

Architectural Model for Data Integrity

Version 1.0

Publication of this SNIA Technical Proposal has been approved by the SNIA. This document
represents a stable proposal for use as agreed upon by the Data Integrity TWG. The SNIA does
not endorse this proposal for any other purpose than the use described. This proposal may not
represent the preferred mode, and the SNIA may update, replace, or release competing proposal
at any time. If the intended audience for this release is a liaison standards body, the future
support and revision of this proposal may be outside the control of the SNIA or originating Data
Integrity TWG. Suggestion for revision should be directed to http://www.snia.org/feedback/.

SNIA Technical Proposal

May 2, 2012

Architectural Model for Data Integrity SNIA Technical Proposal ii
Version 1.0

Revision History

Revision Date Sections Originator: Comments

.1 2/12/2009 Layout Jim Williams

.2 2/23/2009 Definitions Bill Martin

.3 2/26/2009 Bill Martin Modifications to
definitions from
conference call

.4 4/23/2009 Definitions Bill Martin Additions to match dirm-
graph from Martin
Petersen

.5 4/23/2009 Definitions Bill Martin Changes agreed to on
conferece Call

.6 5/28/2009 Definitions Bill Martin Modified definitions to
be consistent with
Martin Petersen’s
graphs. Removed all
bridge nodes and made
other changes to be
consistent with
terminology.

0.7 06/11/09 Definitions Martin K.
Petersen

Fixed a few typos and
redundant wordings.

0.8 06/25/09 Model Martin K.
Petersen

Adapted model
description from last
face 2 face to use new
definitions.

0.9 08/13/09 Introduction,
Definitions,

Model

Bill Martin Changes from face-to-
face meeting
incorporated

0.10 08/13/09 Introduction,
Definitions,

Model

Bill Martin Minor modifications
from conference call

0.11 8/25/09 Protection
Envelopes

Jim Williams Definitions of terms

0.12 8/27/09 General Bill Martin Cleaned up formatting
of clauses lost in 0.11

0.13 8/28/09 Use Cases Jim Williams Added definitions
0.14 9/3/09 Use Cases Bill Martin

Martin
Petersen

Moved information
around in the Use
Cases clause and
added additional Use
Case details

0.15 9/3/09 Entire
Document

Bill Martin Removed change bars
for review.

0.16 9/9/09 Entire
Document

Martin K.
Petersen

Added information on
T10 PIM and DIX.
Updated sections on

Architectural Model for Data Integrity SNIA Technical Proposal iii
Version 1.0

scatter-gather and
buffer management.

0.17 9/10/09 Introduction
and Best
Practices

Bill Martin Modifications from
conference call

0.18 9/30/09 Protection
Information

section

Jim Williams Added initial content

0.19 10/29/09 Bill Martin Added diagrams of
Protection information
flow from Martin
Petersen

0.20 11/13/09 Data Integrity
Metadata

Martin K.
Petersen

Initial content

0.22 01/27/10 Application
API

Martin K.
Petersen

Notes about application
programming interfaces

0.24 12/16/10 Application
tag

Martin K.
Petersen

Application Tag access
control

0.25 01/26/11 Application
tag

Martin K.
Petersen

Notes from meeting on
January 6th 2011

0.26 01/31/11 All Bill Martin Changes from
1/27/2011 Face-to-Face
meeting

1.0 4/24/12 Arnold Jones Reformatted as SNIA
Technical Proposal for
publication

Suggestion for changes or modifications to this document should be directed to
http://www.snia.org/feedback/.

Architectural Model for Data Integrity SNIA Technical Proposal iv
Version 1.0

The SNIA hereby grants permission for individuals to use this document for
personal use only, and for corporations and other business entities to use this
document for internal use only (including internal copying, distribution, and
display) provided that:

1. Any text, diagram, chart, table or definition reproduced must be
reproduced in its entirety with no alteration, and,

2. Any document, printed or electronic, in which material from this
document (or any portion hereof) is reproduced must acknowledge the
SNIA copyright on that material, and must credit the SNIA for granting
permission for its reuse.

Other than as explicitly provided above, you may not make any commercial
use of this document, sell any or this entire document, or distribute this
document to third parties. All rights not explicitly granted are expressly
reserved to SNIA.
Permission to use this document for purposes other than those enumerated above
may be requested by e-mailing tcmd@snia.org please include the identity of the
requesting individual and/or company and a brief description of the purpose, nature,
and scope of the requested use.

Copyright © 2012 Storage Networking Industry Association.

Architectural Model for Data Integrity SNIA Technical Proposal v
Version 1.0

CONTENTS

1 INTRODUCTION .. 1

1.1 SCOPE ... 1
1.2 DEFINITION OF TERMS ... 1
1.3 INCITS T10 PROTECTION INFORMATION MODEL ... 3
1.4 DATA INTEGRITY EXTENSIONS (DIX) ... 3

2 MODEL DESCRIPTION ... 3

2.1 OVERVIEW .. 3

3 USE CASES ... 6

3.1 OVERVIEW .. 6
3.2 DESCRIPTION OF DATA INTEGRITY ERRORS ... 7
3.3 CAUSES OF DATA INTEGRITY ERRORS ADDRESSED BY THIS MODEL (REAL WORLD
CAUSES) .. 8
3.4 CAUSES OF DATA INTEGRITY ERRORS NOT COVERED BY THIS MODEL 10

4 BEST PRACTICES .. 11

4.1 INCREASING SOFT ERROR RATE (SER) WITHIN SERVERS 11
4.2 SCATTER-GATHER LIST SEPARATION .. 12
4.3 BUFFER MANAGEMENT .. 12
4.4 CACHE MANAGEMENT ... 13

5 PROTECTION INFORMATION CHANNEL ... 13

5.1 MOVEMENT OF PROTECTION INFORMATION ... 13

6 DATA INTEGRITY METADATA... 14

6.1 OVERVIEW .. 14
6.2 COMPONENTS ... 14

7 MECHANISMS FOR PASSING PROTECTION INFORMATION BETWEEN
NODES/COMPONENTS .. 16

7.1 OVERVIEW .. 16
7.2 INFORMATION REQUIRED TO BE PASSED .. 17
7.3 FULL DISCOVERY REQUIREMENT ... 17

8 DATA INTEGRITY AWARE APPLICATION PROGRAMMING INTERFACES . 17

8.1 PROTECTING AND VALIDATING A DATA BUFFER ... 17
8.2 ERROR HANDLING ... 18

Architectural Model for Data Integrity SNIA Technical Proposal vi
Version 1.0

FIGURES

Figure 1 INCITS T10 Protection Information Model .. 5
Figure 2 Data Integrity Extensions .. 5
Figure 3 Data Integrity Extensions with T10 Protection Information inside array 6
Figure 4 Full protection ... 6

Architectural Model for Data Integrity SNIA Technical Proposal 1
Version 1.0

Data Integrity Reference Model
1 Introduction

1.1 Scope
This document describes a model for how data integrity can be protected between an Application
client and a storage device. If all nodes in an implementation follow this model then there will be
end-to-end data protection for the following class of data integrity errors:

a. silent data corruption:

a. in flight; and

b. at rest;

b. wrong address on device; and

c. buffer corruption.

While this model does address most of the common data integrity errors, in the current
embodiment it does not address all possible errors. Some examples of errors that are not
handled are: stale data caused by lost writes or fractured writes greater than a block, some
cases of systematic miss-addressing between nodes. The model does not attempt to detect
errors that are detected by the underlying storage protocol.

1.2 Definition of Terms
1.2.1 Address Stamp: the information that validates the locale of the data within a

specific domain. As applied to the T10 Data Protection model this is the Logical
Block Reference Tag.

1.2.2 Application Stamp: information that is assigned by the application to validate
the originator of the data. As applied to the T10 Data Protection model this is the
Logical Block Application Tag.

1.2.3 Blocking: a property of a node in which the node, by design, does not pass Data
Integrity Meta Data.

1.2.4 Combined protection envelope: multiple contiguous protection envelopes that
allow data and associated Data Integrity Metadata to flow through them while allowing
modifications of the Data Integrity Metadata.

1.2.5 Converting: a property of a node in which the node modifies the Data Stamp
received to a different Data Stamp that is transmitted.

1.2.6 Data Channel: The logical and physical components that Data are transferred
through.

Architectural Model for Data Integrity SNIA Technical Proposal 2
Version 1.0

1.2.7 Data Consumer: a component that is the final destination for data (e.g.,
application or storage device).

1.2.8 Data Integrity Metadata: consists of Data Stamp, Application Stamp, and
Address Stamp.

1.2.9 Data Producer: a component that is the initial source of data (e.g., application or
storage device)

1.2.10 Data Stamp: the information (e.g., checksum, CRC, or hash code) that validates
the data within the protection envelope. As applied to the T10 Data Protection model
this is the Logical Block Guard.

1.2.11 Error Handling Domain: a portion of a Protection Envelope that includes an
Error Handling node, a Verifying node, and a Generating node. The Error Handling
Domain is instantiated by an Error Handling node when it originates a protected I/O
request and is deinstantiated upon return of completion status to the Error Handling
node. See 8.2.

1.2.12 Error Handling: a property of a node in which the node receives error
notification from a Verifying node and processes data integrity errors.

1.2.13 Generating: a property of a node in which the node generates Data Integrity
Metadata.

1.2.14 Initiating: a property of a node in which the node requests a protected transfer.

1.2.15 node: a component of a data integrity environment.

1.2.16 Passing: a property of a node in which the node passes data and Data Integrity
Metadata un-modified.

1.2.17 Protection Envelope: all of the components that allow data and associated Data
Integrity Metadata to flow through them without any modification of the Data Stamp &
Application Stamp.

1.2.18 Protection Information Channel: The logical and physical components that
Data Integrity Metadata are transferred through.

1.2.19 Receiving: a property of a node in which the node receives data and Data
Integrity Metadata and is the termination of the Combined protection envelope.

1.2.20 Translating: a property of a node in which the node modifies the Address Stamp
in the Data Integrity Metadata received to a different Stamp in the Data Integrity
Metadata that is transmitted.

1.2.21 Verifying: a property of a node in which the node verifies the Data Integrity
Metadata that is associated with the data and passes errors to the Error Handling node
of the Error Handling Domain.

Architectural Model for Data Integrity SNIA Technical Proposal 3
Version 1.0

1.3 INCITS T10 Protection Information Model

The T10 Protection Information Model is an optional set of features in the SCSI
Block Commands protocol (SBC) that provide 8 bytes of extra storage per
protection information interval. The 8 bytes are arranged into a 16-bit CRC called
the guard tag (Data Stamp), a 16-bit application tag (Application Stamp) and 32-
bit reference tag (Address Stamp). The format of the guard tag and the reference
tag are defined in SBC, allowing initiators and targets to verify that data integrity
has been preserved.

1.4 Data Integrity Extensions (DIX)
The T10 Protection Information Model only concerns itself with communication between
a SCSI initiator and a target. The Data Integrity Extensions define a mechanism that
allows an operating system to exchange Data Integrity Metadata with a SCSI initiator,
thus enabling end-to-end data integrity protection.

Note that DIX is a specific implementation and may not map into this model. See
http://oss.oracle.com/projects/data-integrity/dist/documentation/dix.pdf for more
information on DIX.

2 Model Description

2.1 Overview

The purpose of the data integrity model is to define a set of mechanisms which
ensure preservation of the data integrity of an I/O request as it is transferred from
the application to the physical storage and vice versa.

The I/O stack consists of an arbitrary number of connected nodes: User
applications, system libraries, filesystems, logical volume managers, host
adapters, storage network switches, storage arrays and disk drives are examples
of nodes.

Data integrity is protected by attaching additional information to each I/O request.
This extra information, known as Data Integrity Metadata, consists of a set of
parameters that can be used to verify that the data buffer and the control path are
in agreement and that the integrity of the data buffer has been preserved. There
may be a handoff of the Data Integrity Metadata between protection envelopes,
because it may not be feasible for the content of the Data Integrity Metadata to be
identical between connected nodes.

A handoff is the process that occurs with the Data, Address, and Data Integrity
Meta Data of an I/O transaction in a node that is both a Receiving node and a
Generating node (i.e., Converting node or Translating node).

http://oss.oracle.com/projects/data-integrity/dist/documentation/dix.pdf

Architectural Model for Data Integrity SNIA Technical Proposal 4
Version 1.0

A protected handoff is a handoff where Data Integrity Meta Data that is to be
transmitted is generated before the validation of the received Data Integrity Meta
Data in such a way that any intervening data corruption is detected.

An unprotected handoff is a handoff where it is possible that neither of the
protection envelopes detects an error introduced during the handoff (e.g., the
data is outside the protection envelope during the handoff).
A combined protection envelope is two or more adjoining protection envelopes
where a protected handoff is performed by the nodes in each pair of adjoining
envelopes.

The full path of an I/O request between the application and the storage may be
protected by 1 or more protection envelopes. These protection envelopes may
provide 0 or more combined protection envelopes. If this path consists of exactly
1 protection envelope or exactly 1 combined protection envelope with all nodes in
the I/O stack included, then data integrity is protected over the full path.

Each node in the I/O stack can have one or more data integrity properties. The
properties are specific to a particular I/O request and a node can have a different
set of properties for other I/O requests. The properties that a node may have are:

a) Blocking;

b) Converting;

c) Error Handling;

d) Generating;

e) Initiating;

f) Passing;

g) Receiving;

h) Translating; and

i) Verifying.

The following examples use Data Integrity Extensions and INCITS T10 Protection
Information; however, other protection information models may be used for any of the
protection envelopes.

Figure 1 shows the different nodes in an example system and the properties of those
nodes when only the INCITS T10 Protection Information Model is implemented.

Architectural Model for Data Integrity SNIA Technical Proposal 5
Version 1.0

Application Disk DriveDisk ArraySANHBASCSILVMFilesystemLibrary

B EBBBB VTEPVR G

B EBBBB VTEPG VR

Key:
B Blocking Node P Passing Node Data Flow
C Converting Node (Checksum) R Receiving Node (PI Consumer) Protection Envelope
E Error Handling Node T Translating Node (Ref Tag) Error Handling Domain
G Generating Node (PI Producer) V Verifying Node (Checksum)

Write

Read

Figure 1 INCITS T10 Protection Information Model

Figure 2 shows the different nodes in an example system and the properties of those
nodes when only the Data Integrity Extensions are implemented.

Application Disk DriveDisk ArraySANHBASCSILVMFilesystemLibrary

P PTT BBG B

P PTT BBVR B

Key:
B Blocking Node P Passing Node Data Flow
C Converting Node (Checksum) R Receiving Node (PI Consumer) Protection Envelope
E Error Handling Node T Translating Node (Ref Tag) Error Handling Domain
G Generating Node (PI Producer) V Verifying Node (Checksum)

VRE

GE
Write

Read

Figure 2 Data Integrity Extensions

Figure 3 shows the different nodes in an example system and the properties of those
nodes when the Data Integrity Extensions are implemented in the server and the
INCITS T10 Protection Information Model is implemented internally in the disk array.

Architectural Model for Data Integrity SNIA Technical Proposal 6
Version 1.0

Application Disk DriveDisk ArraySANHBASCSILVMFilesystemLibrary

P PTT VERBG G

P PTT GEBVR VR

Key:
B Blocking Node P Passing Node Data Flow
C Converting Node (Checksum) R Receiving Node (PI Consumer) Protection Envelope
E Error Handling Node T Translating Node (Ref Tag) Error Handling Domain
G Generating Node (PI Producer) V Verifying Node (Checksum)

VRE

GE
Write

Read

Figure 3 Data Integrity Extensions with T10 Protection Information inside

array

Figure 4 shows the different nodes in an example system and the properties of those
nodes when the Data Integrity Extensions are implemented in the server and the
INCITS T10 Protection Information Model is implemented between the HBA and the
disk array and the INCITS T10 Protection information is passed to the disk drive by the
disk array controller. This provides protection from the application to the physical media
where the data is stored.

Application Disk DriveDisk ArraySANHBASCSILVMFilesystemLibrary

P PTT VTEPVC G

P PTT VTEPVC VR

Key:
B Blocking Node P Passing Node Data Flow
C Converting Node (Checksum) R Receiving Node (PI Consumer) Protection Envelope
E Error Handling Node T Translating Node (Ref Tag) Error Handling Domain
G Generating Node (PI Producer) V Verifying Node (Checksum)

VRE

GE
Write

Read

Figure 4 Full protection

3 Use Cases

3.1 Overview
Multi-core processors and virtualization are leading to many big benefits within the
industry. This also is driving software to become more complex in dealing with multiple
contexts, distributed work, and multi-tenant capabilities. With these new complexities
comes a greater potential for silent data corruption (SDC) within these systems. This
added flexibility makes it virtually impossible to verify the many configuration

Architectural Model for Data Integrity SNIA Technical Proposal 7
Version 1.0

permutations possible, leaving a potential for SDC. This model is being developed to
provide mechanisms to eliminate sources of SDC.

3.2 Description of Data Integrity Errors

3.2.1 Overview

There are three attributes associated with Data Integrity errors. These are:

a) Time;

b) Type; and

c) Location.

3.2.2 When does data corruption occur

There are a number of times that data corruption can occur. Each of these times
is associated with a reference (e.g., Twrite) for the purpose of categorizing error
scenarios. These times include:

a) Latent sector errors (i.e., Application is not able to read once valid data –
I/O returns an error), which are not addressed by the SNIA Data Integrity
Architectural Model;

b) Silent data corruption (i.e., Data read by application is not what was last
written), which is addressed by the SNIA Data Integrity Architectural model
include:

a. Corruption that occurs when an application writes data to storage
(Twrite);

b. Corruption that occurs when an application reads data from storage
(Tread); and

c. Corruption that occurs while data is at rest (Trest).

3.2.3 Types of data integrity errors

There are a number of types of data integrity errors. Each of these errors is
associated with a reference (e.g., CE) for the purpose of categorizing error
scenarios. The types of data integrity errors include:

Architectural Model for Data Integrity SNIA Technical Proposal 8
Version 1.0

a) Misplacement Error (ME(a,d)) – data is stored or retrieved from the wrong
location or device. There are two variations; wrong address and wrong
device;

b) Content Error (CE) – data content is changed during a read or write;

c) Lost Operation (LO) – data write operation was acknowledged written but
was not really written; and

d) Mis-ordered Operation (MO).

3.2.4 Location of Data Integrity Errors

There are a number of locations where data integrity errors can originate. Each of
these locations is associated with a reference (e.g., Lapp) for the purpose of
categorizing error scenarios. The locations include:

a. Application layer (Lapp);

b. Operating System (Los);

c. Host Hardware (Lhost);

d. I/O Controller (or any storage interface) (Lioc);

e. Storage Fabric (Lfabric);

f. Storage Array (Larray); and

g. Hard Disk Drive (Ldisk).

3.3 Causes of Data Integrity errors addressed by this model (real
world causes)

3.3.1 Operating System memory mapping failure leading to wrong data going to an
LBA

E{ Twrite, MEa, Los}

Modern operating systems depend on a memory management unit (MMU) in the
host processor for segmenting system memory into user memory. The MMU
translates virtual memory references made by user applications to system
memory references. When an application performs a write I/O operation, it
prepares a buffer in user space (virtual) that an I/O controller ultimately accesses
for carrying out the write I/O operation. I/O controllers do not generally have
access to the processor’s MMU and they either implement their own MMU, or

Architectural Model for Data Integrity SNIA Technical Proposal 9
Version 1.0

depend on the operating system kernel for translating virtual (user) addressable
I/O buffers to system addressable addresses. The code implementing these
translations is a potential source of bugs and there are many documented cases
of operating system bugs pertaining to translation errors leading to the wrong
buffer being written to a device.

This type of error will be detected by a mis-match of the Data Stamp.

3.3.2 Operating System memory mapping failure leading to wrong data presented to
an application while reading a LUN.

E{ Tread, MEd, Los}

An operating system memory mapping failure leading to a wrong block being
presented to an application is similar to the failure described in 3.3.1 with the
difference being that the memory mapping failure occurs during a read operation
rather than a write operation. In the path between I/O controller and virtual (user)
memory, a translation bug, as described in 3.3.1 can cause the wrong block of
memory to be presented to an application during a read operation.

This error will be detected by a mis-match of the Data Stamp.

3.3.3 Misplacement of valid data

E{ T*, MEd, L*}

Errors in hardware and logic can lead to I/O buffers being delivered to unintended
locations. These errors can lead to good data being overwritten, or invalid data
being presented as good data. Areas where this may happen include:

a. I/O controller memory;
b. Server Memory addressing;
c. Spindle misplacement; and
d. Storage controller firmware errors.

This error will be detected by a mis-match of the:

a) Data Stamp if this error is at a granularity below the block level; or
b) Address Stamp.

3.3.4 Host hardware failures

E{ T*, CE, Lhost}

Errors in hardware and logic can lead to incorrect data being delivered. These
errors can lead to invalid data being presented as good data. Causes of this
include:

Architectural Model for Data Integrity SNIA Technical Proposal 10
Version 1.0

a. I/O controller memory failures; and
b. Cache coherency failures.

This error will be detected by a mis-match of the Data Stamp.

3.4 Causes of Data Integrity errors not covered by this model

3.4.1 Lost write caused by storage array

E{ Twrite, LO, Larray}

Storage arrays commonly use a cache memory for buffering I/O operations
between internal storage devices and the array’s I/O controllers, providing
connections to external hosts. Array caches are also used for improving array
performance by keeping frequently accessed data in memory. Data residing in an
array’s cache usually also resides on the array’s storage devices. This means that
data blocks, may exist in multiple places inside of an array. When there are
multiple copies of a block in the array, the array firmware must keep track of
which version of a data block is current. For example, just after receiving a block
write operation from a host, the copy of the block in the cache may be current,
while the version on the storage device(s) is out of date. One way in which a lost
write is manifested is if a bug in the array firmware loses track of which version of
a data block is current and inadvertently returns an older version of a block on a
subsequent read operation. Another way in which a lost write is manifested is a
failure of a volatile write cache.

3.4.2 Storage array mapping algorithm failure

E{ T*, CE, Larray}

Storage arrays may provide a mapping mechanism between the LBA provided to a LBA
on the physical medium. If this mapping mechanism fails, then data may be written to a
physical device with the correct Address Stamp for that physical device; or data may be
read from the wrong address on the physical device and the Address Stamp presented
to the upper layer will reflect the address that was requested even though the wrong
data is presented.

Storage arrays may provide a mapping mechanism between the Application Stamp
provided and an Application Stamp on the physical medium, causing similar
undetectable translation errors to occur.
3.4.3 Operating System bug over-writing wrong LUN on system crash

E{Twrite, MEd, Los}

Operating systems often reserve a storage device, or a portion of a storage
device for storing the memory contents of an operating system after a crash. A
LUN reserved for an application can be corrupted, if through an incorrect
configuration the reserved device was not large enough for the contents of the

Architectural Model for Data Integrity SNIA Technical Proposal 11
Version 1.0

operating system memory, and because of an operating system bug the memory
dump operation can overwrite a normal application LUN.

3.4.4 Administrative Error

E{Twrite, MEd, Lapp}

A frequent cause for the loss of data integrity is through an administrative error.
Many people in an I/T organization have operational privileges enabling them to
execute destructive actions that can lead to a loss of data. The problem is
exacerbated by the fact that I/T configurations are usually extremely complex, and
the tools used by administrative users often provide little or no safeguards against
accidentally corrupting data. Three common examples of administrative errors
that lead to data loss include:

1. Double allocating a storage device that was previously allocated to another
application to a new application;

2. Initializing the wrong storage device causing all data to be lost; and

3. Disabling an I/O path between a server and its storage devices.

4 Best Practices

4.1 Increasing Soft Error Rate (SER) within Servers
ASIC’s and memories are rapidly increasing in density and speed. With the current
trend, process geometries are shrinking. With this geometry shrink comes increased
soft error rates. Where in the past, systems only needed to deal with memory bit flips,
which is where error correction circuits (ECC) technology has been very helpful. With
the smaller geometries, flip flops and combinational logic are also now adversely
affected, and providing similar error correcting circuits can be complex and expensive.

When a particle strikes a sensitive region of an SRAM cell, the charge that accumulates
could exceed the minimum charge that is needed to flip the value stored in the cell,
resulting in a soft error. The smallest charge that results in a soft error is called the
critical charge (Qcrit) of the SRAM cell. Sources of these disruptions can come from
cosmic rays or alpha particles.

Alpha particles have been problematic for memories for quite some time, and can come
from internal process materials. Shielding, better materials and other techniques have
helped to control this. Cosmic rays, on the other hand, cannot practically be controlled
by the same techniques. Before the geometry shrinks, chips weren’t as affected by
cosmic rays, thus the techniques used to control alpha particles was sufficient. Now, for
chips that are being developed in these geometries, an active awareness is needed and

Architectural Model for Data Integrity SNIA Technical Proposal 12
Version 1.0

extra measures taken to identify SER and control the potential for silent data corruption
(SDC).

SER is calculated for each individual chip within a system, and is additive for all the
chips within the system. The potential for SDC within a server then increases with each
additional device. A target goal approaching zero SER for SDC in a single device is
what should be sought, and this Data Integrity model will help to achieve this goal.

4.2 Scatter-Gather List Separation

Operating systems traditionally work on buffers that are multiples of 512 bytes.
Some of this is a result of the processor page size (which is usually 4KB) and
filesystem block size. As a result it is difficult to support a non-exponent of 2
sector size required by the T10 Protection Information Model.

To overcome this, a different approach that involves separating the data and
protection information buffers at the operating system level can be taken. The OS
data path is unchanged and the accompanying T10 protection information is
pinned to the I/O requests as separate buffers which are subsequently described
by extra scatter-gather lists passed to the HBA.

When writing, the HBA will interleave the data and protection information buffers
resulting in non-exponent of 2 (e.g., 520-byte) sectors being sent to the T10
target that supports protection information. When reading, the HBA will split the
sectors into a data portion and a protection information portion that are
transferred to different areas in host memory.

Separation of the data and protection information buffers enables end-to-end data
integrity support without requiring intrusive changes to the operating system
memory management subsystem and I/O stack.

4.3 Buffer Management

On UNIX systems it is common to have a buffer or a page cache that sits in front of a
storage device, enhancing both read and write performance. For writes the cache is
used to buffer requests for a number of seconds before they are sent to the disk. This
artificial delay allows the filesystem space allocators to pick an optimal location for the
data, and it allows the I/O scheduler to coalesce adjacent requests, reducing head
seeks and command processing overhead. However, areas on disk that contain
filesystem metadata are often written with a frequency higher than the buffer cache
flush delay. It is even possible for the buffer to be updated by the filesystem at the
same time it is being transferred via DMA by the host adapter. This practice has
traditionally not been problematic because the buffer in memory is marked dirty during
the update, and as a result a new write is issued immediately, overwriting the portion on
disk that was changed while in flight. Once data integrity is enabled, however, changing

Architectural Model for Data Integrity SNIA Technical Proposal 13
Version 1.0

a page in flight will cause the data stamp check to fail and the I/O to be aborted. Other
operating systems may have similar issues. This is also a problem in existing
deployments when the iSCSI digest checksum is enabled.

The solution is to ensure that the operating system never modifies a buffer that has
been issued for I/O.

A similar problem exists for applications that use the direct I/O facility. Direct I/O allows
the application to bypass the buffer cache and write straight to disk without intermediate
buffering. In this case it is up to the application to ensure that the buffer is not modified
until I/O completion is received.

4.4 Cache Management

For storage devices that contain volatile cache a cache failure may result in a lost
write. To maximize the effectiveness of the Error Handling Domain it is
recommended that volatile caches be disabled for protected write requests.

5 Protection Information Channel
As defined, a Protection Envelope contains data and Data Integrity Metadata. In the
INCITS T10 Protection Information model, the Data Integrity Metadata is an eight byte
field that is added to a protection information interval on a storage device. In the T10
model, storage device blocks increase in size with the addition of the Data Integrity
Metadata. In the T10 Protection Information model both Data Integrity Metadata and
actual data move through any communication path as a single unit.

One can consider that two logical paths exist, one for data and the other for Data
Integrity Metadata. The data path is called the Data Channel and the Data Integrity
Metadata path is called the Protection Information Channel.

5.1 Movement of Protection Information
An important purpose of this specification is to facilitate extending the Protection
Envelope from the host-storage interface to the application endpoint. Without extending
the protection envelope, the Protection Information Channel terminates at the host-
storage interface and only the Data Channel continues to the application. Consequently,
a key element of this architecture describes how the Protection Information Channel
may be extended to the application endpoint.

Because of the nature of the SCSI specification, co-locating the Data Channel with the
Protection Information Channel on the same physical and logical path is a reasonable
approach. However, because of several factors associated with current practices and
implementations, co-locating the Data Channel and Protection Information Channel may
not always be practical (e.g., operating system layers, virtualization layers, and non-
SCSI storage devices). These reasons are largely related with the fact that co-location
of the two channels would lead to significant software structuring disruption and

Architectural Model for Data Integrity SNIA Technical Proposal 14
Version 1.0

operational inefficiencies. Consequently, it is considered a “best practice” that
implementation of the Protection Information Channel be separated from the Data
Channel inside the operating system and application.

Separation of the channels means that for data moving from a storage device towards
an application, the host-storage interface will transfer Data Integrity Metadata into a
separate buffer that moves in parallel with the data buffer towards the application.

For data moving from an application towards a storage device, at the point of origination
for the Data Integrity Metadata, the Protection Information Channel is created. This
means that the Data Integrity Metadata is created and stored in a buffer that moves in
parallel towards the host-storage interface. From the host-storage interface to the
storage device, the Data Channel and Protection Information Channel are co-located.
A common point where separation and aggregation of the Data Channel and Protection
Information Channel will occur is in the host-storage interface device driver inside the
operating system. It is conceivable that the host-storage interface may have special
hardware to make separation and aggregation efficient.

At the point of separation and aggregation of the Data Channel with the Protection
Information Channel, there may be a translation of the Data Integrity Metadata. A
common example is to use a checksum algorithm in the operating system and
application layer that is more efficient for that environment. The Data Integrity Metadata
is potentially translated at other places in the path (e.g., at the Logical volume manager,
or the host-storage interface).

6 Data Integrity Metadata

6.1 Overview

The Data Integrity Metadata consists of one or more stamps (e.g., Data Stamp,
and Address Stamp) that each protect one or more properties of a portion of the
Data Buffer. In the T10 Protection Information Model there are three stamps
associated with each Logical Block transferred to and from the storage device.
However, the Data Integrity Model allows great flexibility in terms of the stamps
that can be exchanged, as long as adjacent nodes in the I/O path know how to
convert from one convention to another. The current version of this architectural
model focuses on the stamps provided by the T10 Protection Information Model.

6.2 Components

6.2.1 Address Stamp

The Address Stamp (e.g., Logical Block Reference Tag in T10) contains a value
that allows nodes in the I/O path to verify that information is sent/received to/from
the right location (e.g., Logical Block Address or virtual address space).

Architectural Model for Data Integrity SNIA Technical Proposal 15
Version 1.0

The T10 Protection Information Model defines 3 types of Protection Information.
With Type 1 the Reference Tag contains the lowest 32 bits of the target Logical
Block Address. Type 2 Protection Information, however, uses the Reference Tag
as an incrementing counter for the logical sequence with the initial value passed
in the command (i.e., consequently, the locality property of the Address Stamp is
not used to its full extent).

The meaning of the Address Stamp changes as a request traverses the I/O path.
At the application or filesystem level it is likely to correspond to a linear
sequential view of the file being read or written. As the request gets closer to the
hardware level the tag may be translated to take on a value that has extra
meaning in relation to the subsystems involved or the hardware. For instance a
partitioned disk or a Logical Volume Manager may want to translate the Address
Stamp to a number that corresponds to the target LBA on the underlying storage.

6.2.2 Data Stamp

The Data Stamp consists of a checksum, Cyclic Redundancy Check, or similar
and is used to guarantee the integrity of a portion of the Data Buffer (e.g., the
Logical Block Guard in the T10 Protection Information Model).

The Data Stamp can be converted from one format to another by a node. Such a
conversion should be done as a protected handoff (See 2.1).

The Data Stamp may be changed from one format to another for a variety of
reasons. Some choices of checksum may provide better protection against multi-
bit error but may be prohibitively CPU-intensive to calculate. In such cases it may
be advantageous to use a weaker checksum to protect part of the I/O path.

For instance the T10 Protection Information Model uses a 16-bit CRC that is
expensive to calculate without dedicated hardware support. In that case two
capable nodes can instead decide to use a lightweight checksum such as the one
used in the Internet Protocol or a CRC that can be calculated in hardware.

6.2.3 Application Stamp

The purpose of the Application Stamp is to prevent overwriting blocks claimed by
another application, filesystem, or volume manager. The Receiving node will
reject any portions of a request that contain an incorrect Application Stamp. In the
T10 Protection Information Model the Application Stamp corresponds to the
Application Tag.

Architectural Model for Data Integrity SNIA Technical Proposal 16
Version 1.0

T10 SBC-3 provides an Application Tag Mode Page that defines expected
Application Tags for ranges of logical blocks on the device. T10 SPC-4 provides
an Application Tag Mode Page Enabled bit (ATMPE) to indicate that the
Application Tag Mode Page is valid, and a Reject Write Without Protection bit
(RWWP) to prevent writing data without protection information.

In order for a write request to succeed the Application Tag for each block in the
received Data Integrity Metadata must match the predefined Application Tag for
the target LBA. A write request that does not include the correct Application Tag
will be rejected by the storage device. The LBA ranges and their matching
Application Tags are set on behalf of the application or filesystem by the
operating system via the Application Tag Mode Page. The ATMPE bit and the
RWWP in the Control Mode Page shall both be set to one to indicate that the
Application Tag shall be compared on all reads and writes

The Application Tag write prevention mechanism in T10 SBC-3 only protects write
access to a device. It is possible for other initiators with access to the target
device to clear the RWWP bit in the Control Mode Page, modify the Application
Tag Mode Page, or overwrite user data. It is therefore imperative that access to
the target device be controlled. It is recommended that storage administration
interfaces default to disallow initiator access to newly created volumes when T10
Protection Information is enabled. Access to the target device should be explicitly
allowed by the storage administrator using appropriate mechanisms (e.g., LUN
masking or zoning).

7 Mechanisms for passing protection information between
nodes/components

7.1 Overview

At the T10 protocol level the interface for querying and determining Protection
Information Capabilities is well defined. However, the remaining nodes of the I/O
stack do not have a standards-based way to communicate their data integrity
capabilities to adjacent nodes. The interfaces between nodes in the I/O stack are
likely to be different. For instance, the interface between an application and
operating system I/O library is different from the interface between a filesystem
and a Logical Volume Manager. For the Protection Information Channel to be
established nodes in the stack must have some way of communicating their
abilities.

Architectural Model for Data Integrity SNIA Technical Proposal 17
Version 1.0

7.2 Information required to be passed

A node will need to advertise its capabilities to adjacent nodes. The interface is
not necessarily the same at both sides of the node. The node will have to
communicate:

a) The size and format of the Address Stamp, Application Stamp, and Data
Stamp;

b) How much data in the Data Buffer goes with each Data Integrity Metadata
(e.g., the protection information interval); and

c) Whether each of the stamps are returned as written

7.3 Full discovery requirement

Since stamps may contain information that can not be recreated on the fly. It is
therefore important that the Initiating node knows whether the stamps will be
returned as written. Consequently it is required that the entire protection envelope
goes through discovery before a request with Data Integrity Metadata is
submitted. The process for discovery is outside the scope of this architectural
model.

8 Data integrity aware Application Programming
Interfaces

Application to operating system programming interfaces vary between platforms.
Even within a single operating system there may be many different ways for an
application to submit I/O, each with different buffering and completion
characteristics. It is outside the scope of this architectural model to explicitly
define operating system I/O interfaces. This model does, however, provide a set
of recommendations for a data integrity aware interface.

8.1 Protecting and validating a data buffer

Since applications generally have no knowledge about the characteristics of the
underlying storage, including logical block sizes, protection information type, etc.,
it is recommended that the data integrity-aware programming interface provide a
set of functions that allow applications to protect and verify buffers without
knowing the actual format of the Data Integrity Metadata. These functions can be
called explicitly by the application, or they can be called transparently by the I/O
library or operating system kernel.

Architectural Model for Data Integrity SNIA Technical Proposal 18
Version 1.0

If a node in the I/O stack receives an unprotected I/O request, and it knows that
the next node in the direction of the I/O request is integrity-capable, it may
assume the role of an Initiating node and request that the buffer be protected.

8.2 Error handling

Data writes are most frequently performed with the operating system doing
intermediate buffering which allows the application to keep running while the
storage is working in the background. A drawback to this approach is that the
application will get I/O completion as soon as the data has been buffered by the
operating system. A subsequent error between the operating system and disk
could leave the data unwritten, and there generally are no means for providing the
application with a deferred error notification.

In the Data Integrity Architectural Model it is the responsibility of the Error
Handling node to act upon data integrity errors. Completion shall not be signalled
to the Error Handling node before the storage device has returned completion
status1. If the Error Handling node is the application, the operating system must
provide a programming interface that enables the application to get
comprehensive I/O completion status. On many systems this involves using either
unbuffered I/O or asynchronous I/O submission routines.

1 If the storage device contains volatile cache, failure of that volatile cache may result in a lost

write.

	1 Introduction
	1.1 Scope
	1.2 Definition of Terms
	1.2.1 Address Stamp: the information that validates the locale of the data within a specific domain. As applied to the T10 Data Protection model this is the Logical Block Reference Tag.
	1.2.2 Application Stamp: information that is assigned by the application to validate the originator of the data. As applied to the T10 Data Protection model this is the Logical Block Application Tag.
	1.2.3 Blocking: a property of a node in which the node, by design, does not pass Data Integrity Meta Data.
	1.2.4 Combined protection envelope: multiple contiguous protection envelopes that allow data and associated Data Integrity Metadata to flow through them while allowing modifications of the Data Integrity Metadata.
	1.2.5 Converting: a property of a node in which the node modifies the Data Stamp received to a different Data Stamp that is transmitted.
	1.2.6 Data Channel: The logical and physical components that Data are transferred through.
	1.2.7 Data Consumer: a component that is the final destination for data (e.g., application or storage device).
	1.2.8 Data Integrity Metadata: consists of Data Stamp, Application Stamp, and Address Stamp.
	1.2.9 Data Producer: a component that is the initial source of data (e.g., application or storage device)
	1.2.10 Data Stamp: the information (e.g., checksum, CRC, or hash code) that validates the data within the protection envelope. As applied to the T10 Data Protection model this is the Logical Block Guard.
	1.2.11 Error Handling Domain: a portion of a Protection Envelope that includes an Error Handling node, a Verifying node, and a Generating node. The Error Handling Domain is instantiated by an Error Handling node when it originates a protected I/O requ...
	1.2.12 Error Handling: a property of a node in which the node receives error notification from a Verifying node and processes data integrity errors.
	1.2.13 Generating: a property of a node in which the node generates Data Integrity Metadata.
	1.2.14 Initiating: a property of a node in which the node requests a protected transfer.
	1.2.15 node: a component of a data integrity environment.
	1.2.16 Passing: a property of a node in which the node passes data and Data Integrity Metadata un-modified.
	1.2.17 Protection Envelope: all of the components that allow data and associated Data Integrity Metadata to flow through them without any modification of the Data Stamp & Application Stamp.
	1.2.18 Protection Information Channel: The logical and physical components that Data Integrity Metadata are transferred through.
	1.2.19 Receiving: a property of a node in which the node receives data and Data Integrity Metadata and is the termination of the Combined protection envelope.
	1.2.20 Translating: a property of a node in which the node modifies the Address Stamp in the Data Integrity Metadata received to a different Stamp in the Data Integrity Metadata that is transmitted.
	1.2.21 Verifying: a property of a node in which the node verifies the Data Integrity Metadata that is associated with the data and passes errors to the Error Handling node of the Error Handling Domain.

	1.3 INCITS T10 Protection Information Model
	1.4 Data Integrity Extensions (DIX)
	The T10 Protection Information Model only concerns itself with communication between a SCSI initiator and a target. The Data Integrity Extensions define a mechanism that allows an operating system to exchange Data Integrity Metadata with a SCSI initia...

	2 Model Description
	2.1 Overview

	3 Use Cases
	3.1 Overview
	3.2 Description of Data Integrity Errors
	3.2.1 Overview
	3.2.2 When does data corruption occur
	3.2.3 Types of data integrity errors
	3.2.4 Location of Data Integrity Errors

	3.3 Causes of Data Integrity errors addressed by this model (real world causes)
	3.3.1 Operating System memory mapping failure leading to wrong data going to an LBA
	3.3.2 Operating System memory mapping failure leading to wrong data presented to an application while reading a LUN.
	3.3.3 Misplacement of valid data
	3.3.4 Host hardware failures

	3.4 Causes of Data Integrity errors not covered by this model
	3.4.1 Lost write caused by storage array
	3.4.2 Storage array mapping algorithm failure
	3.4.3 Operating System bug over-writing wrong LUN on system crash
	3.4.4 Administrative Error

	4 Best Practices
	4.1 Increasing Soft Error Rate (SER) within Servers
	4.2 Scatter-Gather List Separation
	4.3 Buffer Management
	4.4 Cache Management

	5 Protection Information Channel
	5.1 Movement of Protection Information

	6 Data Integrity Metadata
	6.1 Overview
	6.2 Components
	6.2.1 Address Stamp
	6.2.2 Data Stamp
	6.2.3 Application Stamp

	7 Mechanisms for passing protection information between nodes/components
	7.1 Overview
	7.2 Information required to be passed
	7.3 Full discovery requirement

	8 Data integrity aware Application Programming Interfaces
	8.1 Protecting and validating a data buffer
	8.2 Error handling

