
artificial delay allows the filesystem space allocators to pick an optimal location for the 
data, and it allows the I/O scheduler to coalesce adjacent requests, reducing head 
seeks and command processing overhead. However, areas on disk that contain 
filesystem metadata are often written with a frequency higher than the buffer cache 
flush delay.  It is even possible for the buffer to be updated by the filesystem at the 
same time it is being transferred via DMA by the host adapter. This practice has 
traditionally not been problematic because the buffer in memory is marked dirty during 
the update, and as a result a new write is issued immediately, overwriting the portion on 
disk that was changed while in flight. Once data integrity is enabled, however, changing 
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a page in flight will cause the data stamp check to fail and the I/O to be aborted. Other 
operating systems may have similar issues. This is also a problem in existing 
deployments when the iSCSI digest checksum is enabled. 
 
The solution is to ensure that the operating system never modifies a buffer that has 
been issued for I/O. 
 
A similar problem exists for applications that use the direct I/O facility.  Direct I/O allows 
the application to bypass the buffer cache and write straight to disk without intermediate 
buffering.  In this case it is up to the application to ensure that the buffer is not modified 
until I/O completion is received. 
 

4.4 Cache Management 

For storage devices that contain volatile cache a cache failure may result in a lost 
write. To maximize the effectiveness of the Error Handling Domain it is 
recommended that volatile caches be disabled for protected write requests. 

5 Protection Information Channel 
As defined, a Protection Envelope contains data and Data Integrity Metadata. In the 
INCITS T10 Protection Information model, the Data Integrity Metadata is an eight byte 
field that is added to a protection information interval on a storage device. In the T10 
model, storage device blocks increase in size with the addition of the Data Integrity 
Metadata. In the T10 Protection Information model both Data Integrity Metadata and 
actual data move through any communication path as a single unit.  
 
One can consider that two logical paths exist, one for data and the other for Data 
Integrity Metadata. The data path is called the Data Channel and the Data Integrity 
Metadata path is called the Protection Information Channel. 

5.1 Movement of Protection Information 
An important purpose of this specification is to facilitate extending the Protection 
Envelope from the host-storage interface to the application endpoint. Without extending 
the protection envelope, the Protection Information Channel terminates at the host-
storage interface and only the Data Channel continues to the application. Consequently, 
a key element of this architecture describes how the Protection Information Channel 
may be extended to the application endpoint. 
 
Because of the nature of the SCSI specification, co-locating the Data Channel with the 
Protection Information Channel on the same physical and logical path is a reasonable 
approach. However, because of several factors associated with current practices and 
implementations, co-locating the Data Channel and Protection Information Channel may 
not always be practical (e.g., operating system layers, virtualization layers, and non-
SCSI storage devices). These reasons are largely related with the fact that co-location 
of the two channels would lead to significant software structuring disruption and 
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operational inefficiencies. Consequently, it is considered a “best practice” that 
implementation of the Protection Information Channel be separated from the Data 
Channel inside the operating system and application. 
 
Separation of the channels means that for data moving from a storage device towards 
an application, the host-storage interface will transfer Data Integrity Metadata into a 
separate buffer that moves in parallel with the data buffer towards the application.  
 
For data moving from an application towards a storage device, at the point of origination 
for the Data Integrity Metadata, the Protection Information Channel is created. This 
means that the Data Integrity Metadata is created and stored in a buffer that moves in 
parallel towards the host-storage interface. From the host-storage interface to the 
storage device, the Data Channel and Protection Information Channel are co-located.  
A common point where separation and aggregation of the Data Channel and Protection 
Information Channel will occur is in the host-storage interface device driver inside the 
operating system. It is conceivable that the host-storage interface may have special 
hardware to make separation and aggregation efficient.  
 
At the point of separation and aggregation of the Data Channel with the Protection 
Information Channel, there may be a translation of the Data Integrity Metadata. A 
common example is to use a checksum algorithm in the operating system and 
application layer that is more efficient for that environment. The Data Integrity Metadata 
is potentially translated at other places in the path (e.g., at the Logical volume manager, 
or the host-storage interface). 
 

6 Data Integrity Metadata 

6.1 Overview 

The Data Integrity Metadata consists of one or more stamps (e.g., Data Stamp, 
and Address Stamp) that each protect one or more properties of a portion of the 
Data Buffer. In the T10 Protection Information Model there are three stamps 
associated with each Logical Block transferred to and from the storage device. 
However, the Data Integrity Model allows great flexibility in terms of the stamps 
that can be exchanged, as long as adjacent nodes in the I/O path know how to 
convert from one convention to another. The current version of this architectural 
model focuses on the stamps provided by the T10 Protection Information Model. 

6.2 Components 

6.2.1 Address Stamp 

The Address Stamp (e.g., Logical Block Reference Tag in T10) contains a value 
that allows nodes in the I/O path to verify that information is sent/received to/from 
the right location (e.g., Logical Block Address or virtual address space). 
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The T10 Protection Information Model defines 3 types of Protection Information. 
With Type 1 the Reference Tag contains the lowest 32 bits of the target Logical 
Block Address. Type 2 Protection Information, however, uses the Reference Tag 
as an incrementing counter for the logical sequence with the initial value passed 
in the command (i.e., consequently, the locality property of the Address Stamp is 
not used to its full extent). 

The meaning of the Address Stamp changes as a request traverses the I/O path.  
At the application or filesystem level it is likely to correspond to a linear 
sequential view of the file being read or written. As the request gets closer to the 
hardware level the tag may be translated to take on a value that has extra 
meaning in relation to the subsystems involved or the hardware. For instance a 
partitioned disk or a Logical Volume Manager may want to translate the Address 
Stamp to a number that corresponds to the target LBA on the underlying storage. 

6.2.2 Data Stamp 

The Data Stamp consists of a checksum, Cyclic Redundancy Check, or similar 
and is used to guarantee the integrity of a portion of the Data Buffer (e.g., the 
Logical Block Guard  in the T10 Protection Information Model). 

The Data Stamp can be converted from one format to another by a node. Such a 
conversion should be done as a protected handoff (See 2.1). 

The Data Stamp may be changed from one format to another for a variety of 
reasons. Some choices of checksum may provide better protection against multi-
bit error but may be prohibitively CPU-intensive to calculate. In such cases it may 
be advantageous to use a weaker checksum to protect part of the I/O path. 

For instance the T10 Protection Information Model uses a 16-bit CRC that is 
expensive to calculate without dedicated hardware support. In that case two 
capable nodes can instead decide to use a lightweight checksum such as the one 
used in the Internet Protocol or a CRC that can be calculated in hardware. 

6.2.3 Application Stamp 

The purpose of the Application Stamp is to prevent overwriting blocks claimed by 
another application, filesystem, or volume manager. The Receiving node will 
reject any portions of a request that contain an incorrect Application Stamp. In the 
T10 Protection Information Model the Application Stamp corresponds to the 
Application Tag. 
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T10 SBC-3 provides an Application Tag Mode Page that defines expected 
Application Tags for ranges of logical blocks on the device. T10 SPC-4 provides 
an Application Tag Mode Page Enabled bit (ATMPE) to indicate that the 
Application Tag Mode Page is valid, and a Reject Write Without Protection bit 
(RWWP) to prevent writing data without protection information.  

 

In order for a write request to succeed the Application Tag for each block in the 
received Data Integrity Metadata must match the predefined Application Tag for 
the target LBA. A write request that does not include the correct Application Tag 
will be rejected by the storage device. The LBA ranges and their matching 
Application Tags are set on behalf of the application or filesystem by the 
operating system via the Application Tag Mode Page.  The ATMPE bit and the 
RWWP in the Control Mode Page shall both be set to one to indicate that the 
Application Tag shall be compared on all reads and writes 

 

The Application Tag write prevention mechanism in T10 SBC-3 only protects write 
access to a device. It is possible for other initiators with access to the target 
device to clear the RWWP bit in the Control Mode Page, modify the Application 
Tag Mode Page, or overwrite user data. It is therefore imperative that access to 
the target device be controlled. It is recommended that storage administration 
interfaces default to disallow initiator access to newly created volumes when T10 
Protection Information is enabled. Access to the target device should be explicitly 
allowed by the storage administrator using appropriate mechanisms (e.g., LUN 
masking or zoning). 

7 Mechanisms for passing protection information between 
nodes/components 

7.1 Overview 

At the T10 protocol level the interface for querying and determining Protection 
Information Capabilities is well defined. However, the remaining nodes of the I/O 
stack do not have a standards-based way to communicate their data integrity 
capabilities to adjacent nodes. The interfaces between nodes in the I/O stack are 
likely to be different. For instance, the interface between an application and 
operating system I/O library is different from the interface between a filesystem 
and a Logical Volume Manager. For the Protection Information Channel to be 
established nodes in the stack must have some way of communicating their 
abilities. 
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7.2 Information required to be passed  

A node will need to advertise its capabilities to adjacent nodes. The interface is 
not necessarily the same at both sides of the node. The node will have to 
communicate: 

a) The size and format of the Address Stamp, Application Stamp, and Data 
Stamp; 

b) How much data in the Data Buffer goes with each Data Integrity Metadata 
(e.g., the protection information interval); and 

c) Whether each of the stamps are returned as written 

7.3 Full discovery requirement 

Since stamps may contain information that can not be recreated on the fly. It is 
therefore important that the Initiating node knows whether the stamps will be 
returned as written. Consequently it is required that the entire protection envelope 
goes through discovery before a request with Data Integrity Metadata is 
submitted. The process for discovery is outside the scope of this architectural 
model. 

8 Data integrity aware Application Programming 
Interfaces 

Application to operating system programming interfaces vary between platforms. 
Even within a single operating system there may be many different ways for an 
application to submit I/O, each with different buffering and completion 
characteristics. It is outside the scope of this architectural model to explicitly 
define operating system I/O interfaces. This model does, however, provide a set 
of recommendations for a data integrity aware interface. 

8.1 Protecting and validating a data buffer 

Since applications generally have no knowledge about the characteristics of the 
underlying storage, including logical block sizes, protection information type, etc., 
it is recommended that the data integrity-aware programming interface provide a 
set of functions that allow applications to protect and verify buffers without 
knowing the actual format of the Data Integrity Metadata. These functions can be 
called explicitly by the application, or they can be called transparently by the I/O 
library or operating system kernel. 
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If a node in the I/O stack receives an unprotected I/O request, and it knows that 
the next node in the direction of the I/O request is integrity-capable, it may 
assume the role of an Initiating node and request that the buffer be protected. 

8.2 Error handling 

Data writes are most frequently performed with the operating system doing 
intermediate buffering which allows the application to keep running while the 
storage is working in the background. A drawback to this approach is that the 
application will get I/O completion as soon as the data has been buffered by the 
operating system. A subsequent error between the operating system and disk 
could leave the data unwritten, and there generally are no means for providing the 
application with a deferred error notification.  

In the Data Integrity Architectural Model it is the responsibility of the Error 
Handling node to act upon data integrity errors. Completion shall not be signalled 
to the Error Handling node before the storage device has returned completion 
status1. If the Error Handling node is the application, the operating system must 
provide a programming interface that enables the application to get 
comprehensive I/O completion status. On many systems this involves using either 
unbuffered I/O or asynchronous I/O submission routines.  

                                            
1 If the storage device contains volatile cache, failure of that volatile cache may result in a lost 

write. 
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